RESUMO
BACKGROUND: Molecular techniques can complement conventional spermiogram analyses to provide new information on the fertilizing potential of spermatozoa and to identify early alterations due to environmental pollution. METHODS: Here, we present a multilevel molecular profiling by small RNA sequencing and sperm nuclear basic protein analysis of male germ cells from 33 healthy young subjects residing in low and high-polluted areas. RESULTS: Although sperm motility and sperm concentration were comparable between samples from the two sites, those from the high-pollution area had a higher concentration of immature/immune cells, a lower protamine/histone ratio, a reduced ability of sperm nuclear basic proteins to protect DNA from oxidative damage, and an altered copper/zinc ratio in sperm. Sperm levels of 32 microRNAs involved in intraflagellar transport, oxidative stress response, and spermatogenesis were different between the two areas. In parallel, a decrease of Piwi-interacting RNA levels was observed in samples from the high-polluted area. CONCLUSIONS: This comprehensive analysis provides new insights into pollution-driven epigenetic alterations in sperm not detectable by spermiogram.
Assuntos
Proteínas Nucleares , Pequeno RNA não Traduzido , Masculino , Humanos , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Sêmen , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Meio AmbienteRESUMO
In recent years, the awareness that pesticides can have other effects apart from generic toxicity is growing. In particular, several pieces of evidence highlight their influence on human fertility. In this study, we investigated, by a virtual screening approach, the binding between pesticides and proteins present in human gametes or associated with reproduction, in order to identify new interactions that could affect human fertility. To this aim, we prepared ligand (pesticides) and receptor (proteins) 3D structure datasets from online structural databases (such as PubChem and RCSB), and performed a virtual screening analysis using Autodock Vina. In the comparison of the predicted interactions, we found that famoxadone was predicted to bind Cellular Retinol Binding Protein-III in the retinol-binding site with a better minimum energy value of -10.4 Kcal/mol and an RMSD of 3.77 with respect to retinol (-7.1 Kcal/mol). In addition to a similar network of interactions, famoxadone binding is more stabilized by additional hydrophobic patches including L20, V29, A33, F57, L117, and L118 amino acid residues and hydrogen bonds with Y19 and K40. These results support a possible competitive effect of famoxadone on retinol binding with impacts on the ability of developing the cardiac tissue, in accordance with the literature data on zebrafish embryos. Moreover, famoxadone binds, with a minimum energy value between -8.3 and -8.0 Kcal/mol, to the IZUMO Sperm-Egg Fusion Protein, interacting with a network of polar and hydrophobic amino acid residues in the cavity between the 4HB and Ig-like domains. This binding is more stabilized by a predicted hydrogen bond with the N185 residue of the protein. A hindrance in this position can probably affect the conformational change for JUNO binding, avoiding the gamete membrane fusion to form the zygote. This work opens new interesting perspectives of study on the effects of pesticides on fertility, extending the knowledge to other typologies of interaction which can affect different steps of the reproductive process.
Assuntos
Proteínas de Membrana , Praguicidas , Proteínas Celulares de Ligação ao Retinol , Estrobilurinas , Animais , Humanos , Sítios de Ligação , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Praguicidas/metabolismo , Praguicidas/química , Ligação Proteica , Reprodução/efeitos dos fármacos , Proteínas Celulares de Ligação ao Retinol/metabolismo , Proteínas Celulares de Ligação ao Retinol/química , Estrobilurinas/química , Estrobilurinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismoRESUMO
Natural bioactive compounds represent a new frontier of antimicrobial molecules, and the marine ecosystem represents a new challenge in this regard. In the present work, we evaluated the possibility of changes in the antibacterial activity of protamine-like (PL) proteins, the major nuclear basic protein components of Mytilus galloprovincialis sperm chromatin, after the exposure of mussels to subtoxic doses of chromium (VI) (1, 10, and 100 nM) and mercury (1, 10, and 100 pM) HgCl2, since these metals affect some properties of PL. After exposure, we analyzed the electrophoretic pattern of PLs by both acetic acid-urea polyacrylamide gel electrophoresis (AU-PAGE) and SDS-PAGE and determined the MIC and MBC of these proteins on different gram+ and gram- bacteria. PLs, particularly after mussels were exposed to the highest doses of chromium and mercury, showed significantly reduced antibacterial activity. Just at the highest doses of exposure to the two metals, changes were found in the electrophoretic pattern of PLs, suggesting that there were conformational changes in these proteins, which were confirmed by the fluorescence measurements of PLs. These results provide the first evidence of a reduction in the antibacterial activity of these proteins following the exposure of mussels to these metals. Based on the results, hypothetical molecular mechanisms that could explain the decrease in the antibacterial activity of PLs are discussed.
Assuntos
Mercúrio , Mytilus , Poluentes Químicos da Água , Animais , Masculino , Protaminas/farmacologia , Protaminas/metabolismo , Mercúrio/toxicidade , Cromo/toxicidade , Cromo/metabolismo , Ecossistema , Sêmen/metabolismo , Proteínas Nucleares/metabolismo , Metais/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Poluentes Químicos da Água/metabolismoRESUMO
Phosphatidylserine (PS) translocation to the external membrane leaflet represents a key mechanism in the pathophysiology of human erythrocytes (RBC) acting as an "eat me" signal for the removal of aged/stressed cells. Loss of physiological membrane asymmetry, however, can lead to adverse effects on the cardiovascular system, activating a prothrombotic activity. The data presented indicate that structurally related olive oil phenols prevent cell alterations induced in intact human RBC exposed to HgCl2 (5-40 µM) or Ca2+ ionophore (5 µM), as measured by hallmarks including PS exposure, reactive oxygen species generation, glutathione depletion and microvesicles formation. The protective effect is observed in a concentration range of 1-30 µM, hydroxytyrosol being the most effective; its in vivo metabolite homovanillic alcohol still retains the biological activity of its dietary precursor. Significant protection is also exerted by tyrosol, in spite of its weak scavenging activity, indicating that additional mechanisms are involved in the protective effect. When RBC alterations are mediated by an increase in intracellular calcium, the protective effect is observed at higher concentrations, indicating that the selected phenols mainly act on Ca2+-independent mechanisms, identified as protection of glutathione depletion. Our findings strengthen the nutritional relevance of olive oil bioactive compounds in the claimed health-promoting effects of the Mediterranean Diet.
Assuntos
Mercúrio , Fosfatidilserinas , Eritrócitos/metabolismo , Glutationa/metabolismo , Humanos , Mercúrio/farmacologia , Azeite de Oliva/farmacologia , Fenóis/metabolismo , Fenóis/farmacologia , Fosfatidilserinas/metabolismoRESUMO
Mercury (Hg) is a highly toxic and widespread pollutant. We previously reported that the exposure of Mytilus galloprovincialis for 24 h to doses of HgCl2 similar to those found in seawater (range 1-100 pM) produced alterations in the properties of protamine-like (PL) proteins that rendered them unable to bind and protect DNA from oxidative damage. In the present work, to deepen our studies, we analyzed PL proteins by turbidimetry and fluorescence spectroscopy and performed salt-induced release analyses of these proteins from sperm nuclei after the exposure of mussels to HgCl2 at the same doses. Turbidity assays indicated that mercury, at these doses, induced PL protein aggregates, whereas fluorescence spectroscopy measurements showed mercury-induced conformational changes. Indeed, the mobility of the PLII band changed in sodium dodecyl sulphate-polyacrylamide gel electrophoresis, particularly after exposure to 10-pM HgCl2, confirming the mercury-induced structural rearrangement. Finally, exposure to HgCl2 at all doses produced alterations in PL-DNA binding, detectable by DNA absorption spectra after the PL protein addition and by a decreased release of PLII and PLIII from the sperm nuclei. In conclusion, in this paper, we reported Hg-induced PL protein alterations that could adversely affect mussel reproductive activity, providing an insight into the molecular mechanism of Hg-related infertility.
Assuntos
Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mercúrio/farmacologia , Mytilus , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Animais , Núcleo Celular , Cromatina/química , Cromatina/genética , Proteínas de Ligação a DNA/química , Masculino , Cloreto de Mercúrio/farmacologia , Mercúrio/toxicidade , Água do Mar , Análise Espectral , Poluentes da Água/farmacologia , Poluentes da Água/toxicidadeRESUMO
Mercury (Hg) is an environmental pollutant that impacts human and ecosystem health. In our previous works, we reported alterations in the properties of Mytilus galloprovincialis protamine-like (PL) proteins after 24 h of exposure to subtoxic doses of toxic metals such as copper and cadmium. The present work aims to assess the effects of 24 h of exposure to 1, 10, and 100 pM HgCl2 on spermatozoa and PL proteins of Mytilus galloprovincialis. Inductively coupled plasma-mass spectrometry indicated accumulation of this metal in the gonads of exposed mussels. Further, RT-qPCR analyses showed altered expression levels of spermatozoa mt10 and hsp70 genes. In Mytilus galloprovincialis, PL proteins represent the major basic component of sperm chromatin. These proteins, following exposure of mussels to HgCl2, appeared, by SDS-PAGE, partly as aggregates and showed a decreased DNA-binding capacity that rendered them unable to prevent DNA damage, in the presence of CuCl2 and H2O2. These results demonstrate that even these doses of HgCl2 exposure could affect the properties of PL proteins and result in adverse effects on the reproductive system of this organism. These analyses could be useful in developing rapid and efficient chromatin-based genotoxicity assays for pollution biomonitoring programs.
Assuntos
Cloreto de Mercúrio/toxicidade , Mytilus/genética , Protaminas/genética , Espermatozoides/efeitos dos fármacos , Animais , Cádmio/toxicidade , Cromatina/efeitos dos fármacos , Cromatina/genética , Cobre/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Peróxido de Hidrogênio/efeitos adversos , Masculino , Espectrometria de Massas , Mercúrio/análise , Mytilus/efeitos dos fármacos , Espermatozoides/química , Poluentes Químicos da Água/toxicidadeRESUMO
Oxidative damage (production and localization of reactive oxygen species) and related response mechanisms (activity of antioxidant enzymes), and induction of Heat Shock Protein 70 expression, have been studied in the toxi-tolerant liverwort Conocephalum conicum (Marchantiales) in response to cadmium stress using two concentrations (36 and 360 µM CdCl2). Cadmium dose-dependent production of reactive oxygen species (ROS) and related activity of antioxidant enzymes was observed. The expression level of heat shock protein (Hsp)70, instead, was higher at 36 µM CdCl2 in comparison with the value obtained after exposure to 360 µM CdCl2, suggesting a possible inhibition of the expression of this stress gene at higher cadmium exposure doses. Biological responses were related to cadmium bioaccumulation. Since C. conicum was able to respond to cadmium stress by modifying biological parameters, we discuss the data considering the possibility of using these biological changes as biomarkers of cadmium pollution.
Assuntos
Cádmio/efeitos adversos , Cádmio/metabolismo , Hepatófitas/metabolismo , Antioxidantes , Proteínas de Choque Térmico HSP70/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/fisiologiaRESUMO
In our previous work, we reported alterations in protamines/histones ratio, in DNA binding of these proteins and their involvement in DNA oxidative damage in 84% of the young men living in the Land of Fires. In the present work, we extended our findings, evaluating any alterations in spermatozoa of a family case, a father and son, living in this area, to also give a first look at the possibility of transgenerational inherited effects of environmental contaminants on the molecular alterations of sperm nuclear basic proteins (SNBP), DNA and semen parameters. In the father and son, we found a diverse excess of copper and chromium in the semen, different alterations in SNBP content and low DNA binding affinity of these proteins. In addition, DNA damage, in the presence of CuCl2 and H2O2, increased by adding both the father and son SNBP. Interestingly, son SNBP, unlike his father, showed an unstable DNA binding and were able to produce DNA damage even without external addition of CuCl2, in line with a lower seminal antioxidant activity than the father. The peculiarity of some characteristics of son semen could be a basis for possible future studies on transgenerational effects of pollutants on fertility.
Assuntos
Poluentes Ambientais/efeitos adversos , Espermatozoides/efeitos dos fármacos , Adolescente , Antioxidantes/metabolismo , Dano ao DNA/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Fertilidade/efeitos dos fármacos , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Protaminas/metabolismo , Sêmen/efeitos dos fármacos , Sêmen/metabolismo , Análise do Sêmen/métodos , Contagem de Espermatozoides/métodos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismoRESUMO
DNA oxidative damage is one of the main concerns being implicated in severe cell alterations, promoting different types of human disorders and diseases. For their characteristics, male gametes are the most sensitive cells to the accumulation of damaged DNA. We have recently reported the relevance of arginine residues in the Cu(II)-induced DNA breakage of sperm H1 histones. In this work, we have extended our previous findings investigating the involvement of human sperm nuclear basic proteins on DNA oxidative damage in healthy males presenting copper and chromium excess in their semen. We found in 84% of those males an altered protamines/histones ratio and a different DNA binding mode even for those presenting a canonical protamines/histones ratio. Furthermore, all the sperm nuclear basic proteins from these samples that resulted were involved in DNA oxidative damage, supporting the idea that these proteins could promote the Fenton reaction in DNA proximity by increasing the availability of these metals near the binding surface of DNA. In conclusion, our study reveals a new and unexpected behavior of human sperm nuclear basic proteins in oxidative DNA damage, providing new insights for understanding the mechanisms related to processes in which oxidative DNA damage is implicated.
Assuntos
Arginina/análise , Cobre/análise , DNA/genética , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Espermatozoides/química , DNA/metabolismo , Poluição Ambiental/efeitos adversos , Regulação da Expressão Gênica , Voluntários Saudáveis , Histonas/metabolismo , Humanos , Itália , Masculino , Protaminas/metabolismo , Ligação Proteica , Espermatozoides/metabolismo , Adulto JovemRESUMO
Mercury (Hg) is a global environmental pollutant that affects human and ecosystem health. With the aim of exploring the Hg-induced protein modifications, intact human erythrocytes were exposed to HgCl2 (1-60 µM) and cytosolic and membrane proteins were analyzed by SDS-PAGE and AU-PAGE. A spectrofluorimetric assay for quantification of Reactive Oxygen Species (ROS) generation was also performed. Hg2+ exposure induces alterations in the electrophoretic profile of cytosolic proteins with a significant decrease in the intensity of the hemoglobin monomer, associated with the appearance of a 64 kDa band, identified as a mercurized tetrameric form. This protein decreases with increasing HgCl2 concentrations and Hg-induced ROS formation. Moreover, it appears resistant to urea denaturation and it is only partially dissociated by exposure to dithiothreitol, likely due to additional protein-Hg interactions involved in aggregate formation. In addition, specific membrane proteins, including band 3 and cytoskeletal proteins 4.1 and 4.2, are affected by Hg2+-treatment. The findings reported provide new insights into the Hg-induced possible detrimental effects on erythrocyte physiology, mainly related to alterations in the oxygen binding capacity of hemoglobin as well as decreases in band 3-mediated anion exchange. Finally, modifications of cytoskeletal proteins 4.1 and 4.2 could contribute to the previously reported alteration in cell morphology.
Assuntos
Poluentes Ambientais/farmacologia , Eritrócitos/metabolismo , Hemoglobinas/química , Proteínas de Membrana/metabolismo , Mercúrio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ditiotreitol/farmacologia , Eritrócitos/química , Eritrócitos/efeitos dos fármacos , Glutationa/farmacologia , Humanos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Salinity represents a critical environmental and an ecological factor in the reproduction of marine species. As global climate changes and anthropogenic factors affect salinity, in this study, we have analyzed the responses of Mytilus galloprovincialis spermatozoa to hyposaline stress. We exposed mussels, in laboratory tanks, for 24 hr at 18°C to control (35.9 psu) and three hyposaline (17.1, 22.6, and 26.2 psu) conditions, and evaluated the expression of sperm hsp70 and protamine-like proteins genes. Further we analyzed the electrophoretic pattern, the DNA binding and the release from sperm nuclei of protamine-like proteins. For all experimental approaches used, the results obtained at 17.1 psu condition were very similar to those obtained in the control condition, while alterations were always recorded at 22.6 and 26.2 psu conditions. Particularly, at 22.6 and 26.2 psu, was observed: 42.5- and 17.1-fold increase in hsp70 expression, respectively, and hypoexpression of PL-II/PLIV protamine-like proteins genes. Further, electrophoretic mobility shift assays and salt-induced release of nuclear proteins from sperm nuclei, revealed alterations in the PL proteins/DNA binding, in these two hyposaline conditions. The similarity between the results obtained in control and in the more severe hyposaline condition (17.1 psu) could indicate a phenomenon of fertility preservation strategy due to gamete plasticity.
Assuntos
Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/biossíntese , Mytilus/metabolismo , Pressão Osmótica , Protaminas/metabolismo , Espermatozoides/metabolismo , Animais , Masculino , Mytilus/citologia , Espermatozoides/citologiaRESUMO
This study aims to assess the effects induced by 24 hr exposure to a subtoxic copper concentration on the reproductive system (gonads, spermatozoa, and protamine-like [PL] proteins) of Mytilus galloprovincialis. Inductively coupled plasma-mass spectrometry indicated accumulation of this metal in gonads, spermatozoa, and PL proteins of exposed mussels. Further, real-time polymerase chain reaction analyses showed altered expression levels of mt10 and PL proteins genes in spermatozoa and gonads, respectively, of exposed mussels. Protamine-like proteins, which represent the main basic component of sperm chromatin of this organism, showed a higher DNA binding affinity and a different DNA binding mode in exposed mussels. Moreover, an increased amount of NaCl was required for the release from sperm nuclei of PL-III, the main PL protein component. Finally, PL proteins extracted from exposed mussels promoted DNA oxidative damage in the presence of H 2 O 2. These results demonstrate that the tolerable copper amount could also affect the properties of PL proteins and determine the negative effects on the reproductive system of this organism. These analyses could be useful to develop quick and efficient chromatin-based genotoxicity tests for pollution biomonitoring programs.
Assuntos
Cobre/toxicidade , Gônadas/efeitos dos fármacos , Mytilus/efeitos dos fármacos , Animais , Cromatina/efeitos dos fármacos , Cobre/metabolismo , Dano ao DNA/efeitos dos fármacos , Masculino , Mytilus/metabolismo , Mytilus/fisiologia , Protaminas/metabolismo , Reprodução/efeitos dos fármacos , Espermatozoides/efeitos dos fármacosRESUMO
Environmental pollutants have pervasive and far-reaching effects on both ecosystems and human health [...].
Assuntos
Ecossistema , Poluentes Ambientais , Humanos , Poluentes Ambientais/toxicidade , AnimaisRESUMO
The COVID-19 pandemic has sparked a surge in research on microbiology and virology, shedding light on overlooked aspects such as the infection of bacteria by RNA virions in the animal microbiome. Studies reveal a decrease in beneficial gut bacteria during COVID-19, indicating a significant interaction between SARS-CoV-2 and the human microbiome. However, determining the origins of the virus remains complex, with observed phenomena such as species jumps adding layers to the narrative. Prokaryotic cells play a crucial role in the disease's pathogenesis and transmission. Analyzing previous studies highlights intricate interactions from clinical manifestations to the use of the nitrogen isotope test. Drawing parallels with the history of the Poliovirus underscores the need to prioritize investigations into prokaryotic cells hosting RNA viruses.
RESUMO
Studies on the molecular mechanisms of heavy metal toxicity in invertebrate reproduction are limited. Given that PARP-catalysed ADP-ribosylation is also involved in counteracting heavy metal toxicity and maintaining genomic integrity, and that PARylation is implicated in chromatin remodelling but its role in sperm chromatin remains to be elucidated, we investigated the effects of chromium(VI) at 1, 10 and 100 nM on the reproductive health of Mytilus galloprovincialis. The damage to the gonads was assessed by morphological analyses and the damage indices PARP and ɣH2A.X were measured. Changes in the binding of protamine-like (PL) to DNA and the possibility of poly(ADP-ribosyl)ation of PL proteins were also investigated. Gonadal chromium accumulation and morphological damage were found, especially when the mussels were exposed to the highest dose of chromium(VI). In addition, the maximum expression of gonadal ɣH2A.X and PARP were obtained at 100 and 10 nM Cr(VI), respectively. Interestingly, for the first time in all exposed conditions, poly(ADP)-ribosylation was detected on PL-II, which, together with PL-III and PL-IV, are the major nuclear basic proteins of Mytilus galloprovincialis sperm chromatin. Since PL-II is involved in the final high level of sperm chromatin compaction, this post-translational modification altered the binding of the PL protein to DNA, favouring the action of micrococcal nuclease on sperm chromatin. This study provides new insights into the effects of chromium(VI) on Mytilus galloprovincialis reproductive system and proposes a molecular mechanism hypothesis describing the toxic effects of this metal on PL-DNA binding, sperm chromatin and gonads.
Assuntos
Cromo , Mytilus , Protaminas , Animais , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Masculino , Cromo/toxicidade , Protaminas/metabolismo , Poli ADP Ribosilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Histonas/metabolismo , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Reprodução/efeitos dos fármacos , DNA/metabolismo , DNA/efeitos dos fármacosRESUMO
Metabolomics is a method that provides an overview of the physiological and cellular state of a specific organism or tissue. This method is particularly useful for studying the influence the environment can have on organisms, especially those used as bio-indicators, e.g., Mytilus galloprovincialis. Nevertheless, a scarcity of data on the complete metabolic baseline of mussel tissues still exists, but more importantly, the effect of mussel exposure to certain heavy metals on spermatozoa is unknown, also considering that, in recent years, the reproductive system has proved to be very sensitive to the effects of environmental pollutants. In order to fill this knowledge gap, the similarities and differences in the metabolic profile of spermatozoa of mussels exposed to metallic chlorides of copper, nickel, and cadmium, and to the mixture to these metals, were studied using a metabolomics approach based on GC-MS analysis, and their physiological role was discussed. A total of 237 endogenous metabolites were identified in the spermatozoa of these mussel. The data underwent preprocessing steps and were analyzed using statistical methods such as PLS-DA. The results showed effective class separation and identified key metabolites through the VIP scores. Heatmaps and cluster analysis further evaluated the metabolites. The metabolite-set enrichment analysis revealed complex interactions within metabolic pathways and metabolites, especially involving glucose and central carbon metabolism and oxidative stress metabolism. Overall, the results of this study are useful to better understand how some pollutants can affect the specific physiological functions of the spermatozoa of this mussel, as well as for further GC-MS-based metabolomic health and safety studies of marine bivalves.
RESUMO
PURPOSE: The SARS-CoV-2 pandemic prompted the development and use of next-generation vaccines. Among these, mRNA-based vaccines consist of injectable solutions of mRNA encoding for a recombinant Spike, which is distinguishable from the wild-type protein due to specific amino acid variations introduced to maintain the protein in a prefused state. This work presents a proteomic approach to reveal the presence of recombinant Spike protein in vaccinated subjects regardless of antibody titer. EXPERIMENTAL DESIGN: Mass spectrometry examination of biological samples was used to detect the presence of specific fragments of recombinant Spike protein in subjects who received mRNA-based vaccines. RESULTS: The specific PP-Spike fragment was found in 50% of the biological samples analyzed, and its presence was independent of the SARS-CoV-2 IgG antibody titer. The minimum and maximum time at which PP-Spike was detected after vaccination was 69 and 187 days, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: The presented method allows to evaluate the half-life of the Spike protein molecule "PP" and to consider the risks or benefits in continuing to administer additional booster doses of the SARS-CoV-2 mRNA vaccine. This approach is of valuable support to complement antibody level monitoring and represents the first proteomic detection of recombinant Spike in vaccinated subjects.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , Proteômica , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , RNA Mensageiro/genética , VacinaçãoRESUMO
In recent years, metabolomics has become a valuable new resource in environmental monitoring programs based on the use of bio-indicators such as Mytilus galloprovincialis. The reproductive system is extremely susceptible to the effects of environmental pollutants, and in a previous paper, we showed metabolomic alterations in mussel spermatozoa exposed to metal chlorides of copper, nickel, and cadmium, and the mixture with these metals. In order to obtain a better overview, in the present work, we evaluated the metabolic changes in the male gonad under the same experimental conditions used in the previous work, using a metabolomic approach based on GC-MS analysis. A total of 248 endogenous metabolites were identified in the male gonads of mussels. Statistical analyses of the data, including partial least squares discriminant analysis, enabled the identification of key metabolites through the use of variable importance in projection scores. Furthermore, a metabolite enrichment analysis revealed complex and significant interactions within different metabolic pathways and between different metabolites. Particularly significant were the results on pyruvate metabolism, glycolysis, and gluconeogenesis, and glyoxylate and dicarboxylate metabolism, which highlighted the complex and interconnected nature of these biochemical processes in mussel gonads. Overall, these results add new information to the understanding of how certain pollutants may affect specific physiological functions of mussel gonads.
RESUMO
Nickel is associated with reproductive toxicity, but little is known about the molecular mechanisms of nickel-induced effects on sperm chromatin and protamine-like proteins (PLs). In the present work, we analyzed PLs from Mytilus galloprovincialis by urea-acetic acid polyacrylamide gel electrophoresis (AU-PAGE) and SDS-PAGE and assessed their binding to DNA by Electrophoretic Mobility Shift Assay (EMSA) after exposing mussels to 5, 15, and 35 µM NiCl2 for 24 h. In addition, a time course of digestion with MNase and release of PLs from sperm nuclei by the NaCl gradient was performed. For all exposure doses, in AU-PAGE, there was an additional migrating band between PL-III and PL-IV, corresponding to a fraction of PLs in the form of peptides detected by SDS-PAGE. Alterations in DNA binding of PLs were observed by EMSA after exposure to 5 and 15 µM NiCl2, while, at all NiCl2 doses, increased accessibility of MNase to sperm chromatin was found. The latter was particularly relevant at 15 µM NiCl2, a dose at which increased release of PLII and PLIII from sperm nuclei and the highest value of nickel accumulated in the gonads were also found. Finally, at all exposure doses, there was also an increase in PARP expression, but especially at 5 µM NiCl2. A possible molecular mechanism for the toxic reproductive effects of nickel in Mytilus galloprovincialis is discussed.
Assuntos
Cromatina , Mytilus , Animais , Masculino , Cromatina/metabolismo , Níquel/metabolismo , Mytilus/metabolismo , Sêmen/metabolismo , Protaminas/metabolismo , Protaminas/farmacologia , Espermatozoides/metabolismo , DNA/metabolismoRESUMO
Mercury is one of the most dangerous environmental pollutants. In this work, we analysed the effects of exposure of Mytilus galloprovincialis to 1, 10 and 100 pM HgCl2 for 24 h on the gonadal morphology and on the expression level of three stress genes: mt10, hsp70 and πgst. In this tissue we also evaluated the level of steroidogenic enzymes 3ß-HSD and 17ß-HSD and the expression of PL protein genes. Finally, we determined difference in sperm chromatin accessibility to micrococcal nuclease. We found alterations in gonadal morphology especially after exposure to 10 and 100 pM HgCl2 and hypo-expression of the three stress genes, particularly for hsp70. Furthermore, decreased labelling with both 3ß-HSD and 17ß-HSD antibodies was observed following exposure to 1 and 10 pM HgCl2 and complete absence at 100 pM HgCl2 exposure. Gonads of mussels exposed to all HgCl2 doses showed decreased expression of PL protein genes especially for PLIII. Finally, micrococcal nuclease digestions showed that all doses of HgCl2 exposure resulted in increased sperm chromatin accessibility to this enzyme, indicative of improper sperm chromatin structure. All of these changes provide preliminary data of the potential toxicity of mercury on the reproductive health of this mussel.