Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660786

RESUMO

BACKGROUND: Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3). METHODS: The noncanonical (d16) and canonical (d18) sphingolipidome profiles in cardiac tissues of patients with end-stage ischemic cardiomyopathy and in mice with ischemic cardiomyopathy were analyzed by targeted lipidomics. Regulation of SPTLC3 by HIF1α under ischemic conditions was determined with chromatin immunoprecipitation. Transcriptomics, lipidomics, metabolomics, echocardiography, mitochondrial electron transport chain, mitochondrial membrane fluidity, and mitochondrial membrane potential were assessed in the cSPTLC3KO transgenic mice we generated. Furthermore, morphological and functional studies were performed on cSPTLC3KO mice subjected to permanent nonreperfused myocardial infarction. RESULTS: Herein, we report that SPTLC3 is induced in both human and mouse models of ischemic cardiomyopathy and leads to production of atypical sphingolipids bearing 16-carbon sphingoid bases, resulting in broad changes in cell sphingolipid composition. This induction is in part attributable to transcriptional regulation by HIF1α under ischemic conditions. Furthermore, cardiomyocyte-specific depletion of SPTLC3 in mice attenuates oxidative stress, fibrosis, and hypertrophy in chronic ischemia, and mice demonstrate improved cardiac function and increased survival along with increased ketone and glucose substrate metabolism utilization. Depletion of SPTLC3 mechanistically alters the membrane environment and subunit composition of mitochondrial complex I of the electron transport chain, decreasing its activity. CONCLUSIONS: Our findings suggest a novel essential role for SPTLC3 in electron transport chain function and a contribution to ischemic injury by regulating complex I activity.

2.
FASEB J ; 38(2): e23404, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197290

RESUMO

The induction of acute endoplasmic reticulum (ER) stress damages the electron transport chain (ETC) in cardiac mitochondria. Activation of mitochondria-localized calpain 1 (CPN1) and calpain 2 (CPN2) impairs the ETC in pathological conditions, including aging and ischemia-reperfusion in settings where ER stress is increased. We asked if the activation of calpains causes the damage to the ETC during ER stress. Control littermate and CPNS1 (calpain small regulatory subunit 1) deletion mice were used in the current study. CPNS1 is an essential subunit required to maintain CPN1 and CPN2 activities, and deletion of CPNS1 prevents their activation. Tunicamycin (TUNI, 0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 72 h of TUNI treatment. ER stress was increased in both control littermate and CPNS1 deletion mice with TUNI treatment. The TUNI treatment activated both cytosolic and mitochondrial CPN1 and 2 (CPN1/2) in control but not in CPNS1 deletion mice. TUNI treatment led to decreased oxidative phosphorylation and complex I activity in control but not in CPNS1 deletion mice compared to vehicle. The contents of complex I subunits, including NDUFV2 and ND5, were decreased in control but not in CPNS1 deletion mice. TUNI treatment also led to decreased oxidation through cytochrome oxidase (COX) only in control mice. Proteomic study showed that subunit 2 of COX was decreased in control but not in CPNS1 deletion mice. Our results provide a direct link between activation of CPN1/2 and complex I and COX damage during acute ER stress.


Assuntos
Calpaína , Proteômica , Animais , Camundongos , Camundongos Endogâmicos C57BL , Calpaína/genética , Transporte de Elétrons , Complexo I de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons , Estresse do Retículo Endoplasmático , Mitocôndrias Cardíacas
3.
Am J Physiol Heart Circ Physiol ; 326(2): H385-H395, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099846

RESUMO

Mitochondrial function in aged hearts is impaired, and studies of isolated mitochondria are commonly used to assess their function. The two populations of cardiac mitochondria, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), are affected by aging. However, the yield of these mitochondria, particularly SSM, is limited in the mouse heart because of the smaller heart size. To address this issue, the authors developed a method to isolate a mixed population (MIX) of SSM and IFM mitochondria from a single mouse heart. The aim of the study was to compare the mitochondrial function between SSM, IFM, and the MIX population from young and aged mouse hearts. The MIX population had a higher yield of total protein and citrate synthase activity from both young and aged hearts compared with the individual yields of SSM or IFM. Oxidative phosphorylation (OXPHOS) decreased in aged SSM and IFM compared with young SSM and IFM, as well as in the MIX population isolated from aged hearts compared with young hearts, when using complex I or IV substrates. Furthermore, aging barely affected the sensitivity to mitochondrial permeability transition pore (MPTP) opening in SSM, whereas the sensitivity was increased in IFM isolated from aged hearts and in the MIX population from aged hearts compared with the corresponding populations isolated from young hearts. These results suggest that mitochondrial dysfunction exists in aged hearts and the isolation of a MIX population of mitochondria from the mouse heart is a potential approach to studying mitochondrial function in the mouse heart.NEW & NOTEWORTHY We developed two methods to isolate mitochondria from a single mouse heart. We compared mitochondrial function in young and aged mice using mitochondria isolated with different methods. Both methods can be successfully used to isolate cardiac mitochondria from single mouse hearts. Our results provide the flexibility to isolate mitochondria from a single mouse heart based on the purpose of the study.


Assuntos
Coração , Doenças Mitocondriais , Camundongos , Animais , Mitocôndrias Cardíacas/metabolismo , Fosforilação Oxidativa , Envelhecimento , Doenças Mitocondriais/metabolismo
4.
J Lipid Res ; 64(5): 100363, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966904

RESUMO

CYP7B1 catalyzes mitochondria-derived cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) and 3ß-hydroxy-5-cholesten-(25R)26-oic acid (3ßHCA) and facilitates their conversion to bile acids. Disruption of 26HC/3ßHCA metabolism in the absence of CYP7B1 leads to neonatal liver failure. Disrupted 26HC/3ßHCA metabolism with reduced hepatic CYP7B1 expression is also found in nonalcoholic steatohepatitis (NASH). The current study aimed to understand the regulatory mechanism of mitochondrial cholesterol metabolites and their contribution to onset of NASH. We used Cyp7b1-/- mice fed a normal diet (ND), Western diet (WD), or high-cholesterol diet (HCD). Serum and liver cholesterol metabolites as well as hepatic gene expressions were comprehensively analyzed. Interestingly, 26HC/3ßHCA levels were maintained at basal levels in ND-fed Cyp7b1-/- mice livers by the reduced cholesterol transport to mitochondria, and the upregulated glucuronidation and sulfation. However, WD-fed Cyp7b1-/- mice developed insulin resistance (IR) with subsequent 26HC/3ßHCA accumulation due to overwhelmed glucuronidation/sulfation with facilitated mitochondrial cholesterol transport. Meanwhile, Cyp7b1-/- mice fed an HCD did not develop IR or subsequent evidence of liver toxicity. HCD-fed mice livers revealed marked cholesterol accumulation but no 26HC/3ßHCA accumulation. The results suggest 26HC/3ßHCA-induced cytotoxicity occurs when increased cholesterol transport into mitochondria is coupled to decreased 26HC/3ßHCA metabolism driven with IR. Supportive evidence for cholesterol metabolite-driven hepatotoxicity is provided in a diet-induced nonalcoholic fatty liver mouse model and by human specimen analyses. This study uncovers an insulin-mediated regulatory pathway that drives the formation and accumulation of toxic cholesterol metabolites within the hepatocyte mitochondria, mechanistically connecting IR to cholesterol metabolite-induced hepatocyte toxicity which drives nonalcoholic fatty liver disease.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Colesterol/metabolismo , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
5.
Am J Physiol Heart Circ Physiol ; 324(1): H57-H66, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426883

RESUMO

Donation after circulatory death (DCD) donor hearts are not routinely used for heart transplantation (HTx) because of ischemic damage, which is inherent to the DCD process. HTx outcomes are suboptimal in males who received female donor hearts. The exact mechanism for suboptimal outcomes from female donor hearts has not been defined. Differential susceptibility to ischemia tolerance, which would play a significant role in DCD donation, could be a reason but has not been studied. We studied the influence of sex on global myocardial ischemia tolerance and mitochondrial function. Sprague-Dawley rats of both sexes were assigned to DCD (n = 32) or control beating-heart donor (CBD, n = 28) groups. DCD hearts underwent 25 min of in vivo global myocardial ischemia and 90 min of ex vivo Krebs-Henseleit buffer perfusion at 37°C. CBD hearts were procured without ischemia. Infarct size was determined in hearts following 90 min of reperfusion, and in another set of hearts, mitochondrial function (oxidative-phosphorylation) was studied following 60 min of reperfusion. Infarct size was increased 3.3-fold in male and 3.1-fold in female DCD hearts compared with CBD hearts. However, infarct size (%) was comparable in female and male DCD hearts (male: 25.4 ± 3.7 vs. female 19.0 ± 3.3, P = NS). Oxidative phosphorylation was similarly decreased in male and female DCD hearts' mitochondria compared with CBD hearts' mitochondria. Thus, neither infarct size nor mitochondrial dysfunction was higher in female DCD hearts. These results suggest that the susceptibility to ischemia is not the reason for suboptimal HTx outcomes with female donor hearts.NEW & NOTEWORTHY The current study shows cardiac injury is not increased in female DCD hearts following global ischemia-reperfusion compared with male DCD hearts. In addition, mitochondrial dysfunction with DCD ischemia-reperfusion is comparable in both sexes. Sex-specific immune responses and hormone receptor modulation may contribute to suboptimal outcomes in male HTx recipients with female donor hearts.


Assuntos
Doença da Artéria Coronariana , Transplante de Coração , Isquemia Miocárdica , Ratos , Animais , Masculino , Feminino , Humanos , Doadores de Tecidos , Ratos Sprague-Dawley , Mitocôndrias Cardíacas , Infarto
6.
Biochem Biophys Res Commun ; 659: 46-53, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37031594

RESUMO

Ischemic heart disease (IHD) is the leading cause of death on a global scale. Despite significant advances in the reperfusion treatment of acute myocardial infarction, there is still a significant early mortality rate among the elderly, as angioplasty-achieved reperfusion can exacerbate myocardial damage, leading to severe ischemia/reperfusion (I/R) injury and induce fatal arrhythmias. Mitochondria are a key mediator of ischemic insults; a transient blockade of the electron transport chain (ETC) at complex I during reperfusion can reduce myocardial infarct caused by ischemic insults. The reversible, transient modulation of complex I during early reperfusion is limited by the available of clinically tractable agents. We employed the novel use of acute, high dose metformin to modulate complex I activity during early reperfusion to decrease cardiac injury in the high-risk aged heart. Young (3-6 months) and aged (22-24 months) male and female C57BL/6 J mice were subjected to in vivo regional ischemia for 45 min, followed by metformin (2 mM, i. v.) injection 5 min prior to reperfusion for 24 h. The cardiac functions were measured with echocardiography. A Seahorse XF24 Analyzer was used to ascertain mitochondrial function. Cardiomyocyte sarcomere shortening and calcium transients were measured using the IonOptix Calcium and Contractility System. The results demonstrated that administration of acute, high dose metformin at the onset of reperfusion significantly limited cardiac damage and rescued cardiac dysfunction caused by I/R in both young and aged mice. Importantly, metformin treatment improves contractile functions of isolated cardiomyocytes and maintains mitochondrial integrity under I/R stress conditions. Thus, acute metformin administration at the onset of reperfusion has potential as a mitochondrial-based therapeutic to mitigate reperfusion injury and reduce infarct size in the elderly heart attack patient who remains at greater mortality risk despite reperfusion alone.


Assuntos
Metformina , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Masculino , Feminino , Camundongos , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Traumatismo por Reperfusão Miocárdica/metabolismo , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Mitocôndrias/metabolismo , Isquemia/metabolismo , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo
7.
J Cardiovasc Pharmacol ; 81(6): 389-391, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995087

RESUMO

ABSTRACT: Donation after circulatory death (DCD) donor hearts sustain ischemic damage and are not routinely used for heart transplantation. DCD heart injury, particularly reperfusion injury, is primarily mediated by releasing reactive oxygen species from the damaged mitochondria (complex I of the electron transport chain). Amobarbital (AMO) is a transient inhibitor of complex I and is known to reduce releasing reactive oxygen species generation. We studied the beneficial effects of AMO in transplanted DCD hearts. Sprague-Dawley rats were assigned to 4 groups-DCD or DCD + AMO donors and control beating-heart donors (CBD) or CBD + AMO donors (n = 6-8 each). Anesthetized rats were connected to a ventilator. The right carotid artery was cannulated, heparin and vecuronium were administered. The DCD process started by disconnecting the ventilator. DCD hearts were procured after 25 minutes of in-vivo ischemia, whereas CBD hearts were procured without ischemia. At procurement, all donor hearts received 10 mL of University of Wisconsin cardioplegia solution. The CBD + AMO and DCD + AMO groups received AMO (2 mM) dissolved in cardioplegia. Heterotopic heart transplantation was performed by anastomosing the donor aorta and pulmonary artery to the recipient's abdominal aorta and inferior vena cava. After 14 days, transplanted heart function was measured with a balloon tip catheter placed in the left ventricle. Compared with CBD hearts, DCD hearts had significantly lower developed pressure. AMO treatment significantly improved cardiac function in DCD hearts. Treatment of DCD hearts at the time of reperfusion with AMO resulted in an improvement of transplanted heart function that was comparable with the CBD hearts.


Assuntos
Transplante de Coração , Ratos , Animais , Humanos , Transplante de Coração/efeitos adversos , Transplante de Coração/métodos , Doadores de Tecidos , Espécies Reativas de Oxigênio , Transporte de Elétrons , Ratos Sprague-Dawley , Morte
8.
Am J Physiol Cell Physiol ; 322(2): C296-C310, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044856

RESUMO

Aging chronically increases endoplasmic reticulum (ER) stress that contributes to mitochondrial dysfunction. Activation of calpain 1 (CPN1) impairs mitochondrial function during acute ER stress. We proposed that aging-induced ER stress led to mitochondrial dysfunction by activating CPN1. We posit that attenuation of the ER stress or direct inhibition of CPN1 in aged hearts can decrease cardiac injury during ischemia-reperfusion by improving mitochondrial function. Male young (3 mo) and aged mice (24 mo) were used in the present study, and 4-phenylbutyrate (4-PBA) was used to decrease the ER stress in aged mice. Subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) were isolated. Chronic 4-PBA treatment for 2 wk decreased CPN1 activation as shown by the decreased cleavage of spectrin in cytosol and apoptosis inducing factor (AIF) and the α1 subunit of pyruvate dehydrogenase (PDH) in mitochondria. Treatment improved oxidative phosphorylation in 24-mo-old SSM and IFM at baseline compared with vehicle. When 4-PBA-treated 24-mo-old hearts were subjected to ischemia-reperfusion, infarct size was decreased. These results support that attenuation of the ER stress decreased cardiac injury in aged hearts by improving mitochondrial function before ischemia. To challenge the role of CPN1 as an effector of the ER stress, aged mice were treated with MDL-28170 (MDL, an inhibitor of calpain 1). MDL treatment improved mitochondrial function in aged SSM and IFM. MDL-treated 24-mo-old hearts sustained less cardiac injury following ischemia-reperfusion. These results support that age-induced ER stress augments cardiac injury during ischemia-reperfusion by impairing mitochondrial function through activation of CPN1.


Assuntos
Calpaína/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Fatores Etários , Animais , Calpaína/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Fenilbutiratos/farmacologia
9.
Biochem Biophys Res Commun ; 613: 127-132, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550199

RESUMO

Activation of calpain1 (CPN1) contributes to mitochondrial dysfunction during cardiac ischemia (ISC) - reperfusion (REP). Blockade of electron transport using amobarbital (AMO) protects mitochondria during ISC-REP, indicating that the electron transport chain (ETC) is a key source of mitochondrial injury. We asked if AMO treatment can decrease CPN1 activation as a potential mechanism of mitochondrial protection during ISC-REP. Buffer-perfused adult rat hearts underwent 25 min global ISC and 30 min REP. AMO (2.5 mM) or vehicle was administered for 1 min before ISC to block electron flow in the ETC. Hearts in the time control group were untreated and buffer perfused without ISC. Hearts were collected at the end of perfusion and used for mitochondrial isolation. ISC-REP increased both the cleavage of spectrin (indicating cytosolic CPN1 activation) in cytosol and the truncation of AIF (apoptosis inducing factor, indicating mitochondrial CPN1 activation) in subsarcolemmal mitochondria compared to time control. Thus, ISC-REP activated both cytosolic and mitochondrial CPN1. AMO treatment prevented the cleavage of spectrin and AIF during ISC-REP, suggesting that the transient blockade of electron transport during ISC decreases CPN1 activation. AMO treatment decreased the activation of PARP [poly(ADP-ribose) polymerase] downstream of AIF that triggers caspase-independent apoptosis. AMO treatment also decreased the release of cytochrome c from mitochondria during ISC-REP that prevented caspase 3 activation. These results support that the damaged ETC activates CPN1 in cytosol and mitochondria during ISC-REP, likely via calcium overload and oxidative stress. Thus, AMO treatment to mitigate mitochondrial-driven cardiac injury can decrease both caspase-dependent and caspase-independent programmed cell death during ISC-REP.


Assuntos
Mitocôndrias Cardíacas , Traumatismo por Reperfusão Miocárdica , Animais , Calpaína/metabolismo , Caspases/metabolismo , Transporte de Elétrons , Isquemia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Reperfusão , Espectrina/metabolismo
10.
J Cardiovasc Pharmacol ; 80(1): 148-157, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35579563

RESUMO

ABSTRACT: Donation after circulatory death (DCD) donors are a potential source for heart transplantation. The DCD process has unavoidable ischemia and reperfusion (I/R) injury, primarily mediated through mitochondria, which limits routine utilization of hearts for transplantation. Amobarbital (AMO), a transient inhibitor of the electron transport chain, is known to decrease cardiac injury following ex vivo I/R. We studied whether AMO treatment during reperfusion can decrease injury in DCD hearts. Sprague Dawley rat hearts subjected to 25 minutes of in vivo ischemia (DCD hearts), or control beating donor hearts, were treated with AMO or vehicle for the first 5 minutes of reperfusion, followed by Krebs-Henseleit buffer reperfusion for 55 minutes (for mitochondrial isolation) or 85 minutes (for infarct size determination). Compared with vehicle, AMO treatment led to decreased infarct size (25.2% ± 1.5% vs. 31.5% ± 1.5%; P ≤ 0.05) and troponin I release (4.5 ± 0.05 ng/mL vs. 9.3 ± 0.24 ng/mL, P ≤ 0.05). AMO treatment decreased H 2 O 2 generation with glutamate as complex I substrate in both subsarcolemmal mitochondria (SSM) (37 ± 3.7 pmol·mg -1 ·min -1 vs. 56.9 ± 4.1 pmol·mg -1 ·min -1 ; P ≤ 0.05), and interfibrillar mitochondria (IFM) (31.8 ± 2.8 pmol·mg -1 ·min -1 vs. 46 ± 4.8 pmol·mg -1 ·min -1 ; P ≤ 0.05) and improved calcium retention capacity in SSM (360 ±17.2 nmol/mg vs. 277 ± 13 nmol/mg; P ≤ 0.05), and IFM (483 ± 20 nmol/mg vs. 377± 19 nmol/mg; P ≤ 0.05) compared with vehicle treatment. SSM and IFM retained more cytochrome c with AMO treatment compared with vehicle. In conclusion, brief inhibition of mitochondrial respiration during reperfusion using amobarbital is a promising approach to decrease injury in DCD hearts.


Assuntos
Transplante de Coração , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Amobarbital/metabolismo , Animais , Transporte de Elétrons/fisiologia , Humanos , Infarto/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/metabolismo , Respiração , Doadores de Tecidos
11.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638685

RESUMO

Several pediatric mitochondrial disorders, including Leigh syndrome (LS), impact mitochondrial (mt) genetics, development, and metabolism, leading to complex pathologies and energy failure. The extent to which pathogenic mtDNA variants regulate disease severity in LS is currently not well understood. To better understand this relationship, we computed a glycolytic bioenergetics health index (BHI) for measuring mitochondrial dysfunction in LS patient fibroblast cells harboring varying percentages of pathogenic mutant mtDNA (T8993G, T9185C) exhibiting deficiency in complex V or complex I (T10158C, T12706C). A high percentage (>90%) of pathogenic mtDNA in cells affecting complex V and a low percentage (<39%) of pathogenic mtDNA in cells affecting complex I was quantified. Levels of defective enzyme activities of the electron transport chain correlated with the percentage of pathogenic mtDNA. Subsequent bioenergetics assays showed cell lines relied on both OXPHOS and glycolysis for meeting energy requirements. Results suggest that whereas the precise mechanism of LS has not been elucidated, a multi-pronged approach taking into consideration the specific pathogenic mtDNA variant, glycolytic BHI, and the composite BHI (average ratio of oxphos to glycolysis) can aid in better understanding the factors influencing disease severity in LS.


Assuntos
DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Glicólise , Doença de Leigh/metabolismo , Mutação , Fosforilação Oxidativa , Adulto , Criança , Pré-Escolar , DNA Mitocondrial/genética , Feminino , Humanos , Lactente , Doença de Leigh/genética , Masculino
12.
Annu Rev Pharmacol Toxicol ; 57: 535-565, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27860548

RESUMO

Mitochondria have emerged as key participants in and regulators of myocardial injury during ischemia and reperfusion. This review examines the sites of damage to cardiac mitochondria during ischemia and focuses on the impact of these defects. The concept that mitochondrial damage during ischemia leads to cardiac injury during reperfusion is addressed. The mechanisms that translate ischemic mitochondrial injury into cellular damage, during both ischemia and early reperfusion, are examined. Next, we discuss strategies that modulate and counteract these mechanisms of mitochondrial-driven injury. The new concept that mitochondria are not merely stochastic sites of oxidative and calcium-mediated injury but that they activate cellular responses of mitochondrial remodeling and cellular reactions that modulate the balance between cell death and recovery is reviewed, and the therapeutic implications of this concept are discussed.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Precondicionamento Isquêmico Miocárdico/métodos , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Fármacos Cardiovasculares/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Humanos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia
13.
Arch Biochem Biophys ; 683: 108299, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32061585

RESUMO

BACKGROUND: ER (endoplasmic reticulum) stress leads to decreased complex I activity in cardiac mitochondria. The aim of the current study is to explore the potential mechanisms by which ER stress leads to the complex I defect. ER stress contributes to intracellular calcium overload and oxidative stress that are two key factors to induce mitochondrial dysfunction. Since oxidative stress is often accompanied by intracellular calcium overload during ER stress in vivo, the role of oxidative stress and calcium overload in mitochondrial dysfunction was studied using in vitro models. ER stress results in intracellular calcium overload that favors activation of calcium-dependent calpains. The contribution of mitochondrial calpain activation in ER stress-mediated complex I damage was studied. METHODS: Thapsigargin (THAP) was used to induce acute ER stress in H9c2 cells and C57BL/6 mice. Exogenous calcium (25 µM) and H2O2 (100 µM) were used to induce modest calcium overload and oxidative stress in isolated mitochondria. Calpain small subunit 1 (CAPNS1) is essential to maintain calpain 1 and calpain 2 (CPN1/2) activities. Deletion of CAPNS1 eliminates the activities of CPN1/2. Wild type and cardiac-specific CAPNS1 deletion mice were used to explore the role of CPN1/2 activation in calcium-induced mitochondrial damage. RESULTS: In isolated mitochondria, exogenous calcium but not H2O2 treatment led to decreased oxidative phosphorylation, supporting that calcium overload contributes a key role in the mitochondrial damage. THAP treatment of H9c2 cells decreased respiration selectively with complex I substrates. THAP treatment activated cytosolic and mitochondrial CPN1/2 in C57BL/6 mice and led to degradation of complex I subunits including NDUFS7. Calcium treatment decreased NDUFS7 content in wild type but not in CAPNS1 knockout mice. CONCLUSION: ER stress-mediated activation of mitochondria-localized CPN1/2 contributes to complex I damage by cleaving component subunits.


Assuntos
Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Cardiopatias/metabolismo , Mitocôndrias/metabolismo , Animais , Calpaína/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Deleção de Genes , Peróxido de Hidrogênio/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Fosforilação , Ratos , Tapsigargina/farmacologia
14.
Am J Physiol Cell Physiol ; 317(5): C910-C921, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411917

RESUMO

Activation of calpain 1 (CPN1) and calpain 2 (CPN2) contributes to cardiac injury during ischemia (ISC) and reperfusion (REP). Complex I activity is decreased in heart mitochondria following ISC-REP. CPN1 and CPN2 are ubiquitous calpains that exist in both cytosol (cs)-CPN1 and 2 and mitochondria (mit)-CPN1 and 2. Recent work shows that the complex I subunit (NDUFS7) is a potential substrate of the mit-CPN1. We asked whether ISC-REP led to decreased complex I activity via proteolysis of the NDUFS7 subunit via activation of mit-CPN1 and -2. Activation of cs-CPN1 and -2 decreases mitophagy in hepatocytes following ISC-REP. We asked whether activation of cs-CPN1 and -2 impaired mitophagy in the heart following ISC-REP. Buffer-perfused rat hearts underwent 25 min of global ISC and 30 min of REP. MDL-28170 (MDL; 10 µM) was used to inhibit CPN1 and -2. Cytosol, subsarcolemmal mitochondria (SSM), and interfibrillar mitochondria (IFM) were isolated at the end of heart perfusion. Cardiac ISC-REP led to decreased complex I activity with a decrease in the content of NDUFS7 in both SSM and IFM. ISC-REP also resulted in a decrease in cytosolic beclin-1 content, a key component of the autophagy pathway required to form autophagosomes. MDL treatment protected the contents of cytosolic beclin-1 and mitochondrial NDUFS7 in hearts following ISC-REP. These results support that activation of both cytosolic and mitochondrial calpains impairs mitochondria during cardiac ISC-REP. Mitochondria-localized calpains impair complex I via cleavage of a key subunit. Activation of cytosolic calpains contributes to mitochondrial dysfunction by impairing removal of the impaired mitochondria through depletion of a key component of the mitophagy process.


Assuntos
Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Mitofagia/fisiologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Animais , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/uso terapêutico , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Mitofagia/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
15.
J Pharmacol Exp Ther ; 369(2): 282-290, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30846619

RESUMO

Transient, reversible blockade of complex I during early reperfusion after ischemia limits cardiac injury. We studied the cardioprotection of high dose of metformin in cultured cells and mouse hearts via the novel mechanism of acute downregulation of complex I. The effect of high dose of metformin on complex I activity was studied in isolated heart mitochondria and cultured H9c2 cells. Protection with metformin was evaluated in H9c2 cells at reoxygenation and at early reperfusion in isolated perfused mouse hearts and in vivo regional ischemia reperfusion. Acute, high-dose metformin treatment inhibited complex I in ischemia-damaged mitochondria and in H9c2 cells following hypoxia. Accompanying the complex I modulation, high-dose metformin at reoxygenation decreased death in H9c2 cells. Acute treatment with high-dose metformin at the end of ischemia reduced infarct size following ischemia reperfusion in vitro and in vivo, including in the AMP kinase-dead mouse. Metformin treatment during early reperfusion improved mitochondrial calcium retention capacity, indicating decreased permeability transition pore (MPTP) opening. Acute, high-dose metformin therapy decreased cardiac injury through inhibition of complex I accompanied by attenuation of MPTP opening. Moreover, in contrast to chronic metformin treatment, protection by acute, high-dose metformin is independent of AMP-activated protein kinase activation. Thus, a single, high-dose metformin treatment at reperfusion reduces cardiac injury via modulation of complex I.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Metformina/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Citoproteção/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Masculino , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Conformação Proteica/efeitos dos fármacos
16.
Eur J Appl Physiol ; 119(2): 315-331, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30539302

RESUMO

Mitochondria are responsible for aerobic respiration and large-scale ATP production in almost all cells of the body. Their function is decreased in many neurodegenerative and cardiovascular disease states, in metabolic disorders such as type II diabetes and obesity, and as a normal component of aging. Disuse of skeletal muscle from immobilization or unloading triggers alterations of mitochondrial density and activity. Resultant mitochondrial dysfunction after paralysis, which precedes muscle atrophy, may augment subsequent release of reactive oxygen species leading to protein ubiquitination and degradation. Spinal cord injury is a unique form of disuse atrophy as there is a complete or partial disruption in tonic communication between the central nervous system (CNS) and skeletal muscle. Paralysis, unloading and disruption of CNS communication result in a rapid decline in skeletal muscle function and metabolic status with disruption in activity of peroxisome-proliferator-activated receptor-gamma co-activator 1 alpha and calcineurin, key regulators of mitochondrial health and function. External interventions, both acute and chronical with training using body-weight-assisted treadmill training or electrical stimulation have consistently demonstrated adaptations in skeletal muscle mitochondria, and expression of the genes and proteins required for mitochondrial oxidation of fats and carbohydrates to ATP, water, and carbon dioxide. The purpose of this mini-review is to highlight our current understanding as to how paralysis mechanistically triggers downstream regulation in mitochondrial density and activity and to discuss how mitochondrial dysfunction may contribute to skeletal muscle atrophy.


Assuntos
Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Humanos , Mitocôndrias Musculares/metabolismo , Atrofia Muscular/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
J Biol Chem ; 292(51): 20989-20997, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29046352

RESUMO

Dineolignans manassantin A and B from the plant Saururus cernuus are used in traditional medicine to manage a wide range of ailments such as edema, jaundice, and gonorrhea. Cell-based studies have identified several molecular target candidates of manassantin including NF-κB, MAPK, STAT3, and hypoxia-inducible factor 1α (HIF-1α). It is unclear whether or how these structurally diverse proteins or pathways mediate any of the medical benefits of manassantin in vivo Moreover, it has recently been reported that manassantin causes developmental arrest in zebrafish by inhibiting the mitochondrial complex I, but it is unknown whether manassantin inhibits mitochondrial respiration in intact mammalian cells and live animals. Here, we present direct evidence that manassantin potently and specifically inhibits the mitochondrial complex I and bioenergetic activity in mammalian systems. Manassantin had no effect on complex II- or complex IV-mediated respiration. Of note, it decreased NADH-ubiquinone reductase activity but not the activity of NADH-ferricyanide reductase. Treatment with manassantin reduced cellular ATP levels and concomitantly stimulated AMP-activated protein kinase in vitro and in vivo As an adaptive response to manassantin-induced bioenergetic deficiency, mammalian cells up-regulated aerobic glycolysis, a process mediated by AMP-activated protein kinase (AMPK) independently of HIF-1α. Together these results demonstrate a biologically important activity of manassantin in the control of complex I-mediated respiration and its profound effects on oxygen utilization, energy homeostasis, and glucose metabolism in mammalian cells.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Metabolismo Energético/efeitos dos fármacos , Furanos/farmacologia , Lignanas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Células Hep G2 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos
18.
Am J Physiol Heart Circ Physiol ; 314(4): H787-H795, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351463

RESUMO

Cardiac ischemia-reperfusion (I/R) damages the electron transport chain (ETC), causing mitochondrial and cardiomyocyte injury. Reversible blockade of the ETC at complex I during ischemia protects the ETC and decreases cardiac injury. In the present study, we used an unbiased proteomic approach to analyze the extent of ETC-driven mitochondrial injury during I/R. Isolated-perfused mouse (C57BL/6) hearts underwent 25-min global ischemia (37°C) and 30-min reperfusion. In treated hearts, amobarbital (2 mM) was given for 1 min before ischemia to rapidly and reversibly block the ETC at complex I. Mitochondria were isolated at the end of reperfusion and subjected to unbiased proteomic analysis using tryptic digestion followed by liquid chromatography-mass spectrometry with isotope tags for relative and absolute quantification. Amobarbital treatment decreased cardiac injury and protected respiration. I/R decreased the content ( P < 0.05) of multiple mitochondrial matrix enzymes involved in intermediary metabolism compared with the time control. The contents of several enzymes in fatty acid oxidation were decreased compared with the time control. Blockade of ETC during ischemia largely prevented the decreases. Thus, after I/R, not only the ETC but also multiple pathways of intermediary metabolism sustain damage initiated by the ETC. If these damaged mitochondria persist in the myocyte, they remain a potent stimulus for ongoing injury and the transition to cardiomyopathy during prolonged reperfusion. Modulation of ETC function during early reperfusion is a key strategy to preserve mitochondrial metabolism and to decrease persistent mitochondria-driven injury during longer periods of reperfusion that predispose to ventricular dysfunction and heart failure. NEW & NOTEWORTHY Ischemia-reperfusion (I/R) damages mitochondria, which could be protected by reversible blockade of the electron transport chain (ETC). Unbiased proteomics with isotope tags for relative and absolute quantification analyzed mitochondrial damage during I/R and found that multiple enzymes in the tricarboxylic acid cycle, fatty acid oxidation, and ETC decreased, which could be prevented by ETC blockade. Strategic ETC modulation can reduce mitochondrial damage and cardiac injury.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Amobarbital/farmacologia , Animais , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Oxirredução , Proteômica/métodos
19.
Circ Res ; 118(10): 1593-611, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27174952

RESUMO

Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction.


Assuntos
Envelhecimento/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Coração/crescimento & desenvolvimento , Mitocôndrias Cardíacas/metabolismo , Biogênese de Organelas , Envelhecimento/patologia , Animais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Coração/fisiopatologia , Humanos , Estresse Oxidativo
20.
Spinal Cord ; 56(9): 863-872, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29559683

RESUMO

STUDY DESIGN: Cross-sectional design. OBJECTIVES: This study examined the relationships between circulating adiponectin levels, body composition, metabolic profile, and measures of skeletal muscle mitochondrial enzyme activity and biogenesis. SETTINGS: Clinical Research in a Medical Center. METHODS: Plasma adiponectin was quantified in 19 individuals with chronic spinal cord injury (SCI). Body composition was evaluated by dual x-ray absorptiometry and magnetic resonance imaging. Metabolic profile was assessed by basal metabolic rate (BMR), oxygen uptake (VO2), and intravenous glucose tolerance testing. Mitochondrial enzyme activity of skeletal muscle was obtained by spectrophotometric assays and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and 5' AMP-activated protein kinase (AMPK) protein expression was assessed by Western blots. RESULTS: Adiponectin was negatively related to both total and regional fat mass and positively related to lean mass and muscle mass. Furthermore, there were positive relationships between adiponectin and BMR (r = 0.52, P = 0.02) and VO2 (r = 0.73, P = 0.01). Furthermore, adiponectin was positively related to citrate synthase (r = 0.68, P = 0.002) and complex III activity (r = 0.57, P = 0.02). The relationships between adiponectin and body composition remained significant after accounting for age. The relationships between adiponectin, metabolic profile, and markers of mitochondria mass and activity were influenced by age. CONCLUSIONS: The study demonstrated that adiponectin is closely related to body composition and metabolic profile in persons with SCI and further supports mechanistic studies suggesting that adiponectin may stimulate mitochondrial biogenesis.


Assuntos
Adiponectina/sangue , Composição Corporal , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Traumatismos da Medula Espinal/metabolismo , Absorciometria de Fóton , Adenilato Quinase/metabolismo , Tecido Adiposo/diagnóstico por imagem , Adolescente , Adulto , Doença Crônica , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Espectrofotometria , Traumatismos da Medula Espinal/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA