Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Rev Argent Microbiol ; 55(2): 181-188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36842870

RESUMO

This work focused on the comprehensive study of two provincial transit abattoirs in Tucumán, Argentina, with no Hazard Analysis Critical Control Point (HACCP) plan. Visits (n=20) were conducted between 2016 and 2018 during the operational and post-operational processes. Risk was estimated and the bacteriological analysis of carcass and environmental samples was performed. Risk estimation showed the predominance of high risk in both abattoirs. The main deviations from the HACCP plan were: deficient building conditions, deficient workflow, lack of sectorization of changing rooms and bathrooms, lack of implementation of Standardized Sanitary Operational Procedures, and no food safety training of workers. The counts of indicator microorganisms from both abattoirs were not significant. Salmonella spp. was isolated from 7.5% carcass and 7.3% environmental samples. The Salmonella serovars identified were Cerro, Corvallis, Havana and Agona. Shiga toxin (stx) genes were detected in 24.4% carcass and 30.9% environmental samples. The isolates were characterized as Escherichia coli O8:H7/stx1, O116:H49/stx2 and O136:H40/stx2. Based on these results, it would be possible to implement an improvement plan in Tucumán abattoirs together with the local health authorities. Still, the need to work jointly with the sanitary authority in search of a unique sanitary standard for Argentina remains unaddressed.


Assuntos
Matadouros , Análise de Perigos e Pontos Críticos de Controle , Humanos , Argentina , Salmonella , Carne
2.
Rev Argent Microbiol ; 54(4): 322-325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35644769

RESUMO

We subtyped 32 Salmonella enterica strains isolated from carcasses (n=10), the environment (n=14), head meat (n=1) and viscera washing and chilling water (n=7) in provincial abattoirs with no Hazard Analysis Critical Control Point (HACCP) system from Buenos Aires, Argentina, before and after implementing improvement actions. Pulsed-field gel electrophoresis (PFGE) was carried out using the XbaI restriction enzyme. Strains belonged to six serovars, from which 10 restriction patterns were obtained (five unique patterns and five clusters). We found different clones of S. enterica serovars in the same abattoir by XbaI-PFGE. In addition to promoting good hygiene practices, the implementation of an HACCP plan is necessary to meet the zero-tolerance criteria for Salmonella on beef.


Assuntos
Matadouros , Salmonella enterica , Bovinos , Animais , Análise de Perigos e Pontos Críticos de Controle , Argentina , Salmonella/genética , Salmonella enterica/genética , Eletroforese em Gel de Campo Pulsado/métodos
3.
Rev Argent Microbiol ; 54(3): 215-219, 2022.
Artigo em Espanhol | MEDLINE | ID: mdl-34556377

RESUMO

The aim of this work was to evaluate the hygienic-sanitary conditions of butcher shops in Tandil, Buenos Aires Province, by estimating the risk based on good manufacturing and hygiene practices, through surveys of the establishments. The analysis was performed using a scale of 1-100, and classifying them as high risk (0-40), moderate risk (41-70) or low risk (71-100). The presence of Salmonella spp., Staphylococcus aureus and Shiga toxin-producing Escherichia coli (STEC) from both, ground beef and environmental samples such as countertop, cleaver, mincer and butcher's hands, taken at butcher shops was also evaluated. Sampling was performed only once and immediately refrigerated and transported to the laboratory for analysis. All butcher shops evaluated (100) were classified as "low risk" with good hygienic-sanitary conditions. However, 75% of the ground beef samples analyzed did not meet at least one of the microbiological criteria established in the Código Alimentario Argentino [Argentine Food Code], article 255. We propose to establish a strategy to identify deviations and implement a plan for continuous improvement in butcher shops of Tandil city.


Assuntos
Escherichia coli Shiga Toxigênica , Animais , Argentina , Bovinos , Microbiologia de Alimentos , Carne/microbiologia , Salmonella , Staphylococcus aureus
4.
Rev Argent Microbiol ; 52(3): 217-220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31786073

RESUMO

We studied and compared the prevalence of Campylobacter jejuni and Campylobacter coli in chicken carcasses from conventional and kosher broiler abattoirs and retail stores. The prevalence of thermotolerant Campylobacter-positive carcasses was 94.0 (kosher) and 32.0% (conventional) (p<0.0001), while the prevalence of samples contaminated with C. jejuni, C. coli and simultaneously with both species was 36.0, 2.0 and 56.0% (kosher) and 26.0, 4.0 and 2.0% (conventional) (p<0.0001), respectively. Samples of chicken carcasses (n=25) and food contact surfaces (tables, n=25; knives, n=25) from 25 retails were collected and risk quantification was performed. Retails were categorized as high-risk (n=11), moderate-risk (n=11) and low-risk (n=3). Nineteen (76.0%) carcasses, 20 (80.0%) tables and 18 (72.0%) knives were Campylobacter-positive. Retails and abattoirs proved to be sources of carcass contamination with Campylobacter spp. Carcasses from kosher abattoirs were mostly contaminated with Campylobacter spp., whereas C. coli was the most prevalent species isolated from carcasses in retail stores.


Assuntos
Campylobacter coli , Campylobacter jejuni , Campylobacter , Matadouros , Animais , Galinhas , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Carne , Prevalência
5.
Food Microbiol ; 84: 103273, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31421766

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are important pathogens transmitted by food that may cause severe illness in human beings. Thus, systems for STEC detection in food should have increasingly higher sensitivity and specificity. Here we compared six commercial systems for non-O157 STEC detection in meat and vegetables and determined their sensitivity, specificity and repeatability. A total of 46 samples (meat n = 23; chard n = 23) were experimentally contaminated with strains O26:H11, O45:H-, O103:H2, O111:NM, O121:H19 and O145:NM isolated in Argentina. Strain detection was confirmed by isolation according to ISO 13136:2012. Detection of the stx and eae genes in meat samples was highly satisfactory with all commercial kits, but only five had 100% sensitivity and specificity in chard. Of four kits evaluated for serogroup detection, three had 100% sensitivity and specificity, and one had 93.7% sensitivity and 100% specificity. All kits were adequate to analyze meat but not vegetable samples, and were not therefore validated for the latter matrix. The challenge for microbiology laboratories is to identify the advantages and disadvantages of the available kits for STEC detection in food based on a clear knowledge of the particular needs of each laboratory.


Assuntos
Contaminação de Alimentos/análise , Microbiologia de Alimentos/métodos , Carne/microbiologia , Sorotipagem/normas , Escherichia coli Shiga Toxigênica/isolamento & purificação , Verduras/microbiologia , Adesinas Bacterianas/genética , Microbiologia de Alimentos/normas , Kit de Reagentes para Diagnóstico/normas , Sensibilidade e Especificidade , Sorogrupo , Sorotipagem/métodos , Toxina Shiga/genética
6.
Rev Argent Microbiol ; 51(4): 359-362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31023493

RESUMO

Listeria monocytogenes is a foodborne pathogen. The recent alert for L. monocytogenes in vegetables from Argentina warns about the importance of reinforcing its isolation, characterization and subtyping in food, clinical and environmental samples. The aim of the present study was to compare the discriminatory power of enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR), automated ribotyping and pulsed-field gel electrophoresis (PFGE) to subtype strains of L. monocytogenes isolated from Argentine meat and environmental samples. Simpson's Diversity Index (DI) was calculated on the basis of based on the dendrograms obtained in the by cluster analysis, showing the following discriminatory power: ApaI-PFGE (0.980), AscI-PFGE (0.966), ribotyping (0.912), ERIC-PCR (0.886). The ID values between ApaI- and AscI-PFGE and between ribotyping and ERIC-PCR were not significantly different. Of the three techniques evaluated, PFGE showed the highest discriminatory power. However, the subtyping techniques should be accompanied by effective food monitoring strategies and reliable clinical and epidemiological studies.


Assuntos
Listeria monocytogenes/classificação , Tipagem Molecular/métodos , Eletroforese em Gel de Campo Pulsado , Reação em Cadeia da Polimerase , Ribotipagem
7.
Foodborne Pathog Dis ; 15(1): 55-57, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028444

RESUMO

Listeriosis is a foodborne disease caused by Listeria monocytogenes. The aims of this work were to develop and validate an in-house real-time polymerase chain reaction (RT-PCR) for the detection of L. monocytogenes, and to determine its prevalence in raw ground beef samples from 53 butcheries that also sell ready-to-eat foods. One set of primers and one hydrolysis probe were designed for hly gene detection and then challenged with pure strains. The detection was successful for all L. monocytogenes strains analyzed and negative for all non-L. monocytogenes strains (detection limit, 10 colony forming unit [CFU]/mL). Inclusivity, exclusivity, and analytical accuracy were 100%. L. monocytogenes was detected in 41.5% of raw ground beef samples from the 53 butcheries analyzed. This RT-PCR may be a valuable method for rapid detection of L. monocytogenes in meat.


Assuntos
Microbiologia de Alimentos , Listeria monocytogenes/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Carne Vermelha/microbiologia , Animais , Bovinos , Inspeção de Alimentos/métodos , Indústria de Embalagem de Carne , Sensibilidade e Especificidade
8.
Rev Argent Microbiol ; 50(4): 341-350, 2018.
Artigo em Espanhol | MEDLINE | ID: mdl-29336911

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that can cause watery diarrhea, bloody diarrhea (BD), and hemolytic uremic syndrome (HUS). The objective of this study was to determine the phenotypic and genotypic profiles of STEC strains isolated from children with BD and HUS treated at a pediatric hospital in the city of La Plata in the period 2006-2012, and to establish the clonal relationship of O157:H7 isolates by pulsed field electrophoresis. The percentage of positive samples was 4.9% and 39.2% in patients with BD and HUS, respectively. Seventy-seven STEC strains from 10 different serotypes were isolated, with 100% colony recovery, O157:H7 being the most frequent (71.4%) serotype, followed by O145:NM (15.6%). An average of 98.2% of O157:H7 isolates belonged to biotype C and were sensitive to all the antibiotics tested. All of them (100%) carried genotype stx2, eae, fliCH7, ehxA, iha, efa, toxB, lpfA1-3 and lpfA2-2. When the clonal relationship of the O157:H7 strains was studied, a total of 42 patterns with at least 88% similarity were identified, and 6 clusters with identical profiles were established. The eae-negative isolates belonged to serotypes O59:H19, O102:H6, O174:NM and O174:H21. The strains O59:H19 and O174:H21 were positive for the aggR gene. This study shows that STEC of different serotypes and genotypes circulate in the city of La Plata and surroundings. Despite the genetic diversity observed between the O157:H7 isolates, some were indistinguishable by the subtyping techniques used.


Assuntos
Diarreia/microbiologia , Infecções por Escherichia coli/microbiologia , Síndrome Hemolítico-Urêmica/microbiologia , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/isolamento & purificação , Argentina , Criança , Pré-Escolar , Diarreia/tratamento farmacológico , Infecções por Escherichia coli/tratamento farmacológico , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Hospitais Pediátricos , Humanos , Lactente , Estudos Retrospectivos , Escherichia coli Shiga Toxigênica/genética
9.
Foodborne Pathog Dis ; 14(5): 253-259, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28103104

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are important emerging foodborne human pathogens. Ruminants are the main animal reservoir of STEC currently known, and meat can become contaminated at different stages of the production chain. The aim of this work was to subtype and establish the epidemiological relatedness of non-O157 STEC strains isolated from ground beef and the environment in butcher shops before (evaluation stage, 2010-2011 period) and after (verification stage, 2013) implementing improvement actions. Sixty-eight non-O157 STEC strains were tested for eae, saa, ehxA, iha, efa1, toxB, subAB, cdt-V, astA, aggR, and aaiC genes, and stx1 and stx2 variants were determined. Pulsed-field gel electrophoresis (PFGE) was carried out with XbaI and XmaJI. From the 68 strains, 92.6%, 75.0%, 58.8%, 53.5%, 10.3%, 7.3%, and 4.4% were positive for iha, ehxA, subAB, saa, cdt-V, astA, and eae, respectively. All strains were aggR/aaiC-negative. PFGE showed that 19 strains grouped in 9 clusters and 41 showed unique XbaI patterns. During the evaluation stage (2010-2011), we identified clonal strains in different samples, circulating clones in different butcher shops, and more than one different strain in the same butcher shop. The bovine origin of meat and its manufacturing process could not ensure the total absence of all non-O157 STEC serotypes in this foodstuff. Most strains isolated during the evaluation (2010-2011) and verification (2013) stages did not exhibit a genotypic profile associated with human disease. It is necessary to conduct periodic reviews of the new epidemiological information and verify that the analyses of non-O157 STEC in food are appropriate to identify strains affecting the population.


Assuntos
Técnicas de Tipagem Bacteriana , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Escherichia coli Shiga Toxigênica/isolamento & purificação , Animais , Argentina , Toxinas Bacterianas/isolamento & purificação , Bovinos , Eletroforese em Gel de Campo Pulsado , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Projetos Piloto , Carne Vermelha/análise , Carne Vermelha/microbiologia , Escherichia coli Shiga Toxigênica/genética
10.
Foodborne Pathog Dis ; 13(3): 163-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26836701

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens, and beef cattle are recognized as the principal reservoir. The aims of this study were (1) to identify the most sensitive combination of selective enrichment broths and agars for STEC isolation in artificially inoculated ground beef samples, and (2) to evaluate the most efficient combination(s) of methods for naturally contaminated ground beef samples. A total of 192 ground beef samples were artificially inoculated with STEC and non-stx bacterial strains. A combination of four enrichment broths and three agars were evaluated for sensitivity, specificity, and positive predictive value for STEC isolation from experimentally inoculated samples. Enrichments with either modified tryptic soy broth (mTSB) containing 8 mg/L novobiocin (mTSB-8) or modified Escherichia coli (mEC) broth followed by isolation in MacConkey agar were the most sensitive combinations for STEC isolation of artificially inoculated samples. Independently, both enrichments media followed by isolation in MacConkey were used to evaluate ground beef samples from 43 retail stores, yielding 65.1% and 58.1% stx-positive samples by RT-PCR, respectively. No difference was observed in the isolate proportions between these two methods (8/25 [32%] and 8/28 [28.6%]). Identical serotypes and stx genotypes were observed in STEC strains isolated from the same samples by either method. In this study, no single enrichment protocol was sufficient to detect all STEC in artificially inoculated samples and had considerable variation in detection ability with naturally contaminated samples. Moreover, none of the single or combinations of multiple isolation agars used were capable of identifying all STEC serogroups in either artificially inoculated or naturally occurring STEC-contaminated ground beef. Therefore, it may be prudent to conclude that there is no single method or combination of isolation methods capable of identifying all STEC serogroups.


Assuntos
Infecções por Escherichia coli/microbiologia , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Carne Vermelha/microbiologia , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Ágar , Animais , Bovinos , Meios de Cultura
11.
Foodborne Pathog Dis ; 12(8): 704-11, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26217917

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for neonatal diarrhea, postweaning diarrhea, and edema disease in pigs. Although it can be harmless, ETEC is also present in the intestines of other animal species and humans, causing occasional diarrhea outbreaks. The evaluation of this pathogen's presence in food sources is becoming an increasingly important issue in human health. In order to determine the prevalence of ETEC in nondiarrheic pigs, 990 animals from 11 pig farms were sampled. Using end-time polymerase chain reaction (PCR), eltA, estI genes, or both, were detected in 150 (15.2%) animals. From the positive samples, 40 (26.6%) ETEC strains were isolated, showing 19 antibiotic-resistance patterns; 52.5% of these strains had multiple antibiotic resistances, and 17.5% carried the intI2 gene. The most prevalent genotypes were rfb(O157)/estII/aidA (32.5%) and estI/estII (25.0%). The estII gene was identified most frequently (97.5%), followed by estI (37.5%), astA (20.0%), and eltA (12.5%). The genes coding the fimbriae F5, F6, and F18 were detected in three single isolates. The aidA gene was detected in 20 ETEC strains associated with the estII gene. Among the isolated ETEC strains, stx(2e)/estI, stx(2e)/estI/estII, and stx(2e)/estI/estII/intI2 genotypes were identified. The ETEC belonged to 12 different serogroups; 37.5% of them belonged to serotype O157:H19. Isolates were grouped by enterobacterial repetitive intergenic consensus-PCR into 5 clusters with 100.0% similarity. In this study, we demonstrated that numerous ETEC genotypes cohabit and circulate in swine populations without clinical manifestation of neonatal diarrhea, postweaning diarrhea, or edema disease in different production stages. The information generated is important not only for diagnostic and epidemiological purposes, but also for understanding the dynamics and ecology of ETEC in pigs in different production stages that can be potentially transmitted to humans from food animals.


Assuntos
Anti-Infecciosos/análise , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli Enterotoxigênica/isolamento & purificação , Genes Bacterianos , Carne Vermelha/microbiologia , Animais , Anti-Infecciosos/farmacologia , DNA Bacteriano/genética , Diarreia/microbiologia , Diarreia/veterinária , Edematose Suína/microbiologia , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Escherichia coli Enterotoxigênica/genética , Proteínas de Escherichia coli/genética , Contaminação de Alimentos , Microbiologia de Alimentos , Técnicas de Genotipagem , Carne Vermelha/análise , Suínos , Doenças dos Suínos/microbiologia
13.
PLoS One ; 18(8): e0290182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590206

RESUMO

The aim of this study was to perform a quantitative microbial risk assessment (QMRA) of Shiga toxin-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) linked to the consumption of Kosher beef produced in Argentina and consumed in Israel in children under 14 years. A probabilistic risk assessment model was developed to characterize STEC prevalence and contamination levels in the beef supply chain (cattle primary production, cattle transport, processing and storage in the abattoir, for export and at retail, and home preparation and consumption). The model was implemented in Microsoft Excel 2016 with the @Risk add-on package. Results of 302 surveys with data collected in Israel were as follows: 92.3% of people consumed beef, mostly at home, and 98.2% preferred levels of cooking that ensured STEC removal from the surface of beef cuts. The preferred degree of ground beef doneness was "well-done" (48.2%). Cooking preference ranged from red to "medium-well done" (51.8%). Median HUS probability from Argentinean beef cut and ground beef consumption in children under 14 years old was <10-15 and 8.57x10-10, respectively. The expected average annual number of HUS cases and deaths due to beef cut and ground beef consumption was zero. Risk of infection and HUS probability correlated with salting effect on E. coli count, processing raw beef before vegetables, ways of storage and refrigeration temperature at home, joint consumption of salad and beef cuts, degree of beef doneness and cutting board washing with detergent after each use with beef and vegetables. The STEC-HUS risk in Israel from consumption of bovine beef produced in Argentina was negligible. The current QMRA results were similar to those of previous beef cut consumption QMRA in Argentina and lower than any of the QMRA performed worldwide in other STEC-HUS linked to ground beef consumption. This study confirms the importance of QMRA to estimate and manage the risk of STEC-HUS from beef consumption. The impact variables identified in the sensitivity analysis allowed us to optimize resources and time management, to focus on accurate actions and to avoid taking measures that would not have an impact on the risk of STEC-HUS.


Assuntos
Escherichia coli , Síndrome Hemolítico-Urêmica , Animais , Bovinos , Israel/epidemiologia , Argentina/epidemiologia , Síndrome Hemolítico-Urêmica/epidemiologia , Medição de Risco
14.
Front Microbiol ; 14: 1130170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950166

RESUMO

Introduction: Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that cause food-borne diseases in humans. Cattle and derived foodstuffs play a known role as reservoir and vehicles, respectively. In Uruguay, information about the characteristics of circulating STEC in meat productive chain is scarce. The aim was to characterize STEC strains recovered from 800 bovine carcasses of different slaughterhouses. Methods: To characterize STEC strains we use classical microbiological procedures, Whole Genome Sequencing (WGS) and FAO/WHO risk criteria. Results: We analyzed 39 STEC isolated from 20 establishments. They belonged to 21 different O-groups and 13 different H-types. Only one O157:H7 strain was characterized and the serotypes O130:H11(6), O174:H28(5), and O22:H8(5) prevailed. One strain showed resistance in vitro to tetracycline and genes for doxycycline, sulfonamide, streptomycin and fosfomycin resistance were detected. Thirty-three strains (84.6%) carried the subtypes Stx2a, Stx2c, or Stx2d. The gene eae was detected only in two strains (O157:H7, O182:H25). The most prevalent virulence genes found were lpfA (n = 38), ompA (n = 39), ompT (n = 39), iss (n = 38), and terC (n = 39). Within the set of STEC analyzed, the majority (81.5%) belonged to FAO/WHO's risk classification levels 4 and 5 (lower risk). Besides, we detected STEC serotypes O22:H8, O113:H21, O130:H11, and O174:H21 belonged to level risk 2 associate with diarrhea, hemorrhagic colitis or Hemolytic-Uremic Syndrome (HUS). The only O157:H7 strain analyzed belonged to ST11. Thirty-eight isolates belonged to the Clermont type B1, while the O157:H7 was classified as E. Discussion: The analyzed STEC showed high genomic diversity and harbor several genetic determinants associated with virulence, underlining the important role of WGS for a complete typing. In this set we did not detect non-O157 STEC previously isolated from local HUS cases. However, when interpreting this findings, the low number of isolates analyzed and some methodological limitations must be taken into account. Obtained data suggest that cattle constitute a local reservoir of non-O157 serotypes associated with severe diseases. Other studies are needed to assess the role of the local meat chain in the spread of STEC, especially those associated with severe diseases in humans.

15.
Food Sci Technol Int ; : 10820132231180640, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37306110

RESUMO

Vegetables, especially those eaten raw, have been implicated in several foodborne disease outbreaks. Since multiple vegetable matrices and hazards are involved, risk managers have to prioritize those with the greatest impact on public health to design control strategies. In this study, a scientific-based risk ranking of foodborne pathogens transmitted by leafy green vegetables in Argentina was performed. The prioritization process included hazard identification, evaluation criteria identification and definition, criteria weighting, expert survey design and selection and call for experts, hazard score calculation, hazard ranking and variation coefficient, and result analysis. Regression tree analysis determined four risk clusters: high (Cryptosporidum spp., Toxoplasma gondii, Norovirus), moderate (Giardia spp., Listeria spp., Shigella sonnei), low (Shiga toxin-producing Escherichia coli, Ascaris spp., Entamoeba histolytica, Salmonella spp., Rotavirus, Enterovirus) and very low (Campylobacter jejuni, hepatitis A virus and Yersinia pseudotuberculosis). Diseases caused by Norovirus, Cryptosporidium spp. and T. gondii do not require mandatory notification. Neither viruses nor parasites are included as microbiological criteria for foodstuff. The lack of outbreak studies did not allow to accurately identify vegetables as a source of Norovirus disease. Information on listeriosis cases or outbreaks due to vegetable consumption was not available. Shigella spp. was the main responsible for bacterial diarrhea, but it has not been epidemiologically associated with vegetable consumption. The quality of the available information for all hazards studied was very low and low. The implementation of good practice guidelines throughout the entire vegetable production chain could prevent the presence of the identified hazards. The current study allowed the identification of vacancy areas and could help reinforce the need for performing epidemiological studies on foodborne diseases potentially associated with vegetable consumption in Argentina.

16.
Foodborne Pathog Dis ; 9(10): 878-84, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22994915

RESUMO

The purposes of this study were to detect non-O157 Shiga toxin-producing Escherichia coli (STEC) in bovine rectums and water in a beef cattle farm in Argentina, and to determine the pathogenic potential of the circulating strains. During the study, 292 rectal swabs from healthy animals and 79 environmental water samples were collected. The rectal swabs and one loop of the Moore swabs, enriched in Escherichia coli broth for 24 h at 37°C, were streaked on MacConkey agar plates and incubated overnight at 37°C. The isolates were characterized by biochemical tests and serotyped. Nonmotile STEC strains were typed for their H-specific (fliC) antigens by polymerase chain reaction (PCR). Isolates were characterized by detection of stx1, stx2, and their variants, eae, ehxA, and saa genes. Macrorestriction fragment analysis by pulsed-field gel electrophoresis (PFGE) was performed using the PulseNet standardized protocol. From 371 samples analyzed, 36.6% of rectal swabs and 34.2% of water samples were non-O157 STEC-positive by PCR, and 110 strains from rectal swabs, but only three from water, were isolated. The strains were grouped into 24 different serotypes, from which, O103:[H2] (n = 12), O136:H12 (n = 8), O178:H19 (n = 8), and O103:NM (n = 5) were most prevalent, representing 29.2% of the isolates. Predominant genotypes were stx1/eae/ehxA (16.8%) and stx2/saa/ehxA (15.9%). PFGE analysis revealed 56 different patterns, with 65 strains grouped in 19 clusters of 100% similarity. Two STEC O124:H19 strains isolated from rectal swabs and water with a 5-month interval harbored the stx1/stx2/saa/ehxA genotype, and showed an indistinguishable PFGE profile. By comparison, some XbaI-PFGE patterns identified in the present study were identical to the profiles of strains isolated from human, food, and animal sources included in the Argentine PulseNet database. By PCR, similar non-O157 detection rates were found in rectal swabs and water. However, the methodology for water samples needs to be improved, since only three strains from the total number of positive samples were recovered.


Assuntos
Bovinos/microbiologia , Reto/microbiologia , Rios/microbiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Microbiologia da Água , Animais , Argentina , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Eletroforese em Gel de Campo Pulsado , Fezes/química , Fezes/microbiologia , Genótipo , Família Multigênica , Fenótipo , Reação em Cadeia da Polimerase , Sorotipagem , Toxina Shiga I/genética , Toxina Shiga I/isolamento & purificação , Toxina Shiga II/genética , Toxina Shiga II/isolamento & purificação , Escherichia coli Shiga Toxigênica/patogenicidade
17.
Foodborne Pathog Dis ; 9(5): 457-64, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22506961

RESUMO

Shiga toxin-producing Escherichia coli (STEC) cause nonbloody (NBD) and bloody diarrhea (BD), and hemolytic uremic syndrome (HUS). Cattle have been described as their main reservoir. STEC O157:H7 is recognized as the predominant serotype in clinical infections, but much less is known about the dominant subtypes in humans and animals or their genetic relatedness. The aims of this study were to compare the STEC O157 subtypes found in sporadic human infections with those in the bovine reservoir using stx-genotyping, phage typing, and XbaI-pulsed-field gel electrophoresis (PFGE), and correlate the subtypes with the severity of clinical manifestations. The 280 STEC O157:H7 strains collected included in this study were isolated from HUS (n=122), BD (n=69), and NBD (n=30) cases, and healthy carriers (n=5), and from bovines (n=54) in the abattoirs. The stx-genotyping showed that stx2/stx(2c(vh-a)) was predominant in human (76.1%) and in bovine strains (55.5%), whereas the second more important genotype was stx2 (20.8%) in human and stx(2c(vh-a)) (16.7%) in cattle strains. In human strains, PT4 (37.6%), PT49 (24.3%), and PT2 (18.6%) were the most frequent PTs (80.5%). In bovine isolates, PT2 (26%), PT39 (16.7%), and PT4 and PT49 (11.1% each) were predominant. By XbaI-PFGE, all 280 strains yielded 148 patterns with 75% similarity, and 169 strains were grouped in 37 clusters. Identical PT-PFGE-stx profile combinations were detected in strains of both origins: PT4-AREXH01.0011-stx2/stx(2c(vh-a)) (12 humans and one bovine), PT4-AREXH01.0543-stx2/stx(2c(vh-a)) (one human and four bovines), PT2-AREXH01.0076-stx2/stx(2c(vh-a)) (one human and four bovines), PT49-AREXH01.0175-stx2/stx(2c(vh-a)) (seven humans and one bovine), and PT49-AREXH01.0022-stx2/stx(2c(vh-a)) (seven humans and one bovine). No correlation was found among the stx-genotypes, the phage type, and the clinical symptoms.


Assuntos
Bovinos/microbiologia , Reservatórios de Doenças/microbiologia , Disenteria Bacilar/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/isolamento & purificação , Síndrome Hemolítico-Urêmica/microbiologia , Matadouros , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Argentina/epidemiologia , Tipagem de Bacteriófagos , Portador Sadio/microbiologia , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/fisiopatologia , Eletroforese em Gel de Campo Pulsado , Doenças Endêmicas , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/fisiopatologia , Escherichia coli O157/classificação , Escherichia coli O157/metabolismo , Hemorragia Gastrointestinal/etiologia , Técnicas de Genotipagem , Síndrome Hemolítico-Urêmica/epidemiologia , Síndrome Hemolítico-Urêmica/fisiopatologia , Humanos , Vigilância da População , Índice de Gravidade de Doença , Toxina Shiga II/genética , Toxina Shiga II/metabolismo
18.
Rev Argent Microbiol ; 44(2): 85-8, 2012.
Artigo em Espanhol | MEDLINE | ID: mdl-22997765

RESUMO

The purpose of this work was to characterize 47 Escherichia coli strains isolated from 32 pigs diagnosed with postweaning diarrhea and three pigs with edema disease by PCR. Forty two (95.5 %) of the strains isolated from diarrheic pigs were characterized as enterotoxigenic E. coli (ETEC) and 2 (4.5 %) as Shiga toxin-producing E. coli (STEC). Fourteen (33.3 %) ETEC strains were positive for est/estII/fedA genes. The most complex genotype was eltA/estI/faeG/aidA. Strains isolated from pigs with ED were classified as porcine STEC and were stx2e/aidA carriers. Eleven (25 %) strains carried the gene encoding adhesin protein AIDA-I. However, genes coding for F5, F6, F41, intimin and Paa were not detected. The development of vaccines generating antibodies against prevalent E. coli adhesins in Argentina could be useful for the prevention of PWD and ED.


Assuntos
Diarreia/veterinária , Edematose Suína/microbiologia , Escherichia coli Enterotoxigênica/genética , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Genes Bacterianos , Escherichia coli Shiga Toxigênica/genética , Doenças dos Suínos/microbiologia , Adesinas de Escherichia coli/genética , Animais , Argentina/epidemiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Surtos de Doenças , Edematose Suína/epidemiologia , Escherichia coli Enterotoxigênica/isolamento & purificação , Enterotoxinas/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Genótipo , Escherichia coli Shiga Toxigênica/isolamento & purificação , Sus scrofa , Suínos , Doenças dos Suínos/epidemiologia , Desmame
19.
Food Res Int ; 160: 111727, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076463

RESUMO

This meta-analysis aims to summarize the available information on the prevalence of the main human pathogenic microorganisms in vegetables, with emphasis on lettuce (Lactuca sativa). The database searches included scientific papers from 1980 to 2019, without language restrictions. Inclusion criteria were prevalence or incidence studies published in peer-reviewed journals reporting the total number of vegetable samples studied and the number of samples positive for the presence of the studied pathogens. The target pathogens were grouped into the following categories: bacteria, parasites and viruses. Results of different vegetable types, years of sampling, analyzed regions or species of microorganisms reported in the same article were considered as different studies. Therefore, each scientific article may contain several studies. Multilevel random-effect meta-analysis models were fitted to estimate the mean occurrence rate of pathogenic microorganisms and to compare them with different factors potentially associated with the outcome. Overall, the prevalence of bacterial, parasitic and viral pathogens in vegetables was relatively low. The mean prevalence of bacterial hazards was < 0.023, with the exception of S. aureus, whose prevalence was estimated at 0.096. The mean occurrence rates of parasites and viruses were 0.067 (95 % CI: 0.056-0.080) and 0.079 (95 % CI: 0.054-0.113), respectively. The prevalence of pathogenic E. coli and parasites increased as the year of publication of the scientific articles progressed, whereas the prevalence of the other bacterial pathogens and enteric viruses was steady. The types of vegetables evaluated did not affect pathogen prevalence. The prevalence of pathogenic microorganisms differed according to the continent of origin, except for E. coli O157:H7 and parasites. The prevalence of pathogens in vegetables is of public health importance, especially in vegetable types that are eaten raw, without thermal treatment to inactivate pathogens. This meta-analysis results show the need to apply proper sanitation methods to treat raw vegetables in order to avoid foodborne infections.


Assuntos
Escherichia coli O157 , Lactuca , Microbiologia de Alimentos , Humanos , Lactuca/microbiologia , Prevalência , Staphylococcus aureus , Verduras/microbiologia
20.
Food Sci Technol Int ; 28(1): 50-59, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33554641

RESUMO

The aim of this work was to reinforce actions tending to reduce Shiga toxin-producing Escherichia coli (STEC) in beef products from an Argentinean commercial abattoir implementing Hazard Analysis and Critical Control Point (HACCP) practices. An environmental stx map was built with 421 environmental samples from the slaughter, quartering, cool chamber and deboning sectors (February-May 2013). For stx determination, 125 carcass and 572 anatomical cut samples were used. Based on the environmental stx mapping results, improvement actions were designed and implemented (June and July 2013). After implementing improvement actions, 160 carcass and 477 anatomical cut samples were collected to identify stx and verify the impact of improvement actions (August-December 2013). Our results showed stx-positivity in pre-operational (10.1%) and operational (15.5%) environmental samples and in carcass and beef cut samples before (4.8 and 10.1%; p = 0.144) and after (1.2 and 4.8%; p = 0.0448) implementing improvement actions, respectively. Although improvement actions reduced stx in beef cuts, it is difficult to implement and sustain a system based on stx zero-tolerance only by reinforcing Good Manufacturing Practices, Sanitation Standard Operating Procedures and HACCP practices. The application of combined intervention strategies to reduce STEC in carcasses and beef cuts should be therefore considered.


Assuntos
Escherichia coli Shiga Toxigênica , Matadouros , Animais , Bovinos , Carne
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA