Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Environ Monit Assess ; 195(7): 910, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392291

RESUMO

The present investigation determines the persistence of herbicides like butachlor and pretilachlor in Indian soil, and their impact on soil biological properties including microbial biomass carbon (MBC), total microbial population numbers, and enzyme activities. Butachlor was degraded faster in autumn rice soil (t1/2 of 10-13 days) than in winter rice soil (half-life of 16-18 days). The t1/2 of pretilachlor in winter rice was 12-16 days. Regardless of the seasons under cultivation, no pesticide residue was detected in rice at harvest. Herbicides induced an initial decline (0-14th days after application) in MBC (averages of 332.7-478.4 g g-1 dry soil in autumn rice and 299.6-444.3 g g-1 dry soil in winter rice), microbial populations (averages of 6.4 cfu g-1 in autumn rice and 4.6 cfu g-1 in winter rice), and phosphatase (averages of 242.6-269.3 µg p-nitrophenol g-1 dry soil h-1 in autumn rice and 188.2-212.2 µg p-nitrophenol g-1 dry soil h-1 in winter rice). The application of herbicides favored dehydrogenase (averages of 123.1-156.7 g TPF g-1 dry soil in autumn and 126.7-151.1 g TPF g-1 dry soil in winter) and urease activities (averages of 279.0-340.4 g NH4 g-1 soil 2 h-1 in autumn and 226.7-296.5 g NH4 g-1 soil 2 h-1 in winter) in rice soil at 0-14th DAA. The study suggests that applications of butachlor and pretilachlor at the rates of 1000 g ha-1 and 750 g ha-1, respectively, to control the weeds in the transplanted rice fields do not have any negative impact on the harvested rice and associated soil environment.


Assuntos
Herbicidas , Oryza , Cinética , Microbiologia do Solo , Monitoramento Ambiental , Carbono
2.
J Environ Manage ; 275: 111300, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871522

RESUMO

A growing concern on the deleterious effects of chemical inputs to the environment has been on the rise from the excessive use of chemical inputs leading to soil and water pollution, destruction to fauna and microbial communities, reduced soil fertility and increased crop disease susceptibility. In the Great Mekong Region (GMR), a large majority of the population relies on agriculture and faces severe challenges including decline in soil fertility, increased pests and diseases, leading to lower ecosystem productivity. In this region, over-dependence on chemical fertilizers also continues to impact negatively on soil health and the wider ecosystem. Agroecological practices, and beneficial microorganisms in particular, offer an affordable and sustainable alternative to mineral inputs for improved plant nutrition and soil health for optimal crop performance and sustainable production. Biofertilizers are a key component in integrated nutrient management as well as for increased economic benefits from reduced expenditure on chemical fertilizers, holistically leading to sustainable agriculture. To cope with the need for biofertilizer adoption for sustainable agricultural production, the countries in the GMR are putting efforts in promoting development and use of biofertilizers and making them available to farmers at affordable costs. Despite these efforts, farmers continue to use chemical fertilizers at high rates with the hope of increased yields instead of taking advantage of microbial products capable of providing plant nutrients while restoring or improving soil health. This study explored the current agricultural practices in the six countries in the GMR (China, Vietnam, Myanmar, Thailand, Cambodia and Lao PDR), the critical need for sustainable agroecological practices with a special emphasis on biofertilizers. We highlighted the current status, distribution, adoption and gaps of biofertilizer production in the GMR, in order to obtain an insight on the nature of biofertilizers, efficacy and production standards, adoption or lack of biofertilizers in the GMR.


Assuntos
Agricultura , Fertilizantes , Camboja , China , Tailândia , Vietnã
3.
Appl Microbiol Biotechnol ; 102(17): 7521-7539, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29934654

RESUMO

Inoculation of legume seed with rhizobia is an efficient and cost-effective means of distributing elite rhizobial strains to broad-acre crops and pastures. However, necessary drying steps after coating seed expose rhizobia to desiccation stress reducing survival and limiting potential nitrogen fixation by legumes. Rhizobial tolerance to desiccation varies with strain and with growth conditions prior to drying. Cells grown in peat generally survive desiccation better than cells grown in liquid broth. We aimed to identify peat-induced proteomic changes in rhizobia that may be linked to desiccation tolerance. Proteins expressed differentially after growth in peat extract when compared with a minimal defined medium were measured in four rhizobial strains. Proteins showing the greatest increase in abundance were those involved in amino acid and carbohydrate transport and metabolism. Proteins involved in posttranslational modification and cell defence mechanisms were also upregulated. Many of the proteins identified in this study have been previously linked to stress responses. In addition, analysis using nucleic acid stains SYTO9 and propidium iodide indicated that membranes had been compromised after growth in peat extract. We targeted the membrane repair protein PspA (ΔRL3579) which was upregulated in Rhizobium leguminosarum bv. viceae 3841 after growth in peat extract to validate whether the inability to repair membrane damage after growth in peat extract reduced desiccation tolerance. The ΔRL3579 mutant grown in peat extract had significantly lower survival under desiccation stress, whereas no difference in survival between wild-type and mutant strains was observed after growth in tryptone yeast (TY) or minimal medium (JMM) media. Staining mutant and wild-type strains with SYTO9 and propidium iodide indicated that membranes of the mutant were compromised after growth in peat extract and to a lesser extent in TY. This study shows that growth in peat extract causes damage to cell membranes and exposes rhizobia to sub-lethal stress resulting in differential expression of several stress-induced proteins. The induction of these proteins may prime and protect the cells when subjected to subsequent stress such as desiccation. Identifying the key proteins involved in desiccation tolerance and properties of peat that stimulate this response will be important to inform development of new inoculant technology that maximises survival of rhizobia during delivery to legume crops and pastures.


Assuntos
Adaptação Fisiológica/genética , Inoculantes Agrícolas/fisiologia , Dessecação , Rhizobium/fisiologia , Solo/química , Inoculantes Agrícolas/genética , Inoculantes Agrícolas/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Meios de Cultura/química , Fabaceae/microbiologia , Regulação Bacteriana da Expressão Gênica , Viabilidade Microbiana , Mutação , Proteômica , Rhizobium/genética , Rhizobium/crescimento & desenvolvimento
4.
Mycorrhiza ; 26(8): 863-877, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27448680

RESUMO

Rubber tree (Hevea brasiliensis) is of major economic importance in Southeast Asia and for small land holders in Thailand in particular. Due to the high value of latex, plantations are expanding into unsuitable areas, such as the northeast province of Thailand where soil fertility is very low and therefore appropriate management practices are of primary importance. Arbuscular mycorrhizal fungi (AMF) contribute to plant growth through a range of mechanisms and could play a key role in a more sustainable management of the rubber plantations. We described the diversity of AMF associated with rubber tree roots in Northeast Thailand in relation to tree age and soil parameters along a chronosequence of rubber tree plantations. Cassava fields were included for comparison. Rubber tree and cassava roots harbored high diversity of AMF (111 Virtual Taxa, VT), including 20 novel VT. AMF VT richness per sample was consistently high (per site mean 16 to 21 VT per sample) along the chronosequence and was not related to soil properties. The composition of AMF communities differed between cassava and rubber tree plantations and was influenced by soil texture and nutrient content (sand, K, P, Ca). AMF community composition gradually shifted with the age of the trees. Our results suggest that the high diversity of AMF in this region is potentially significant for maintaining high functionality of AMF communities.


Assuntos
Hevea/microbiologia , Micorrizas/genética , Raízes de Plantas/microbiologia , Agricultura , Micorrizas/classificação , Micorrizas/isolamento & purificação , Microbiologia do Solo , Tailândia
5.
Sci Total Environ ; 917: 170380, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38281640

RESUMO

Future climate models indicate an enhanced severity of regional drought and frequent rewetting events, which may cause cascading impacts on soil nitrogen cycle and nitrous oxide (N2O) emissions, but the underlying microbial mechanism remains largely unknown. Here we report an incubation study that examined the impacts of soil moisture status and nitrification inhibitor (DCD) on the N2O-producers and N2O-reducers following the application of urea and composted swine manure in an acid soil. The soil moisture treatments included 100 % water-holding capacity (WHC) (wetting, 35.3 % gravimetric soil water content), 40 % WHC (drought, 7 % gravimetric soil water content), and 40 % to 100 % WHC (rewetting). The results showed that N2O emissions were significantly decreased under drought conditions and were significantly increased after rewetting. The resistance of ammonia-oxidizing bacteria and nosZII, which was inhibited by urea or manure application, modulated N2O emissions under drought conditions. The resilience of the functional guilds modulated their dominant role in N2O emissions with rewetting. Ammonia-oxidizing bacteria, nirS-type denitrifying bacteria and nosZI showed significant resilience in response to rewetting. Significant negative relationships were observed between N2O emissions and nosZII clade under wetting condition and between N2O emissions and nosZI clade after rewetting. Our results highlighted the importance of microbial resistance and resilience in modulating N2O emissions, which help to better understand the dominant way of N2O emissions, and consequently make efficient mitigation strategies under the global climate change.


Assuntos
Resiliência Psicológica , Solo , Animais , Suínos , Fertilizantes/análise , Amônia , Esterco , Secas , Óxido Nitroso/análise , Ureia , Água , Agricultura/métodos
6.
Appl Microbiol Biotechnol ; 97(20): 8859-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24037408

RESUMO

The interest in biofertilizers is increasing and so is the potential for their use in sustainable agriculture. However, many of the products that are currently available worldwide are often of very poor quality, resulting in the loss of confidence from farmers. The formulation of an inoculant is a crucial multistep process that should result in one or several strains of microorganisms included in a suitable carrier, providing a safe environment to protect them from the often harsh conditions during storage and ensuring survival and establishment after introduction into soils. One of the key issues in formulation development and production is the quality control of the products, at each stage of the process. This review presents the different components and the major steps involved in the formulation of good quality biofertilizers, including the techniques used to assess the quality of the products following production. The quality of currently available inoculants is also reviewed, emphasizing the need for better quality control systems worldwide.


Assuntos
Inoculantes Agrícolas/química , Química Agrícola/métodos , Fertilizantes/análise , Agricultura , Controle de Qualidade
7.
Plants (Basel) ; 12(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836181

RESUMO

Salinity is one of the most devastating abiotic stresses hampering the growth and production of rice. Nine indole-3-acetic acid (IAA)-producing salt-tolerant plant-growth-promoting rhizobacteria (ST-PGPR) were inoculated into Thai jasmine rice (Oryza sativa L.) variety Khao Dawk Mali 105 (KDML105) seedlings grown under different concentrations of NaCl (0, 50, 100, and 150 mM). The ST-PGPR strains significantly promoted the growth parameters, chlorophyll content, nutrient uptake (N, P, K, Ca, and Mg), antioxidant activity, and proline accumulation in the seedlings under both normal and saline conditions compared to the respective controls. The K+/Na+ ratio of the inoculated seedlings was much higher than that of the controls, indicating greater salt tolerance. The most salt-tolerant and IAA-producing strain, Sinomonas sp. ORF15-23, yielded the highest values for all the parameters, particularly at 50 mM NaCl. The percentage increases in these parameters relative to the controls ranged from >90% to 306%. Therefore, Sinomonas sp. ORF15-23 was considered a promising ST-PGPR to be developed as a bioinoculant for enhancing the growth, salt tolerance, and aroma of KDML105 rice in salt-affected areas. Environmentally friendly technologies such as ST-PGPR bioinoculants could also support the sustainability of KDML105 geographical indication (GI) products. However, the efficiency of Sinomonas sp. ORF15-23 should be evaluated under field conditions for its effect on rice nutrient uptake and growth, including the 2AP level.

8.
World J Microbiol Biotechnol ; 28(7): 2541-50, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22806160

RESUMO

A key constraint in successfully obtaining an effective inoculant is overcoming difficulties in formulating a viable and user-friendly final product and maintaining the microbial cells in a competent state. Co-cultures of rhizobia and PGPR (Plant Growth Promoting Rhizobacteria) are a logical next subject for formulation researchers as they can influence the efficacy of rhizobia. A greenhouse experiment was set to assess the formulation effect of one strain i.e. Bradyrhizobium japonicum, 532c (granules, liquid and broth) and also to determine the efficiency of co-inoculation of Bacillus with two commercial strains of B. japonicum (532c and RCR 3407) on 2 soybean (Glycine max L.) varieties. PCR-RFLP analysis was used to determine the nodule occupancy in each treatment. Most of the inoculants showed increased nodulation and biomass yields (by approximately 2-5 and 4-10 g plant(-1) respectively) as compared to the uninoculated controls. TGx1740-2F showed no significant differences in nodule fresh weights for the formulation effect while the co-inoculants increased the nodule fresh weights by up to 4 g plant(-1). The liquid and granule-based inoculants induced higher biomass yields (4-8 g plant(-1)) suggesting a possible impact of formulation on the effectiveness of the inoculants. The co-inoculants also gave higher yields but showing no significant differences to the rhizobial inoculants. Nodule occupancy was 100 % for the rhizobial inoculants as well as the co-inoculants emphasizing the infectivity and high competitiveness of 532c and RCR 3407 strains despite the high population of indigenous rhizobia.


Assuntos
Bacillus subtilis/fisiologia , Bradyrhizobium/fisiologia , Glycine max/microbiologia , Raízes de Plantas/microbiologia , Fixação de Nitrogênio , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Glycine max/metabolismo
9.
Biology (Basel) ; 10(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681166

RESUMO

Thai jasmine rice (Oryza sativa L. KDML105), particularly from inland salt-affected areas in Thailand, is both domestically and globally valued for its unique aroma and high grain quality. The key aroma compound, 2-acetyl-1-pyrroline (2AP), has undergone a gradual degradation due to anthropogenic soil salinization driven by excessive chemical input and climate change. Here, we propose a cheaper and an ecofriendly solution to improve the 2AP levels, based on the application of plant growth-promoting rhizobacteria (PGPR). In the present study, nine PGPR isolates from rice rhizosphere were investigated for the 2AP production in liquid culture and the promotion potential for 2AP content in KDML105 rice seedlings under four NaCl concentrations (0, 50, 100, and 150 mM NaCl). The inoculation of 2AP-producing rhizobacteria resulted in an increase in 2AP content in rice seedling leaves with the maximum enhancement from Sinomonas sp. ORF15-23 at 50 mM NaCl (19.6 µg·kg-1), corresponding to a 90.2% increase as compared to the control. Scanning electron microscopy confirmed the colonization of Sinomonas sp. ORF15-23 in the roots of salinity-stressed KDML105 seedlings. Our results provide evidence that Sinomonas sp. ORF15-23 could be a promising PGPR isolate in promoting aroma level of Thai jasmine rice KDML105 under salt stress.

10.
Sci Total Environ ; 689: 970-979, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31280178

RESUMO

Biochar is a potential tool to mitigate climate change by enhancing C sequestration in soils, but its use as a soil amendment to improve soil fertility and crop yields is still a contentious subject. In North East (NE) Thailand, biochar has been promoted to restore soil fertility in rubber tree plantations. Despite this, there is scarce information on the impact of biochar application on the soil biota, particularly on microbial communities associated with rubber trees. The effects of increasing doses of biochar on microbial communities were investigated in a rubber tree plantation in NE Thailand, 28 months after application. Biochar application resulted in increases of soil pH and nutrient contents and also had an impact on both bacterial and fungal communities. Changes in microbial composition and structure were observed although fungal communities were more markedly affected than bacterial communities. The nature and magnitude of the observed changes were strongly related to soil properties (pH, soil moisture and P content), while biochar dose (5, 10 or 20 tons/ha) effect was not significant. Our results highlight the need for additional research for a better understanding of the impact of biochar application on soil microbial communities and further cascading effects on ecosystem functions.


Assuntos
Fenômenos Fisiológicos Bacterianos , Carvão Vegetal/administração & dosagem , Fungos/fisiologia , Hevea , Microbiota , Microbiologia do Solo , Relação Dose-Resposta a Droga , Hevea/crescimento & desenvolvimento , Micobioma , Solo/química , Tailândia
11.
Sci Total Environ ; 626: 826-834, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29396343

RESUMO

Rubber plantations have expanded rapidly over the past 20 years in tropical Asia and their impacts on regional ecosystems have garnered much concern. While much attention has been given to the negative impacts on aboveground diversity and function, the belowground bacterial soil community has received much less attention. Here, we investigated the community composition and diversity of soil bacteria of rubber plantations on Hainan Island in south China. The goals of the study were to describe changes in bacterial compositions and diversity across seasons. We found that seasonality defined by differences in rainfall amount strongly influenced bacterial communities. At both the Phylum and Family levels, we found significant differences in the total number of taxa, as well as the composition of the community as a function of season. Diversity of soil samples in the dry-rainy season was highest of three seasons, suggesting that bacterial structure was more sensitive in alternate periods of season. Diversity in the rainy season was substantial lower than in dry season. Results from a redundancy analysis showed that seasonal changes explained the largest part (31.9%) of the total variance of bacterial community composition. In conclusion, seasonal change had the greatest influence on bacterial communities, which overshadowed the effects of soil nutrient as well as other factors, and controls the bacterial communities in soils of RP in tropical region of Hainan.


Assuntos
Agricultura , Hevea/crescimento & desenvolvimento , Estações do Ano , Microbiologia do Solo , China , Ilhas , Chuva , Borracha , Solo
12.
Adv Colloid Interface Sci ; 145(1-2): 42-82, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19012871

RESUMO

The use of bitumen as a construction material dates back to antiquity. The materials in use then were mostly naturally occurring in contrast to modern bitumens which have become highly technical artificial materials. This article reviews the current understanding of bitumen structure and the consequences in terms of properties, with a strong emphasis on the rheological properties. The links between chemistry, structure and mechanical properties are highlighted in the framework of an updated colloidal picture of bitumen. It shows that a simple solvation parameter allows quantifying the effect of the asphaltenes on the rheological properties of bitumen. This appears as a promising approach in order to understand more complex phenomena such as bitumen ageing or the diffusion of rejuvenating oils into an older bitumen. From this structural modelling, the effect of several modifiers, such as polymers, acids or mineral fillers, is explained using fundamental results from the mechanics of colloidal suspensions and multiphase materials through the Palierne model. Thus, relevant parameters describing polymer-bitumen or mineral fillers-bitumen interactions can be extracted, as detailed from literature data. In the case of mineral filler, volume fraction is the key parameter but particle size comes also into play when fine fillers are considered. In the case of polymer-modified bitumens, the swelling extent of the polymer controls all other parameters of importance: volume fraction of dispersed phase and mechanical properties of both dispersed and continuous phases. In addition, interesting rheological features due to droplet shape relaxations are described in polymer-modified bitumens. Although a general picture of bitumen structure is shown to emerge, the many fundamental points that remain to be addressed are discussed throughout the paper.

13.
Microb Ecol ; 54(3): 553-66, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17406772

RESUMO

The occurrence and the distribution of rhizobial populations naturally associated to Acacia seyal Del. were characterized in 42 soils from Senegal. The diversity of rhizobial genotypes, as characterized by polymerase chain reaction restriction fragment length polymorphism (RFLP) analysis of 16S-23S rDNA, performed on DNA extracted from 138 nodules resulted in 15 clusters. Results indicated the widespread occurrence of compatible rhizobia associated to A. seyal in various ecogeographic areas. However, the clustering of rhizobial populations based on intergenic spacer (IGS) RFLP profiles did not reflect their geographic origin. Four genera were discriminated on the basis of 16S rRNA gene sequences of the strains representative for the IGS-RFLP profiles. The majority of rhizobia associated to A. seyal were affiliated to Mesorhizobium and Sinorhizobium 64 and 29%, respectively, of the different IGS-RFLP profiles. Our results demonstrate the coexistence inside the nodule of plant-pathogenic non-N(2)-fixing Agrobacterium and Burkholderia strains, which induced the formation of ineffective nodules, with symbiotic rhizobia. Nodulation was recorded in saline soils and/or at low pH values or in alkaline soils, suggesting adaptability of natural rhizobial populations to major ecological environmental stress and their ability to establish symbiotic associations within these soil environments. These results contribute to the progressing research efforts to uncover the biodiversity of rhizobia and to improve nitrogen fixation in agroforestry systems in sub-Saharan Africa.


Assuntos
Acacia/microbiologia , Variação Genética , Rhizobiaceae/genética , Microbiologia do Solo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Rhizobiaceae/classificação , Rhizobiaceae/crescimento & desenvolvimento , Salinidade , Senegal , Análise de Sequência de DNA
14.
Funct Plant Biol ; 32(12): 1143-1152, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32689208

RESUMO

The aim of our work was to assess the growth and mineral nutrition of salt stressed Acacia auriculiformis A. Cunn. ex Benth. and Acacia mangium Willd. seedlings inoculated with a combination of selected microsymbionts (bradyrhizobia and mycorrhizal fungi). Plants were grown in greenhouse conditions in non-sterile soil, irrigated with a saline nutrient solution (0, 50 and 100 mm NaCl). The inoculation combinations consisted of the Bradyrhizobium strain Aust 13c for A. mangium and Aust 11c for A. auriculiformis, an arbuscular mycorrhizal fungus (Glomus intraradices, DAOM 181602) and an ectomycorrhizal fungus (Pisolithus albus, strain COI 007). The inoculation treatments were designed to identify the symbionts that might improve the salt tolerance of both Acacia species. The main effect of salinity was reduced tree growth in both acacias. However, it appeared that, compared with controls, both rhizobial and mycorrhizal inoculation improved the growth of the salt-stressed plants, while inoculation with the ectomycorrhizal fungus strain appeared to have a small effect on their growth and mineral nutrition levels. Endomycorrhizal inoculation combined with rhizobial inoculation usually gave good results. Analysis of foliar proline accumulation confirmed that dual inoculation gave the trees better tolerance to salt stress and suggested that the use of this dual inoculum might be beneficial for inoculation of both Acacia species in soils with moderate salt constraints.

15.
Microb Ecol ; 50(2): 152-62, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16184338

RESUMO

Eighty-two strains of rhizobia were isolated from soils taken from several sites in Mauritania and Senegal. These soil samples were collected from natural stands of Acacia nilotica and Acacia senegal. The soils from Mauritania were less rich in native rhizobia than the soils from Senegal. The strains were characterized using polymerase chain reaction-restriction fragment length polymorphism and by sequencing the rDNA 16S-23S intergenic spacer region (IGS). They were sorted into seven IGS groups. These groups were not associated with the geographical origin of the strains or with the host-plant species at the site where the soils were collected. Most of the strains were in three of the IGS groups (I, IV, and V). One representative strain from each IGS group was sequenced and showed that the strains were from the genus Mesorhizobium. IGS groups I, IV, and VI were close to the species M. plurifarium (AF34563), IGS groups IIand III were close to the species Mesorhizobium sp. (AF510360), IGS group V was close to the species Mesorhizobium sp. (AF510366), and IGS group VII was close to Mesorhizobium sp. (AF510346).


Assuntos
Acacia/crescimento & desenvolvimento , Rhizobium/classificação , Microbiologia do Solo , Árvores , DNA Bacteriano/análise , DNA Espaçador Ribossômico/análise , Mauritânia , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Rhizobium/genética , Rhizobium/crescimento & desenvolvimento , Rios , Senegal , Análise de Sequência de DNA
16.
Can J Microbiol ; 50(9): 691-6, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15644922

RESUMO

Fresh sporocarps and root and soil samples were collected under a monospecific forest plantation of Acacia mangium in Dagana in Northern Senegal and checked for the presence of fluorescent pseudomonads. No bacteria were detected except from sporocarps collected with adhering soil and hyphal strands. Pisolithus sporocarps were dried at 30 degrees C for 2 weeks, ground, passed through a 2-mm sieve and mixed together. This dry sporocarp powder (DSP) was used to inoculate and form mycorrhizas on A. mangium seedlings in a glasshouse experiment. After 3 months culture, plant growth was increased in the DSP treatment but no ectomycorrhizas were present on the A. mangium root systems; however fluorescent pseudomonads were recorded in the cultural soil. The stimulatory effects on the plant growth were maintained for 6 months. However, fluorescent pseudomonads were no longer detected and 35% of the short roots were ectomycorrhizal. Some of the fluorescent pseudomonad isolates detected after 3 months stimulated the radial fungal growth in axenic conditions. These observations suggest that these bacteria are closely associated with the Pisolithus fructifications and could interact with the ectomycorrhizal symbiosis establishment.


Assuntos
Acacia/microbiologia , Basidiomycota/crescimento & desenvolvimento , Ecossistema , Micorrizas , Pseudomonas/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia , Acacia/crescimento & desenvolvimento , Basidiomycota/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Simbiose , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA