RESUMO
Liver cirrhosis occurs as a consequence of many chronic liver diseases that are prevalent worldwide. Here we characterize the gut microbiome in liver cirrhosis by comparing 98 patients and 83 healthy control individuals. We build a reference gene set for the cohort containing 2.69 million genes, 36.1% of which are novel. Quantitative metagenomics reveals 75,245 genes that differ in abundance between the patients and healthy individuals (false discovery rate < 0.0001) and can be grouped into 66 clusters representing cognate bacterial species; 28 are enriched in patients and 38 in control individuals. Most (54%) of the patient-enriched, taxonomically assigned species are of buccal origin, suggesting an invasion of the gut from the mouth in liver cirrhosis. Biomarkers specific to liver cirrhosis at gene and function levels are revealed by a comparison with those for type 2 diabetes and inflammatory bowel disease. On the basis of only 15 biomarkers, a highly accurate patient discrimination index is created and validated on an independent cohort. Thus microbiota-targeted biomarkers may be a powerful tool for diagnosis of different diseases.
Assuntos
Trato Gastrointestinal/microbiologia , Cirrose Hepática/diagnóstico , Cirrose Hepática/microbiologia , Metagenômica , Microbiota/genética , Microbiota/fisiologia , Estudos de Casos e Controles , Doença Crônica , Diabetes Mellitus Tipo 2/microbiologia , Fezes/microbiologia , Marcadores Genéticos/genética , Saúde , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Boca/microbiologia , Filogenia , Reprodutibilidade dos TestesRESUMO
We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.
Assuntos
Bactérias/isolamento & purificação , Biomarcadores/metabolismo , Trato Gastrointestinal/microbiologia , Metagenoma , Adiposidade , Adulto , Bactérias/classificação , Bactérias/genética , Índice de Massa Corporal , Estudos de Casos e Controles , Dieta , Dislipidemias/microbiologia , Metabolismo Energético , Europa (Continente)/etnologia , Feminino , Genes Bacterianos , Humanos , Inflamação/microbiologia , Resistência à Insulina , Masculino , Metagenoma/genética , Obesidade/metabolismo , Obesidade/microbiologia , Sobrepeso/metabolismo , Sobrepeso/microbiologia , Filogenia , Magreza/microbiologia , Aumento de Peso , Redução de Peso , População BrancaRESUMO
BACKGROUND: Microbial communities of traditional cheeses are complex and insufficiently characterized. The origin, safety and functional role in cheese making of these microbial communities are still not well understood. Metagenomic analysis of these communities by high throughput shotgun sequencing is a promising approach to characterize their genomic and functional profiles. Such analyses, however, critically depend on the availability of appropriate reference genome databases against which the sequencing reads can be aligned. RESULTS: We built a reference genome catalog suitable for short read metagenomic analysis using a low-cost sequencing strategy. We selected 142 bacteria isolated from dairy products belonging to 137 different species and 67 genera, and succeeded to reconstruct the draft genome of 117 of them at a standard or high quality level, including isolates from the genera Kluyvera, Luteococcus and Marinilactibacillus, still missing from public database. To demonstrate the potential of this catalog, we analysed the microbial composition of the surface of two smear cheeses and one blue-veined cheese, and showed that a significant part of the microbiota of these traditional cheeses was composed of microorganisms newly sequenced in our study. CONCLUSIONS: Our study provides data, which combined with publicly available genome references, represents the most expansive catalog to date of cheese-associated bacteria. Using this extended dairy catalog, we revealed the presence in traditional cheese of dominant microorganisms not deliberately inoculated, mainly Gram-negative genera such as Pseudoalteromonas haloplanktis or Psychrobacter immobilis, that may contribute to the characteristics of cheese produced through traditional methods.
Assuntos
Bactérias/genética , Bactérias/metabolismo , Laticínios/microbiologia , Bases de Dados Genéticas , Fermentação , Metagenômica/métodos , Queijo/microbiologia , Genoma Bacteriano/genética , Microbiota , Análise de SequênciaRESUMO
A 70-year-old woman with no relevant medical history presented banal clinical signs of infectious gastroenteritis on her return from a trip to the Republic of the Union of Myanmar. The appearance of her stools and clinical findings were not suggestive of a typical case of cholera, but Vibrio cholerae was nevertheless isolated from her stools in the laboratory. The National reference center (NRC) for vibrios and cholera identified a Vibrio cholerae serogroup O1 (serotype Inaba) strain. The health authorities were notified of an imported case of cholera, identified on the basis of clinical, biological and epidemiological data. The diagnostic strategy used in the laboratory was based on a two-step algorithm involving molecular biological screening followed by culture on selective media for species identification. It was this approach, benefiting from the complementarity of the different techniques, that made it possible to reach a reliable rapid biological diagnosis of this atypical, but frequent form of the disease. The diagnosis of imported cases is of the utmost importance, because the mandatory signaling and notification of cases trigger investigations to check for additional cases among other exposed individuals or contacts of the patient, even though the risk of secondary transmission appears to be low in France. It also supplies data to international surveillance networks for cholera, which remains a serious disease and a major problem globally. This case highlights the importance of interactions between the various biological personnel and clinicians.
Assuntos
Cólera/diagnóstico , Gastroenterite/diagnóstico , Doença Relacionada a Viagens , Idoso , Diagnóstico Diferencial , Feminino , França , Humanos , Testes de Sensibilidade Microbiana , Mianmar , Fenótipo , Síndrome , Vibrio cholerae O1/isolamento & purificaçãoRESUMO
The intestinal microbiota is considered to be a major reservoir of antibiotic resistance determinants (ARDs) that could potentially be transferred to bacterial pathogens via mobile genetic elements. Yet, this assumption is poorly supported by empirical evidence due to the distant homologies between known ARDs (mostly from culturable bacteria) and ARDs from the intestinal microbiota. Consequently, an accurate census of intestinal ARDs (that is, the intestinal resistome) has not yet been fully determined. For this purpose, we developed and validated an annotation method (called pairwise comparative modelling) on the basis of a three-dimensional structure (homology comparative modelling), leading to the prediction of 6,095 ARDs in a catalogue of 3.9 million proteins from the human intestinal microbiota. We found that the majority of predicted ARDs (pdARDs) were distantly related to known ARDs (mean amino acid identity 29.8%) and found little evidence supporting their transfer between species. According to the composition of their resistome, we were able to cluster subjects from the MetaHIT cohort (n = 663) into six resistotypes that were connected to the previously described enterotypes. Finally, we found that the relative abundance of pdARDs was positively associated with gene richness, but not when subjects were exposed to antibiotics. Altogether, our results indicate that the majority of intestinal microbiota ARDs can be considered intrinsic to the dominant commensal microbiota and that these genes are rarely shared with bacterial pathogens.
Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/genética , Intestinos/microbiologia , Conformação Proteica , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , beta-Lactamases/química , beta-Lactamases/genéticaRESUMO
Maternal uniparental disomy of chromosome 14 (upd(14)mat) is responsible for a Prader-Willi-like syndrome with precocious puberty. Although upd(14) is often hypothesized to result from trisomy rescue mechanism, T14 cell lines are usually not found with postnatal cytogenetic investigations. We report the coexistence of both chromosomal abnormalities in a 15-year-old girl.
RESUMO
Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the means for comprehensive profiling of the diversity within complex metagenomic samples.
Assuntos
Metagenômica , Análise por Conglomerados , Bases de Dados GenéticasRESUMO
Hypophosphatasia (HPP) features rickets or osteomalacia from tissue-nonspecific alkaline phosphatase (TNSALP) deficiency due to deactivating mutations within the ALPL gene. Enzyme replacement therapy with a bone-targeted, recombinant TNSALP (sALP-FcD(10), renamed ENB-0040) prevents manifestations of HPP when initiated at birth in TNSALP knockout (Akp2(-/-)) mice. Here, we evaluated the dose-response relationship of ENB-0040 to various phenotypic traits of Akp2(-/-) mice receiving daily subcutaneous (SC) injections of ENB-0040 from birth at 0.5, 2.0, or 8.2mg/kg for 43days. Radiographs, µCT, and histomorphometric analyses documented better bone mineralization with increasing doses of ENB-0040. We found a clear, positive correlation between ENB-0040 dose and prevention of mineralization defects of the feet, rib cage, lower limbs, and jaw bones. According to a dose-response model, the ED(80) (the dose that prevents bone defects in 80% of mice) was 3.2, 2.8 and 2.9mg/kg/day for these sites, respectively. Long bones seemed to respond to lower daily doses of ENB-0040. There was also a positive relationship between ENB-0040 dose and survival. Median survival, body weight, and bone length all improved with increasing doses of ENB-0040. Urinary PP(i) concentrations remained elevated in all treatment groups, indicating that while this parameter is a good biochemical marker for diagnosing HPP in patients, it may not be a good follow up marker for evaluating response to treatment when administering bone-targeted TNSALP to mice. These dose-response relationships strongly support the pharmacological efficacy of ENB-0040 for HPP, and provide the experimental basis for the therapeutic range of ENB-0040 chosen for clinical trials.
Assuntos
Fosfatase Alcalina/metabolismo , Hipofosfatasia/tratamento farmacológico , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Fosfatase Alcalina/genética , Animais , Terapia de Reposição de Enzimas/métodos , Camundongos , Camundongos Knockout , Osteomalacia/tratamento farmacológico , Proteínas Recombinantes/genéticaRESUMO
INTRODUCTION: Hypophosphatasia (HPP) is the inborn error of metabolism that features rickets or osteomalacia caused by loss-of-function mutation(s) within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNALP). Consequently, natural substrates for this ectoenzyme accumulate extracellulary including inorganic pyrophosphate (PPi), an inhibitor of mineralization, and pyridoxal 5'-phosphate (PLP), a co-factor form of vitamin B6. Babies with the infantile form of HPP often die with severe rickets and sometimes hypercalcemia and vitamin B6-dependent seizures. There is no established medical treatment. MATERIALS AND METHODS: Human TNALP was bioengineered with the C terminus extended by the Fc region of human IgG for one-step purification and a deca-aspartate sequence (D10) for targeting to mineralizing tissue (sALP-FcD10). TNALP-null mice (Akp2-/-), an excellent model for infantile HPP, were treated from birth using sALP-FcD10. Short-term and long-term efficacy studies consisted of once daily subcutaneous injections of 1, 2, or 8.2 mg/kg sALP-FcD10 for 15, 19, and 15 or 52 days, respectively. We assessed survival and growth rates, circulating levels of sALP-FcD10 activity, calcium, PPi, and pyridoxal, as well as skeletal and dental manifestations using radiography, microCT, and histomorphometry. RESULTS: Akp2-/- mice receiving high-dose sALP-FcD10 grew normally and appeared well without skeletal or dental disease or epilepsy. Plasma calcium, PPi, and pyridoxal concentrations remained in their normal ranges. We found no evidence of significant skeletal or dental disease. CONCLUSIONS: Enzyme replacement using a bone-targeted, recombinant form of human TNALP prevents infantile HPP in Akp2-/- mice.