Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Indoor Air ; 31(5): 1323-1339, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33337567

RESUMO

Humans spend approximately 90% of their time indoors, impacting their own air quality through occupancy and activities. Human VOC emissions indoors from exercise are still relatively uncertain, and questions remain about emissions from chlorine-based cleaners. To investigate these and other issues, the ATHLETic center study of Indoor Chemistry (ATHLETIC) campaign was conducted in the weight room of the Dal Ward Athletic Center at the University of Colorado Boulder. Using a Vocus Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (Vocus PTR-TOF), an Aerodyne Gas Chromatograph (GC), an Iodide-Chemical Ionization Time-of-Flight Mass Spectrometer (I-CIMS), and Picarro cavity ringdown spectrometers, we alternated measurements between the weight room and supply air, allowing for determination of VOC, NH3 , H2 O, and CO2 emission rates per person (emission factors). Human-derived emission factors were higher than previous studies of measuring indoor air quality in rooms with individuals at rest and correlated with increased CO2 emission factors. Emission factors from personal care products (PCPs) were consistent with previous studies and typically decreased throughout the day. In addition, N-chloraldimines were observed in the gas phase after the exercise equipment was cleaned with a dichlor solution. The chloraldimines likely originated from reactions of free amino acids with HOCl on gym surfaces.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Detergentes , Exercício Físico , Compostos Orgânicos Voláteis , Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Cloro , Monitoramento Ambiental , Humanos , Espectrometria de Massas , Esportes , Universidades
2.
Nature ; 514(7522): 351-4, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25274311

RESUMO

The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.

3.
Environ Sci Technol ; 46(19): 10463-70, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22443276

RESUMO

The magnitude and sources of chlorine atoms in marine air remain highly uncertain but have potentially important consequences for air quality in polluted coastal regions. We made continuous measurements of ambient ClNO(2) and Cl(2) concentrations from May 15 to June 8 aboard the Research Vessel Atlantis during the CalNex 2010 field study. In the Los Angeles region, ClNO(2) was more ubiquitous than Cl(2) during most nights of the study period. ClNO(2) and Cl(2) ranged from detection limits at midday to campaign maximum values at night reaching 2100 and 200 pptv, respectively. The maxima were observed in Santa Monica Bay when sampling the Los Angeles urban plume. Cl(2) at times appeared well correlated with ClNO(2), but at other times, there was little to no correlation implying distinct and varying sources. Well-confined Cl(2) plumes were observed, largely independent of ClNO(2), providing support for localized industrial emissions of reactive chlorine. Observations of ClNO(2), Cl(2), and HCl are used to constrain a simple box model that predicts their relative importance as chlorine atom sources in the polluted marine boundary layer. In contrast to the emphasis in previous studies, ClNO(2) and HCl are dominant primary chlorine atom sources for the Los Angeles basin.


Assuntos
Cloro/análise , Nitritos/análise , Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Los Angeles , Nitritos/química , Oceano Pacífico , Fotólise
4.
J Chromatogr A ; 1529: 81-92, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29126588

RESUMO

Chromatography provides important detail on the composition of environmental samples and their chemical processing. However, the complexity of these samples and their tendency to contain many structurally and chemically similar compounds frequently results in convoluted or poorly resolved data. Data reduction from raw chromatograms of complex environmental data into integrated peak areas consequently often requires substantial operator interaction. This difficulty has led to a bottleneck in analysis that increases analysis time, decreases data quality, and will worsen as advances in field-based instrumentation multiply the quantity and informational density of data produced. In this work, we develop and validate an automated approach to fitting chromatographic data within a target retention time window with a combination of multiple idealized peaks (Gaussian peaks either with or without an exponential decay component). We compare this single-ion peak fitting approach to drawn baseline integration methods of more than 70,000 peaks collected by field-based chromatographs spanning across a wide range of volatilities and functionalities. Accuracy of peak fitting under real-world conditions is found to be within 10%. The quantitative parameters describing the fit (e.g. coefficients, fit residuals, etc.) are found to provide valuable information to increase the efficiency of quality control and provide constraints to accurately integrate peaks that are significantly convoluted with neighboring peaks. Implementation of the peak fitting method is shown to yield accurate integration of peaks otherwise too poorly resolved to separate into individual compounds and improved quantitative metrics to determine the fidelity of the data reduction process, while substantially decreasing the time spent by operators on data reduction.


Assuntos
Cromatografia , Estatística como Assunto/métodos , Reprodutibilidade dos Testes , Estatística como Assunto/normas
5.
J Geophys Res Atmos ; 121(16): 9849-9861, 2016 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29619286

RESUMO

We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10-3, and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 µg m-3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO2). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of IEPOX peroxy radicals (IEPOXOO) with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

6.
Science ; 339(6118): 393, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23349273

RESUMO

Jacobson argues that our statement that "many climate models may overestimate warming by BC" has not been demonstrated. Jacobson challenges our results on the basis that we have misinterpreted some model results, omitted optical focusing under high relative humidity conditions and by involatile components, and because our measurements consist of only two locations over short atmospheric time periods. We address each of these arguments, acknowledging important issues and clarifying some misconceptions, and stand by our observations. We acknowledge that Jacobson identified one detail in our experimental technique that places an additional constraint on the interpretation of our observations and reduces somewhat the potential consequences of the stated implications.


Assuntos
Atmosfera/química , Carbono/química , Aquecimento Global , Luz , Processos Fotoquímicos , Fuligem/química
7.
Science ; 337(6098): 1078-81, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22936774

RESUMO

Atmospheric black carbon (BC) warms Earth's climate, and its reduction has been targeted for near-term climate change mitigation. Models that include forcing by BC assume internal mixing with non-BC aerosol components that enhance BC absorption, often by a factor of ~2; such model estimates have yet to be clearly validated through atmospheric observations. Here, direct in situ measurements of BC absorption enhancements (E(abs)) and mixing state are reported for two California regions. The observed E(abs) is small-6% on average at 532 nm-and increases weakly with photochemical aging. The E(abs) is less than predicted from observationally constrained theoretical calculations, suggesting that many climate models may overestimate warming by BC. These ambient observations stand in contrast to laboratory measurements that show substantial E(abs) for BC are possible.


Assuntos
Atmosfera/química , Carbono/química , Aquecimento Global , Luz , Processos Fotoquímicos , Fuligem/química , Adsorção , California , Carbono/análise , Tamanho da Partícula , Fuligem/análise
8.
Environ Sci Technol ; 43(21): 8213-9, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19924946

RESUMO

Exhaust emission factors were calculated for a number (n = 116) of small marine craft encountered during the 2004 New England Air Quality Study-International Transport and Chemical Transformation and 2006 Texas Air Quality Study II field campaigns. Emission factors are reported for NO(x), SO(2), and CO in units of grams of pollutant per kilogram of fuel. These factors are compared to emission factors derived from the U.S. Environmental Protection Agency (EPA) NONROAD model, separated into spark-ignition and compression-ignition sources. NO(x) emission factors observed were significantly and substantially higher than predicted by the model by a factor of 2-10. CO emission factors were not significantly different than the model outputs. Because of the correlation between exhaust hydrocarbon and CO for marine craft, it is expected that EPA estimates of hydrocarbon exhaust emission factors are not significantly in error. Small commercial marine craft (e.g., inshore fishing trawlers) are not part of NONROAD, but their measured emission factors were comparable to those of large diesel recreational marine craft in the model.


Assuntos
Poluição do Ar/análise , Navios , Emissões de Veículos/análise , Monóxido de Carbono/análise , Modelos Químicos , New England , Nitratos/análise , Nitritos/análise , Compostos Orgânicos/análise , Texas , Fatores de Tempo
9.
Environ Sci Technol ; 43(20): 7831-6, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19921901

RESUMO

A sensitive, small detector was developed for atmospheric NO2 and NOx concentration measurements. NO2 is directly detected by laser diode based cavity ring-down spectroscopy (CRDS) at 404 nm. The sum of NO and NO2 (=NOx) is simultaneously measured in a second cavity by quantitative conversion of ambient NO to NO2 in excess ozone. Interferences due to absorption by other trace gases at 404 nm, such as ozone and water vapor, are either negligible or small and are easily quantified. The limit of detection is 22 pptv (2sigma precision) for NO2 at 1 s time resolution. The conversion efficiency of NO to NO2 is 99% in excess O3. The accuracy of the NO2 measurement is mainly limited by the NO2 absorption cross section to +/-3%. Because of the formation of undetectable higher nitrogen oxides in subsequent reactions of NO2 with ozone in the NOx channel, the (1sigma) accuracy of the NOx measurement is increased to approximately +/-5% depending on the level of NOx. The new instrument was designed to be easily deployed in the field with respect to size, weight and consumables. Measurements were validated against a photolysis/chemiluminescence detector during six days of sampling ambient air with colocated inlets. The data sets for NO2, NO and NOx exhibit high correlation and good agreement within the combined accuracies of both methods. Linear fits for all three species give similar slopes of 0.99 in ambient air.


Assuntos
Ar/análise , Monitoramento Ambiental/instrumentação , Dióxido de Nitrogênio/análise , Lasers , Óxido Nítrico/química , Análise Espectral/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA