Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 25(3): 515-522, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30789137

RESUMO

Cronobacter sakazakii has been documented as a cause of life-threating infections, predominantly in neonates. We conducted a multicenter study to assess the occurrence of C. sakazakii across Europe and the extent of clonality for outbreak detection. National coordinators representing 24 countries in Europe were requested to submit all human C. sakazakii isolates collected during 2017 to a study center in Austria. Testing at the center included species identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, subtyping by whole-genome sequencing (WGS), and determination of antimicrobial resistance. Eleven countries sent 77 isolates, including 36 isolates from 2017 and 41 historical isolates. Fifty-nine isolates were confirmed as C. sakazakii by WGS, highlighting the challenge of correctly identifying Cronobacter spp. WGS-based typing revealed high strain diversity, indicating absence of multinational outbreaks in 2017, but identified 4 previously unpublished historical outbreaks. WGS is the recommended method for accurate identification, typing, and detection of this pathogen.


Assuntos
Cronobacter sakazakii , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Antibacterianos/farmacologia , Cronobacter sakazakii/classificação , Cronobacter sakazakii/efeitos dos fármacos , Cronobacter sakazakii/genética , Farmacorresistência Bacteriana , Infecções por Enterobacteriaceae/história , Europa (Continente)/epidemiologia , Genoma Bacteriano , Genômica/métodos , História do Século XXI , Humanos , Recém-Nascido , Masculino , Testes de Sensibilidade Microbiana , Tipagem Molecular , Tipagem de Sequências Multilocus , Filogenia , Vigilância em Saúde Pública , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sequenciamento Completo do Genoma
2.
Euro Surveill ; 24(32)2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31411133

RESUMO

BackgroundBrown rats (Rattus norvegicus) are an important wildlife species in cities, where they live in close proximity to humans. However, few studies have investigated their role as reservoir of antimicrobial-resistant bacteria.AimWe intended to determine whether urban rats at two highly frequented sites in Vienna, Austria, carry extended-spectrum ß-lactamase-producing Enterobacteriaceae, fluoroquinolone-resistant Enterobacteriaceae and meticillin-resistant (MR) Staphylococcus spp. (MRS).MethodsWe surveyed the presence of antimicrobial resistance in 62 urban brown rats captured in 2016 and 2017 in Vienna, Austria. Intestinal and nasopharyngeal samples were cultured on selective media. We characterised the isolates and their antimicrobial properties using microbiological and genetic methods including disk diffusion, microarray analysis, sequencing, and detection and characterisation of plasmids.ResultsEight multidrug-resistant Escherichia coli and two extensively drug-resistant New Delhi metallo-ß-lactamases-1 (NDM-1)-producing Enterobacter xiangfangensis ST114 (En. cloacae complex) were isolated from nine of 62 rats. Nine Enterobacteriaceae isolates harboured the bla CTX-M gene and one carried a plasmid-encoded ampC gene (bla CMY-2). Forty-four MRS were isolated from 37 rats; they belonged to seven different staphylococcal species: S. fleurettii, S. sciuri, S. aureus, S. pseudintermedius, S. epidermidis, S. haemolyticus (all mecA-positive) and mecC-positive S. xylosus.ConclusionOur findings suggest that brown rats in cities are a potential source of multidrug-resistant bacteria, including carbapenem-resistant En. xiangfangensis ST114. Considering the increasing worldwide urbanisation, rodent control remains an important priority for health in modern cities.


Assuntos
Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Intestinos/virologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Nasofaringe/virologia , Ratos/virologia , Animais , Áustria , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Análise em Microsséries , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos/genética , Análise de Sequência de DNA , Infecções Estafilocócicas/microbiologia , População Urbana
3.
Int J Med Microbiol ; 308(7): 927-932, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30257809

RESUMO

Despite their general low incidence, Shiga toxin-producing Escherichia (E.) coli (STEC) infections are considered an important public health issue due to the severity of illness that can develop, particularly in young children. We report on two Austrian petting zoos, one in Tyrol (2015) and one in Vorarlberg (2016), which were identified as highly likely infection sources of STEC infections. The petting zoo related cases involved a case of hemolytic uremic syndrome (HUS) due to STEC O157:HNM in 2015 and an outbreak of STEC O157:H7 infections affecting five young children and two adults in 2016. The HUS case accounted for 2.8% of the 36 STEC O157:HNM/H7 infections notified in Austria in 2015 (5,9% of 17 HUS cases). The seven cases described for 2016 accounted for 4.0% of the 177 human STEC infections documented for Austria in 2016, and for 19.4% of the 36 STEC O157:HNM/H7 infections notified that year. The evaluation of the STEC infections described here clearly underlines the potential of sequence-based typing methods to offer suitable resolutions for public health applications. Furthermore, we give a state-of-the-art mini-review on the risks of petting zoos concerning exposure to the zoonotic hazard STEC and on proper measures of risk-prevention.


Assuntos
Animais de Zoológico/microbiologia , Busca de Comunicante , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/transmissão , Escherichia coli Shiga Toxigênica/isolamento & purificação , Adulto , Animais , Áustria/epidemiologia , Pré-Escolar , DNA Bacteriano/genética , Surtos de Doenças , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , Fezes/microbiologia , Feminino , Síndrome Hemolítico-Urêmica/epidemiologia , Síndrome Hemolítico-Urêmica/etiologia , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Análise de Sequência de DNA , Toxinas Shiga/genética , Escherichia coli Shiga Toxigênica/genética , Zoonoses/epidemiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-28137802

RESUMO

Since colistin resistance based on the plasmid-encoded mcr-1 gene was first described, this resistance gene in Enterobacteriaceae has been found worldwide. These organisms are typically of heterogeneous genetic background and show exceptional clonal diversity. We describe the first confirmation of mcr-1 in a human Escherichia coli strain cultured from a surveillance stool sample of an Austrian oncology patient.


Assuntos
Escherichia coli/metabolismo , Antibacterianos/farmacologia , Áustria , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Humanos , Testes de Sensibilidade Microbiana
5.
J Glob Antimicrob Resist ; 34: 179-185, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473915

RESUMO

OBJECTIVES: Although generic medicinal products are required to have the same qualitative and quantitative composition of the active substance as their reference originator product, patients and health care professionals express concerns about their interchangeability and safety. Therefore, the present study investigated the antimicrobial activity and pathogen mutation prevention of original and generic cefepime, linezolid and piperacillin/tazobactam against Staphylococcus aureus. METHODS: Two generic formulations of cefepime, linezolid and piperacillin/tazobactam were tested against their respective originator products. Susceptibility testing was performed with twenty-one clinical isolates of S. aureus and ATCC-29213 using broth microdilution. Time kill curves (TKC) were performed with ATCC-29213 at drug concentrations above and below the respective minimum inhibitory concentrations (MIC). Mutation prevention concentration was determined for each drug formulation against ATCC-29213. All experiments were performed in triplicate. Mutant colonies from mutation prevention concentration (MPC) experiments were genotypically tested by sequence analysis. RESULTS: MIC ratios between contiguous originator and generic drugs were similar for each isolate. No visual differences were observed in TKCs between originator and generic substances. The MPC did not differ between different formulations of the same substance. Although sequence analysis of mutant colonies revealed genomic differences compared with the original ATCC-29213, no differences in mutation frequencies were observed between clinical isolates and ATCC-29213 treated with originator or generic substances. CONCLUSIONS: Similar antimicrobial activity and pathogen mutation prevention was observed between contiguous substances. These results support the interchangeability of generic and originator drug formulations with the same active ingredient.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Linezolida/farmacologia , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefepima/farmacologia , Medicamentos Genéricos/farmacologia , Combinação Piperacilina e Tazobactam , Infecções Estafilocócicas/tratamento farmacológico , Mutação
8.
Front Microbiol ; 13: 884721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722296

RESUMO

This study characterized five Cronobacter spp. and six Salmonella spp. strains that had been isolated from 155 samples of powdered infant formula (PIF) sold in Chile and manufactured in Chile and Mexico in 2018-2020. Two strains of Cronobacter sakazakii sequence type (ST) ST1 and ST31 (serotypes O:1 and O:2) and one strain of Cronobacter malonaticus ST60 (O:1) were identified. All Salmonella strains were identified as Salmonella Typhimurium ST19 (serotype O:4) by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST (cgMLST). The C. sakazakii and C. malonaticus isolates were resistant to cephalothin, whereas the Salmonella isolates were resistant to oxacillin and ampicillin. Nineteen antibiotic resistance genes were detected in the C. sakazakii and C. malonaticus isolates; the most prevalent were mcr-9.1, blaCSA , and blaCMA . In Salmonella, 30 genes encoding for aminoglycoside and cephalosporin resistance were identified, including aac(6')-Iaa, ß-lactamases ampH, ampC1, and marA. In the Cronobacter isolates, 32 virulence-associated genes were detected by WGS and clustered as flagellar proteins, outer membrane proteins, chemotaxis, hemolysins, invasion, plasminogen activator, colonization, transcriptional regulator, survival in macrophages, use of sialic acid, and toxin-antitoxin genes. In the Salmonella strains, 120 virulence associated genes were detected, adherence, magnesium uptake, resistance to antimicrobial peptides, secretion system, stress protein, toxin, resistance to complement killing, and eight pathogenicity islands. The C. sakazakii and C. malonaticus strains harbored I-E and I-F CRISPR-Cas systems and carried Col(pHHAD28) and IncFIB(pCTU1) plasmids, respectively. The Salmonella strains harbored type I-E CRISPR-Cas systems and carried IncFII(S) plasmids. The presence of C. sakazakii and Salmonella in PIF is a health risk for infants aged less than 6 months. For this reason, sanitary practices should be reinforced for its production and retail surveillance.

9.
Microbiol Resour Announc ; 10(28): e0050621, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264101

RESUMO

Cronobacter sakazakii is a pathogen that causes severe diseases such as meningitis and necrotizing enterocolitis in infants under 12 months, associated with the consumption of contaminated rehydrated powdered infant formula (PIF). We present seven C. sakazakii genome sequences isolated from PIF and dairy products in Chile in 2017.

10.
Front Microbiol ; 12: 694922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276629

RESUMO

Cronobacter sakazakii is an enteropathogen that causes neonatal meningitis, septicemia, and necrotizing enterocolitis in preterm infants and newborns with a mortality rate of 15 to 80%. Powdered and dairy formulas (P-DF) have been implicated as major transmission vehicles and subsequently the presence of this pathogen in P-DF led to product recalls in Chile in 2017. The objective of this study was to use whole genome sequencing (WGS) and laboratory studies to characterize Cronobacter strains from the contaminated products. Seven strains were identified as C. sakazakii, and the remaining strain was Franconibacter helveticus. All C. sakazakii strains adhered to a neuroblastoma cell line, and 31 virulence genes were predicted by WGS. The antibiograms varied between strains. and included mcr-9.1 and bla CSA genes, conferring resistance to colistin and cephalothin, respectively. The C. sakazakii strains encoded I-E and I-F CRISPR-Cas systems, and carried IncFII(pECLA), Col440I, and Col(pHHAD28) plasmids. In summary, WGS enabled the identification of C. sakazakii strains and revealed multiple antibiotic resistance and virulence genes. These findings support the decision to recall the contaminated powdered and dairy formulas from the Chilean market in 2017.

11.
Microorganisms ; 9(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34442751

RESUMO

The increasing incidence of antimicrobial resistance (AMR) is a major global challenge. Routine techniques for molecular AMR marker detection are largely based on low-plex PCR and detect dozens to hundreds of AMR markers. To allow for comprehensive and sensitive profiling of AMR markers, we developed a capture-based next generation sequencing (NGS) workflow featuring a novel AMR marker panel based on the curated AMR database ARESdb. Our primary objective was to compare the sensitivity of target enrichment-based AMR marker detection to metagenomics sequencing. Therefore, we determined the limit of detection (LOD) in synovial fluid and urine samples across four key pathogens. We further demonstrated proof-of-concept for AMR marker profiling from septic samples using a selection of urine samples with confirmed monoinfection. The results showed that the capture-based workflow is more sensitive and requires lower sequencing depth compared with metagenomics sequencing, allowing for comprehensive AMR marker detection with an LOD of 1000 CFU/mL. Combining the ARESdb AMR panel with 16S rRNA gene sequencing allowed for the culture-free detection of bacterial taxa and AMR markers directly from septic patient samples at an average sensitivity of 99%. Summarizing, the newly developed ARESdb AMR panel may serve as a valuable tool for comprehensive and sensitive AMR marker detection.

12.
Microorganisms ; 9(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068744

RESUMO

Whole genome sequencing is a useful tool to monitor the spread of resistance mechanisms in bacteria. In this retrospective study, we investigated genetic resistance mechanisms, sequence types (ST) and respective phenotypes of linezolid-resistant Staphylococcus epidermidis (LRSE, n = 129) recovered from a cohort of patients receiving or not receiving linezolid within a tertiary hospital in Innsbruck, Austria. Hereby, the point mutation G2603U in the 23S rRNA (n = 91) was the major resistance mechanism followed by the presence of plasmid-derived cfr (n = 30). The majority of LRSE isolates were ST2 strains, followed by ST5. LRSE isolates expressed a high resistance level to linezolid with a minimal inhibitory concentration of ≥256 mg/L (n = 83) in most isolates, particularly in strains carrying the cfr gene (p < 0.001). Linezolid usage was the most prominent (but not the only) trigger for the development of linezolid resistance. However, administration of linezolid was not associated with a specific resistance mechanism. Restriction of linezolid usage and the monitoring of plasmid-derived cfr in LRSE are potential key steps to reduce linezolid resistance and its transmission to more pathogenic Gram-positive bacteria.

13.
Front Microbiol ; 12: 796040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35299835

RESUMO

Listeria monocytogenes is causing listeriosis, a rare but severe foodborne infection. Listeriosis affects pregnant women, newborns, older adults, and immunocompromised individuals. Ready-to-eat (RTE) foods are the most common sources of transmission of the pathogen This study explored the virulence factors and antibiotic resistance in L. monocytogenes strains isolated from ready-to-eat (RTE) foods through in vitro and in silico testing by whole-genome sequencing (WGS). The overall positivity of L. monocytogenes in RTE food samples was 3.1% and 14 strains were isolated. L. monocytogenes ST8, ST2763, ST1, ST3, ST5, ST7, ST9, ST14, ST193, and ST451 sequence types were identified by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST. Seven isolates had serotype 1/2a, five 1/2b, one 4b, and one 1/2c. Three strains exhibited in vitro resistance to ampicillin and 100% of the strains carried the fosX, lin, norB, mprF, tetA, and tetC resistance genes. In addition, the arsBC, bcrBC, and clpL genes were detected, which conferred resistance to stress and disinfectants. All strains harbored hlyA, prfA, and inlA genes almost thirty-two the showed the bsh, clpCEP, hly, hpt, iap/cwhA, inlA, inlB, ipeA, lspA, mpl, plcA, pclB, oat, pdgA, and prfA genes. One isolate exhibited a type 11 premature stop codon (PMSC) in the inlA gene and another isolate a new mutation (deletion of A in position 819). The Inc18(rep25), Inc18(rep26), and N1011A plasmids and MGEs were found in nine isolates. Ten isolates showed CAS-Type II-B systems; in addition, Anti-CRISPR AcrIIA1 and AcrIIA3 phage-associated systems were detected in three genomes. These virulence and antibiotic resistance traits in the strains isolated in the RTE foods indicate a potential public health risk for consumers.

14.
Front Microbiol ; 11: 1883, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849463

RESUMO

Next-generation sequencing (NGS) enables clinical microbiology assays such as molecular typing of bacterial isolates which is now routinely applied for infection control and epidemiology. Additionally, feasibility for NGS-based identification of antimicrobial resistance (AMR) markers as well as genetic prediction of antibiotic susceptibility testing results has been demonstrated. Various bioinformatics approaches enabling NGS-based clinical microbiology assays exist, but standardized, computationally efficient and scalable sample-to-results workflows including validated quality control parameters are still lacking. Bioinformatics analysis workflows based on k-mers have been shown to allow for fast and efficient analysis of large genomics data sets as obtained from microbial sequencing applications. We here demonstrate applicability of k-mer based clinical microbiology assays for whole-genome sequencing (WGS) including variant calling, taxonomic identification, bacterial typing as well as AMR marker detection. The wet-lab and dry-lab workflows were developed and validated in line with Clinical Laboratory Improvement Act (CLIA) guidelines for laboratory-developed tests (LDTs) on multi-drug resistant ESKAPE pathogens. The developed k-mer based workflow demonstrated ≥99.39% repeatability, ≥99.09% reproducibility and ≥99.76% accuracy for variant calling and applied assays as determined by intra-day and inter-day triplicate measurements. The limit of detection (LOD) across assays was found to be at 20× sequencing depth and 15× for AMR marker detection. Thorough benchmarking of the k-mer based workflow revealed analytical performance criteria are comparable to state-of-the-art alignment based workflows across clinical microbiology assays. Diagnostic sensitivity and specificity for multilocus sequence typing (MLST) and phylogenetic analysis were 100% for both approaches. For AMR marker detection, sensitivity and specificity were 95.29 and 99.78% for the k-mer based workflow as compared to 95.17 and 99.77% for the alignment-based approach. Summarizing, results illustrate that k-mer based analysis workflows enable a broad range of clinical microbiology assays, potentially not only for WGS-based typing and AMR gene detection but also genetic prediction of antibiotic susceptibility testing results.

15.
Front Microbiol ; 11: 581081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324367

RESUMO

The Klebsiella pneumoniae complex comprises several closely related entities, which are ubiquitous in the natural environment, including in plants, animals, and humans. K. pneumoniae is the major species within this complex. K. pneumoniae strains are opportunistic pathogens and a common cause of healthcare-associated infections. K. pneumoniae can colonize the human gastrointestinal tract, which may become a reservoir for infection. The aim of this study was to investigate the fecal K. pneumoniae carriage in six healthy individuals during a 1 year period. Stool samples were obtained once a week. Using direct and pre-enriched cultures streaked on ampicillin-supplemented agar plates, up to eight individual colonies per positive sample were selected for further characterization. Whole genome sequencing (WGS) was performed for strain characterization. Sequence type (ST), core genome complex type (CT), K and O serotypes, virulence traits, antibiotic resistance profiles, and plasmids were extracted from WGS data. In total, 80 K. pneumoniae isolates were obtained from 48 positive cultures of 278 stool samples from five of the six test subjects. The samples of the five colonized volunteers yielded at most two, three, four (two persons), and five different strains, respectively. These 80 K. pneumoniae isolates belonged to 60 STs, including nine new STs; they were of 70 CTs, yielded 48 K serotypes, 11 O serotypes, and 39 wzc and 51 wzi alleles. Four of the five subjects harbored serotypes K20 and K47, as well as STs ST37, ST101, ST1265, and ST20, which had previously been linked to high-risk K. pneumoniae clones. In total, 25 genes conferring antibiotic resistance and 42 virulence genes were detected among all 80 isolates. Plasmids of 15 different types were found among 65 of the isolates. Fecal carriage of individual strains was of short duration: 70 strains were found on a single sampling day only, and 5 strains were isolated in samples collected over two consecutive weeks. Two of the five colonized individuals-working colleagues having meals together-shared identical K. pneumoniae types four times during the study period. Our findings point toward the potential role of food as a reservoir for K. pneumoniae in humans.

16.
Foods ; 10(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374633

RESUMO

Cronobacter spp. are opportunistic pathogens of the Enterobacteriaceae family. The organism causes infections in all age groups, but the most serious cases occur in outbreaks related to neonates with meningitis and necrotizing enterocolitis. The objective was to determine the in silico and in vitro putative virulence factors of six Cronobacter sakazakii strains isolated from powdered milk (PM) in the Czech Republic. Strains were identified by MALDI-TOF MS and whole-genome sequencing (WGS). Virulence and resistance genes were detected with the Ridom SeqSphere+ software task template and the Comprehensive Antibiotic Resistance Database (CARD) platform. Adherence and invasion ability were performed using the mouse neuroblastoma (N1E-115 ATCCCRL-2263) cell line. The CRISPR-Cas system was searched with CRISPRCasFinder. Core genome MLST identified four different sequence types (ST1, ST145, ST245, and ST297) in six isolates. Strains 13755-1B and 1847 were able to adhere in 2.2 and 3.2 × 106 CFU/mL, while 0.00073% invasion frequency was detected only in strain 1847. Both strains 13755-1B and 1847 were positive for three (50.0%) and four virulence genes, respectively. The cpa gene was not detected. Twenty-eight genes were detected by WGS and grouped as flagellar or outer membrane proteins, chemotaxis, hemolysins, and invasion, plasminogen activator, colonization, transcriptional regulator, and survival in macrophages. The colistin-resistance-encoding mcr-9.1 and cephalothin-resis-encoding blaCSA genes and IncFII(pECLA) and IncFIB(pCTU3) plasmids were detected. All strains exhibited CRISPR matrices and four of them two type I-E and I-F matrices. Combined molecular methodologies improve Cronobacter spp. decision-making for health authorities to protect the population.

17.
Syst Appl Microbiol ; 43(1): 126047, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31859015

RESUMO

Twelve Mycoplasma (M.) strains isolated from the nose, the trachea, and the lung of ostriches (Struthio camelus) displaying respiratory disease were investigated. Analysis of 16S rRNA gene sequences placed five of these strains within the M. synoviae cluster, and seven strains within the M. hominis cluster of genus Mycoplasma, which was further confirmed by analyses of the 16S-23S rRNA intergenic spacer region, and partial rpoB gene and amino acid sequences. Genomic information as well as phenotypic features obtained by matrix-assisted laser desorption ionization time of flight (MALDI-ToF) mass spectrometry analysis and serological reactions indicated that the strains examined are representatives of two hitherto unclassified species of genus Mycoplasma, for which the names Mycoplasma nasistruthionis sp. nov., with type strain 2F1AT (= ATCC BAA-1893T = DSM 22456T), and Mycoplasma struthionis sp. nov., with type strain 237IAT (= ATCC BAA-1890T = DSM 22453T), are proposed.


Assuntos
Doenças das Aves/microbiologia , Infecções por Mycoplasma/veterinária , Mycoplasma/classificação , Infecções Respiratórias/veterinária , Struthioniformes/microbiologia , Animais , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Mycoplasma/química , Mycoplasma/citologia , Mycoplasma/fisiologia , Infecções por Mycoplasma/microbiologia , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Infecções Respiratórias/microbiologia , Análise de Sequência de DNA , Especificidade da Espécie
19.
Pediatr Infect Dis J ; 38(6): 638-642, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30489463

RESUMO

BACKGROUND: The Gram-negative bacterium Klebsiella pneumoniae is a frequent pathogen causing outbreaks in neonatal intensive care units. Some Enterobacteriaceae can acquire the ability to sequester iron from infected tissue by secretion of iron-chelating compounds such as yersiniabactin. Here we describe an outbreak and clinical management of infections because of a highly virulent yersiniabactin-producing, nonmultiresistant K. pneumoniae strain in a neonatal intensive care unit. Outbreak investigation and effectiveness assessment of multidisciplinary infection control measurements to prevent patient-to-patient transmission of highly pathogenic K. pneumoniae were undertaken. METHODS: Outbreak cases were identified by isolation of K. pneumoniae from blood or stool of infants. Clinical data were abstracted from medical charts. K. pneumoniae isolates were genotyped using whole genome sequencing, and yersiniabactin production was evaluated by luciferase assay. RESULTS: Fourteen cases were confirmed with 8 symptomatic and 6 colonized patients. Symptomatic patients were infants of extremely low gestational and chronologic age with fulminant clinical courses including necrotizing enterocolitis and sepsis. Whole genome sequencing for bacterial isolates confirmed the presence of an outbreak. All outbreak isolates produced yersiniabactin. CONCLUSIONS: Yersiniabactin-producing K. pneumoniae can display a high pathogenicity in extremely premature infants with low chronologic age. This outbreak also underlines the considerable potential of today's infection control systems for recognizing and controlling nosocomial infections in highly vulnerable populations.


Assuntos
Infecção Hospitalar/epidemiologia , Surtos de Doenças , Unidades de Terapia Intensiva Neonatal , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/transmissão , Klebsiella pneumoniae/isolamento & purificação , Áustria/epidemiologia , Técnicas de Tipagem Bacteriana , Feminino , Humanos , Lactente , Recém-Nascido , Controle de Infecções , Klebsiella pneumoniae/classificação , Masculino , Tipagem de Sequências Multilocus , Fenóis/metabolismo , Tiazóis/metabolismo
20.
Front Microbiol ; 10: 2600, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781080

RESUMO

Vibrio cholerae belonging to serogroups other than O1 and O139 are opportunistic pathogens which cause infections with a variety of clinical symptoms. Due to the increasing number of V. cholerae non-O1/non-O139 infections in association with recreational waters in the past two decades, they have received increasing attention in recent literature and by public health authorities. Since the treatment of choice is the administration of antibiotics, we investigated the distribution of antimicrobial resistance properties in a V. cholerae non-O1/non-O139 population in a large Austrian lake intensively used for recreation and in epidemiologically linked clinical isolates. In total, 82 environmental isolates - selected on the basis of comprehensive phylogenetic information - and nine clinical isolates were analyzed for their phenotypic antimicrobial susceptibility. The genomes of 46 environmental and eight clinical strains were screened for known genetic antimicrobial resistance traits in CARD and ResFinder databases. In general, antimicrobial susceptibility of the investigated V. cholerae population was high. The environmental strains were susceptible against most of the 16 tested antibiotics, except sulfonamides (97.5% resistant strains), streptomycin (39% resistant) and ampicillin (20.7% resistant). Clinical isolates partly showed additional resistance to amoxicillin-clavulanic acid. Genome analysis showed that crp, a regulator of multidrug efflux genes, and the bicyclomycin/multidrug efflux system of V. cholerae were present in all isolates. Nine isolates additionally carried variants of bla CARB-7 and bla CARB-9, determinants of beta-lactam resistance and six isolates carried catB9, a determinant of phenicol resistance. Three isolates had both bla CARB-7 and catB9. In 27 isolates, five out of six subfamilies of the MATE-family were present. For all isolates no genes conferring resistance to aminoglycosides, macrolides and sulfonamides were detected. The apparent lack of either known antimicrobial resistance traits or mobile genetic elements indicates that in cholera non-epidemic regions of the world, V. cholerae non-O1/non-O139 play a minor role as a reservoir of resistance in the environment. The discrepancies between the phenotypic and genome-based antimicrobial resistance assessment show that for V. cholerae non-O1/non-O139, resistance databases are currently inappropriate for an assessment of antimicrobial resistance. Continuous collection of both data over time may solve such discrepancies between genotype and phenotype in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA