Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(26): 12207-12217, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38888279

RESUMO

Reactions between tungsten alkylidyne [tBuOCO]W≡CtBu(THF)2 1 and sulfur containing small molecules are reported. Complex 1 reacts with CS2 to produce intermediate η2 bound CS2 complex [O2C(tBuC═)W(η2-(S,C)-CS2)(THF)] 8. Heating complex 8 provides a mixture of a monomeric tungsten sulfido complex 9 and a dimeric complex 10 in a 4:1 ratio, respectively. Heating the mixture does not perturb the ratio. Addition of excess THF in a solution of 9 and 10 (4:1) converts 10 to 9 (>96%) with concomitant loss of (CS)x. Both 9 and 10 can be selectively crystallized from the mixture. An alternative synthesis of exclusively monomeric 9 involves the reaction between 1 and PhNCS. Demonstrating ring expansion metathesis polymerization (REMP), tethered tungsten alkylidene 8 polymerizes norbornene to produce cis-selective syndiotactic cyclic polynorbornene (c-poly(NBE)).

2.
Macromol Rapid Commun ; 45(8): e2300692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288674

RESUMO

Measurement of molecular weight is an integral part of macromolecular and polymer characterization which usually has limitations. Herein, this article presents the use of a bench-top 80 MHz Nuclear Magnetic Resonance (NMR) spectrometer for diffusion-ordered spectroscopy as a practical and rapid approach for the determination of molecular weight/size using a novel solvent and polymer-independent universal calibration.


Assuntos
Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Peso Molecular , Polímeros , Polímeros/química , Espectroscopia de Ressonância Magnética/métodos , Substâncias Macromoleculares/química , Difusão
3.
Angew Chem Int Ed Engl ; 63(8): e202318956, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38109203

RESUMO

Described here is a direct entry to two examples of 3d transition metal catalysts that are active for the cyclic polymerization of phenylacetylene, namely, [(BDI)M{κ2 -C,C-(Me3 SiC3 SiMe3 )}] (2-M) (BDI=[ArNC(CH3 )]2 CH- , Ar=2,6-i Pr2 C6 H3 ; M=Ti, V). Catalysts are prepared in one step by the treatment of [(BDI)MCl2 ] (1-M, M=Ti, V) with 1,3-dilithioallene [Li2 (Me3 SiC3 SiMe3 )]. Complexes 2-M have been spectroscopically and structurally characterized and the polymers that are catalytically formed from phenylacetylene were verified to have a cyclic topology based on a combination of size-exclusion chromatography (SEC) and intrinsic viscosity studies. Two-electron oxidation of 2-V with nitrous oxide (N2 O) cleanly yields a [VV ] alkylidene-alkynyl oxo complex [(BDI)V(=O){κ1 -C-(=C(SiMe3 )CC(SiMe3 ))}] (3), which lends support for how this scaffold in 2-M might be operating in the polymerization of the terminal alkyne. This work demonstrates how alkylidynes can be circumvented using 1,3-dianionic allene as a segue into M-C multiple bonds.

4.
J Am Chem Soc ; 145(41): 22796-22802, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812163

RESUMO

The synthesis, characterization, and preliminary activity of an unprecedented tethered alkylidyne tungsten complex for ring expansion alkyne metathesis polymerization (REAMP) are reported. The tethered alkylidyne 7 is generated rapidly by combining alkylidyne W(CtBu)(CH2tBu)(O-2,6-i-Pr2C6H3)2 (6) with 1 equiv of an yne-ol proligand (5). Characterized by NMR studies and nuclear Overhauser effect spectroscopy, complex 7 is a dimer. Each metal center contains a tungsten-carbon triple bond tethered to the metal center via an alkoxide ligand. The polymerization of the strained cycloalkyne 3,8-didodecyloxy-5,6-dihydro-11,12-didehydrodibenzo[a,e]-[8]annulene, 8, to generate cyclic polymers was demonstrated. Size exclusion chromatography (SEC) and intrinsic viscosity (η) measurements confirm the polymer's cyclic topology.

5.
Proc Natl Acad Sci U S A ; 117(24): 13359-13365, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32467164

RESUMO

Fluid flow in porous media drives the transport, mixing, and reaction of molecules, particles, and microorganisms across a wide spectrum of natural and industrial processes. Current macroscopic models that average pore-scale fluctuations into an effective dispersion coefficient have shown significant limitations in the prediction of many important chemical and biological processes. Yet, it is unclear how three-dimensional flow in porous structures govern the microscale chemical gradients controlling these processes. Here, we obtain high-resolution experimental images of microscale mixing patterns in three-dimensional porous media and uncover an unexpected and general mixing mechanism that strongly enhances concentration gradients at pore-scale. Our experiments reveal that systematic stretching and folding of fluid elements are produced in the pore space by grain contacts, through a mechanism that leads to efficient microscale chaotic mixing. These insights form the basis for a general kinematic model linking chaotic-mixing rates in the fluid phase to the generic structural properties of granular matter. The model successfully predicts the resulting enhancement of pore-scale chemical gradients, which appear to be orders of magnitude larger than predicted by dispersive approaches. These findings offer perspectives for predicting and controlling the vast diversity of reactive transport processes in natural and synthetic porous materials, beyond the current dispersion paradigm.

6.
Build Environ ; 241: 110486, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37287526

RESUMO

It is now widely recognised that aerosol transport is major vector for transmission of diseases such as COVID-19, and quantification of aerosol transport in the built environment is critical to risk analysis and management. Understanding the effects of door motion and human movement on the dispersion of virus-laden aerosols under pressure-equilibrium conditions is of great significance to the evaluation of infection risks and development of mitigation strategies. This study uses novel numerical simulation techniques to quantify the impact of these motions upon aerosol transport and provides valuable insights into the wake dynamics of swinging doors and human movement. The results show that the wake flow of an opening swinging door delays aerosol escape, while that of a person walking out entrains aerosol out of the room. Aerosol escape caused by door motion mainly happens during the closing sequence which pushes the aerosols out. Parametric studies show that while an increased door swinging speed or human movement speed can enhance air exchange across the doorway, the cumulative aerosol exchange across the doorway is not clearly affected by the speeds.

7.
Mol Carcinog ; 61(5): 439-453, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35107186

RESUMO

l-fucose is a dietary sugar that is used by cells in a process called fucosylation to posttranslationally modify and regulate protein behavior and function. As fucosylation plays essential cellular functions in normal organ and immune developmental and homeostasis, it is perhaps not surprising that it has been found to be perturbed in a number of pathophysiological contexts, including cancer. Increasing studies over the years have highlighted key roles that altered fucosylation can play in cancer cell-intrinsic as well as paracrine signaling and interactions. In particular, studies have demonstrated that fucosylation impact tumor:immunological interactions and significantly enhance or attenuate antitumor immunity. Importantly, fucosylation appears to be a posttranslational modification that can be therapeutically targeted, as manipulating the molecular underpinnings of fucosylation has been shown to be sufficient to impair or block tumor progression and to modulate antitumor immunity. Moreover, the fucosylation of anticancer agents, such as therapeutic antibodies, has been shown to critically impact their efficacy. In this review, we summarize the underappreciated roles that fucosylation plays in cancer and immune cells, as well as the fucosylation of therapeutic antibodies or the manipulation of fucosylation and their implications as new therapeutic modalities for cancer.


Assuntos
Fucose , Neoplasias , Fucose/metabolismo , Glicosilação , Humanos , Imunoterapia , Neoplasias/terapia , Açúcares
8.
J Am Chem Soc ; 143(41): 17276-17283, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34618432

RESUMO

This work outlines an approach to creating a catalyst for cyclic polymer synthesis using readily available materials in only one or two steps. Combining commercially available molybdenum-alkylidene 1 with two equivalents of ene-ol proligand 2 rapidly produces, in quantitative yield (1H NMR spectroscopy), the double tethered metallacyclobutane complex 3. Characterized by variable temperature NMR studies and nuclear Overhauser effect spectroscopy (NOESY) experiments, complex 3 exhibits fluxional behavior in solution. Determined by single crystal X-ray diffraction, the solid-state structure of complex 3 reveals metrical parameters indicating that the metallacyclobutane is not predicted to undergo rapid retro-cycloaddition. However, complex 3 is a precatalyst for the polymerization of norbornene to produce cyclic polynorbornene. An NMR spectrum of a test polymerization indicates that only a small fraction of the precatalyst is activated upon exposure to monomer. Quantifying the active catalyst is possible by measuring vinyl resonances that appear in the 1H NMR spectrum. The vinyl resonances are attributable to the release of one of the tethers upon norbornene addition. Confirmation of the polymer cyclic topology comes from gel permeation chromatography (GPC), dynamic light scattering (DLS), and intrinsic viscosity (η) measurements. The double tethered metallacyclobutane complex is a novel design for catalytic cyclic polymer synthesis. The synthetic approach suggests that catalyst tuning is possible by a choice of the commercial alkylidene and alteration of the ene-ol proligand.


Assuntos
Norbornanos
9.
J Am Chem Soc ; 143(2): 1235-1246, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33417768

RESUMO

This report describes an approach for preparing tethered tungsten-imido alkylidene complexes featuring a tetra-anionic pincer ligand. Treating the tungsten alkylidyne [tBuOCO]W≡CtBu(THF)2 (1) with isocyanates (RNCO; R = tBu, Cy, and Ph) leads to cycloaddition occurring exclusively at the C═N bond to generate the tethered tungsten-imido alkylidenes (6-NR). Unanticipated intermediates reveal themselves, including the discovery of [(O2CtBuC═)W(η2-(N,C)-RNCO)(THF)] (11-R) and an unprecedented decarbonylation product [(tBuOCO)W(≡NR)(tBuCCO)] (14-R), on the pathway to the formation of 6-NR. Complex 11-R is kinetically stable for sterically bulky isocyanate R = tBu (11-tBu) and is isolated and characterized by single-crystal X-ray diffraction. Finally, adding to the short list of catalysts capable of ring expansion metathesis polymerization (REMP), complexes 6-NR and 11-tBu are active for the stereoselective synthesis of cyclic polynorbornene.


Assuntos
Alcenos/química , Complexos de Coordenação/química , Plásticos/síntese química , Tungstênio/química , Catálise , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Plásticos/química , Estereoisomerismo
10.
Soft Matter ; 17(8): 2242-2255, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33470266

RESUMO

Although highly successful, classical constitutive theories for the consolidation of strong colloidal gels are limited to one-dimensional (1D) uniaxial consolidation. Many consolidation applications are inherently multidimensional and there currently exists little understanding and no constitutive theory for how strong colloidal gels consolidate under arbitrary compressive loadings. In this study, we address this shortcoming by considering the consolidation mechanics of strong colloidal gels under arbitrary compressive loadings via 2D DEM biaxial simulations of assemblies of cohesive frictional particles. We show that although particle-scale consolidation differs significantly between uniaxial and isotropic consolidation, the maximum normal stress during consolidation is a unique function of the volumetric strain and hence the concentration of the solids phase. We use these insights to develop a generalised constitutive model for the macroscopic compressive rheology under arbitrary compressive loadings that is consistent with the classical constitutive model for uniaxial consolidation. Surprisingly, we find that this generalized constitutive model can predict multidimensional consolidation under arbitrary compressive loadings without need for further characterisation beyond uniaxial consolidation. These results provide significant insights into the consolidation of strong colloidal gels and facilitate prediction of multi-dimensional consolidation over a wide range of applications, and so represents an initial foray toward the development of a tensorial rheology of strong colloidal gels.

11.
Chaos ; 30(3): 033124, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32237768

RESUMO

Global organization of three-dimensional (3D) Lagrangian chaotic transport is difficult to infer without extensive computation. For 3D time-periodic flows with one invariant, we show how constraints on deformation that arise from volume-preservation and periodic lines result in resonant degenerate points that periodically have zero net deformation. These points organize all Lagrangian transport in such flows through coordination of lower-order and higher-order periodic lines and prefigure unique transport structures that arise after perturbation and breaking of the invariant. Degenerate points of periodic lines and the extended 3D structures associated with them are easily identified through the trace of the deformation tensor calculated along periodic lines. These results reveal the importance of degenerate points in understanding transport in one-invariant fluid flows.

12.
Chaos ; 27(4): 043102, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456165

RESUMO

Understanding the mechanisms that control three-dimensional (3D) fluid transport is central to many processes, including mixing, chemical reaction, and biological activity. Here a novel mechanism for 3D transport is uncovered where fluid particles are kicked between streamlines near a localized shear, which occurs in many flows and materials. This results in 3D transport similar to Resonance Induced Dispersion (RID); however, this new mechanism is more rapid and mutually incompatible with RID. We explore its governing impact with both an abstract 2-action flow and a model fluid flow. We show that transitions from one-dimensional (1D) to two-dimensional (2D) and 2D to 3D transport occur based on the relative magnitudes of streamline jumps in two transverse directions.

14.
ACS Nano ; 18(18): 11655-11664, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652866

RESUMO

Conjugated polymers have become materials of choice for applications ranging from flexible optoelectronics to neuromorphic computing, but their polydispersity and tendency to aggregate pose severe challenges to their precise characterization. Here, the combination of vacuum electrospray deposition (ESD) with scanning tunneling microscopy (STM) is used to acquire, within the same experiment, assembly patterns, full mass distributions, exact sequencing, and quantification of polymerization defects. In a first step, the ESD-STM results are successfully benchmarked against NMR for low molecular mass polymers, where this technique is still applicable. Then, it is shown that ESD-STM is capable of reaching beyond its limits by characterizing, with the same accuracy, samples that are inaccessible to NMR. Finally, a recalibration procedure is proposed for size exclusion chromatography (SEC) mass distributions, using ESD-STM results as a reference. The distinctiveness of the molecular-scale information obtained by ESD-STM highlights its role as a crucial technique for the characterization of conjugated polymers.

15.
Sci Total Environ ; 949: 175143, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084373

RESUMO

Globally, environmental impacts and population growth are driving the process intensification of wastewater treatment plants (WWTPs) via transition from conventional (2-3 wt% solids) to highly concentrated (4-6 wt% solids) wastewater sludges (HCWS). This presents an industrial challenge as HCWS are complex, non-Newtonian materials whose viscosity increases nonlinearly with solids concentration. This viscosity increase is particularly relevant for sludge pipe flow as it leads to considerable pumping pressure that ultimately limits the feasibility of pipe flow transportation. Hence, process intensification demands accurate prediction of HCWS turbulent pipe flow to design and optimise pumping infrastructure and piping systems. Such prediction requires accurate rheological characterisation of HCWS and numerical prediction of HCWS turbulent pipe flow, neither of which has been achieved to date due to respective limitations associated with benchtop rheometry and numerical turbulence models. We address these challenges by first developing accurate methods for rheological characterisation of HCWS via laminar flow of digested sludge at various solids concentrations (2-5 %) in a fully instrumented pipe loop facility at a large-scale WWTP. These rheological parameters are used in direct numerical simulation (DNS) computations (that avoid turbulence models) of turbulent pipe flow of HCWS. These predictions are then validated against turbulent flow pipe loop data. This method yields accurate (2-15 % error) predictions of HCWS turbulent pipe flow, compared with up to ∼75 % error for conventional pipe flow correlations. This validation highlights the need for accurate rheological characterisation and numerical simulation to predict HCWS pipe flow and provides a sound basis for the intensification and optimisation of WWTP pipeline systems.

16.
ACS Polym Au ; 4(4): 311-319, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39156557

RESUMO

Knowledge of molecular weight is an integral factor in polymer synthesis, and while many synthetic strategies have been developed to help control this, determination of the final molecular weight is often only measured at the end of the reaction. Herein, we provide a technique for the online determination of polymer molecular weight using a universal, solvent-independent diffusion ordered spectroscopy (DOSY) calibration and evidence its use in a variety of polymerization reactions.

17.
J Polym Environ ; 32(8): 3503-3515, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161457

RESUMO

Approximately 99% of plastics produced worldwide were produced by the petrochemical industry in 2019 and it is predicted that plastic consumption may double between 2023 and 2050. The use of biodegradable bioplastics represents an alternative solution to petroleum-based plastics. However, the production cost of biopolymers hinders their real-world use. The use of waste biomass as a primary carbon source for biopolymers may enable a cost-effective production of bioplastics whilst providing a solution to waste management towards a carbon-neutral and circular plastics economy. Here, we report for the first time the production of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with a controlled molar ratio of 2:1 3-hydroxybutyrate:3-hydroxvalerate (3HB:3HV) through an integrated pre-treatment and fermentation process followed by alkaline digestion of cassava peel waste, a renewable low-cost substrate, through Cupriavidus necator biotransformation. PHBV was subsequently melt blended with a biodegradable polymer, polycaprolactone (PCL), whereby the 30:70 (mol%) PHBV:PCL blend exhibited an excellent balance of mechanical properties and higher degradation temperatures than PHBV alone, thus providing enhanced stability and controllable properties. This work represents a potential environmental solution to waste management that can benefit cassava processing industries (or other crop processing industries) whilst developing new bioplastic materials that can be applied, for example, to packaging and biomedical engineering. Supplementary Information: The online version contains supplementary material available at 10.1007/s10924-023-03167-4.

18.
Oncogene ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209965

RESUMO

Neurofibromatosis type 2 (NF2) is a rare disorder that causes vestibular schwannomas (VS), meningiomas and ependymomas. To date, there is no FDA approved drug-based treatment for NF2. We have previously identified that BET inhibition can selectively reduce growth of the NF2-null schwannoma and Schwann cells in vitro and tumorigenesis in vivo and, separately, reported that inhibition of Focal Adhesion Kinase 1 (FAK1) via crizotinib has antiproliferative effects in NF2-null Schwann cells. The current study was aimed at determining whether combined BET and FAK inhibition can synergize and to identify the mechanisms of action. A panel of normal and NF2-null Schwann and schwannoma cell lines were used to characterize the effects of combined BET and FAK inhibition in vitro and in vivo using pharmacological and genetic approaches. The mechanism of action was explored by chromatin immunoprecipitation, ChIP-PCR, western blotting, and functional approaches. We find that combined BET and FAK inhibition are synergistic and inhibit the proliferation of NF2-null schwannoma and Schwann cell lines in vitro and in vivo, by arresting cells in the G1/S and G2/M phases of the cell cycle. Further, we identify the mechanism of action through the downregulation of FAK1 transcription by BET inhibition, which potentiates inhibition of FAK by 100-fold. Our findings suggest that combined targeting of BET and FAK1 may offer a potential therapeutic option for the treatment of NF2-related schwannomas.

19.
Nat Commun ; 15(1): 1148, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326303

RESUMO

Melanoma incidence and mortality rates are historically higher for men than women. Although emerging studies have highlighted tumorigenic roles for the male sex hormone androgen and its receptor (AR) in melanoma, cellular and molecular mechanisms underlying these sex-associated discrepancies are poorly defined. Here, we delineate a previously undisclosed mechanism by which androgen-activated AR transcriptionally upregulates fucosyltransferase 4 (FUT4) expression, which drives melanoma invasiveness by interfering with adherens junctions (AJs). Global phosphoproteomic and fucoproteomic profiling, coupled with in vitro and in vivo functional validation, further reveal that AR-induced FUT4 fucosylates L1 cell adhesion molecule (L1CAM), which is required for FUT4-increased metastatic capacity. Tumor microarray and gene expression analyses demonstrate that AR-FUT4-L1CAM-AJs signaling correlates with pathological staging in melanoma patients. By delineating key androgen-triggered signaling that enhances metastatic aggressiveness, our findings help explain sex-associated clinical outcome disparities and highlight AR/FUT4 and its effectors as potential prognostic biomarkers and therapeutic targets in melanoma.


Assuntos
Melanoma , Molécula L1 de Adesão de Célula Nervosa , Humanos , Masculino , Feminino , Melanoma/metabolismo , Androgênios , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Antígenos CD15/metabolismo , Glicosilação , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Fucosiltransferases/genética , Fucosiltransferases/metabolismo
20.
Nat Commun ; 14(1): 891, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797229

RESUMO

The atypical cadherins Fat and Dachsous are key regulators of cell growth and animal development. In contrast to classical cadherins, which form homophilic interactions to segregate cells, Fat and Dachsous cadherins form heterophilic interactions to induce cell polarity within tissues. Here, we determine the co-crystal structure of the human homologs Fat4 and Dachsous1 (Dchs1) to establish the molecular basis for Fat-Dachsous interactions. The binding domains of Fat4 and Dchs1 form an extended interface along extracellular cadherin (EC) domains 1-4 of each protein. Biophysical measurements indicate that Fat4-Dchs1 affinity is among the highest reported for cadherin superfamily members, which is attributed to an extensive network of salt bridges not present in structurally similar protocadherin homodimers. Furthermore, modeling suggests that unusual extracellular phosphorylation modifications directly modulate Fat-Dachsous binding by introducing charged contacts across the interface. Collectively, our analyses reveal how the molecular architecture of Fat4-Dchs1 enables them to form long-range, high-affinity interactions to maintain planar cell polarity.


Assuntos
Caderinas , Polaridade Celular , Proteínas Supressoras de Tumor , Humanos , Caderinas/química , Proteínas Supressoras de Tumor/química , Proteínas Relacionadas a Caderinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA