Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
J Mol Diagn ; 26(6): 447-455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38378079

RESUMO

Microarray-based methylation profiling has emerged as a valuable tool for refining diagnoses and revealing novel tumor subtypes, particularly in central nervous system tumors. Despite the increasing adoption of this technique in clinical genomic laboratories, no technical standards have been published in establishing minimum criteria for test validation. A working group with experience and expertise in DNA-based methylation profiling tests on central nervous system tumors collaborated to develop practical discussion points and focus on important considerations for validating this test in clinical laboratory settings. The experience in validating this methodology in a clinical setting is summarized. Specifically, the advantages and challenges associated with utilizing an in-house classifier compared with a third-party classifier are highlighted. Additionally, experiences in demonstrating the assay's sensitivity and specificity, establishing minimum sample criteria, and implementing quality control metrics are described. As methylation profiling for tumor classification expands to other tumor types and continues to evolve for various other applications, the critical considerations described here are expected to serve as a guidance for future efforts in establishing professional guidelines for this assay.


Assuntos
Metilação de DNA , Análise de Sequência com Séries de Oligonucleotídeos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/diagnóstico , Perfilação da Expressão Gênica/métodos
3.
J Appl Lab Med ; 9(1): 61-75, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167757

RESUMO

BACKGROUND: Throughout history, the field of cytogenetics has witnessed significant changes due to the constant evolution of technologies used to assess chromosome number and structure. Similar to the evolution of single nucleotide variant detection from Sanger sequencing to next-generation sequencing, the identification of chromosome alterations has progressed from banding to fluorescence in situ hybridization (FISH) to chromosomal microarrays. More recently, emerging technologies such as optical genome mapping and genome sequencing have made noteworthy contributions to clinical laboratory testing in the field of cytogenetics. CONTENT: In this review, we journey through some of the most pivotal discoveries that have shaped the development of clinical cytogenetics testing. We also explore the current test offerings, their uses and limitations, and future directions in technology advancements. SUMMARY: Cytogenetics methods, including banding and targeted assessments like FISH, continue to hold crucial roles in cytogenetic testing. These methods offer a rapid turnaround time, especially for conditions with a known etiology involving recognized cytogenetic aberrations. Additionally, laboratories have the flexibility to now employ higher-throughput methodologies to enhance resolution for cases with greater complexity.


Assuntos
Aberrações Cromossômicas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente/métodos , Citogenética/métodos , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala/métodos
4.
Mol Genet Genomic Med ; 12(3): e2349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263869

RESUMO

BACKGROUND: Chromosomal microarray (CMA) is commonly utilized in the obstetrics setting. CMA is recommended when one or more fetal structural abnormalities is identified. CMA is also commonly used to determine genetic etiologies for miscarriages, fetal demise, and confirming positive prenatal cell-free DNA screening results. METHODS: In this study, we retrospectively examined 523 prenatal and 319 products-of-conception (POC) CMA cases tested at Nationwide Children's Hospital from 2011 to 2020. We reviewed the referral indications, the diagnostic yield, and the reported copy number variants (CNV) findings. RESULTS: In our cohort, the diagnostic yield of clinically significant CNV findings for prenatal testing was 7.8% (n = 41/523) compared to POC testing (16.3%, n = 52/319). Abnormal ultrasound findings were the most common indication present in 81% of prenatal samples. Intrauterine fetal demise was the common indication identified in POC samples. The most common pathogenic finding observed in all samples was isolated trisomy 21, detected in seven samples. CONCLUSION: Our CMA study supports the clinical utility of prenatal CMA for clinical management and identifying genetic etiology in POC arrays. In addition, it provides insight to the spectrum of prenatal and POC CMA results as detected in an academic hospital clinical laboratory setting that serves as a reference laboratory.


Assuntos
Transtornos Cromossômicos , Síndrome de Down , Feminino , Humanos , Gravidez , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Morte Fetal , Diagnóstico Pré-Natal/métodos , Estudos Retrospectivos
5.
Artigo em Inglês | MEDLINE | ID: mdl-39175871

RESUMO

Purpose: The specialty of Laboratory Genetics and Genomics (LGG) was created in 2017 in an effort to reflect the increasing convergence in technologies and approaches between clinical molecular genetics and clinical cytogenetics. However, there has not yet been any formal evaluation of the merging of these disciplines and the challenges faced by Program Directors (PDs) tasked with ensuring the successful training of laboratory geneticists under the new model. Methods: An electronic multi-question Qualtrics survey was created and was sent to the PD for each of the Accreditation Council for Graduate Medical Education-accredited LGG fellowship programs at the time. The data were collected, and the responses were aggregated for each question. Results: All of the responding PDs had started training at least 1 LGG fellow. PDs noted challenges with funding, staff shortages, molecular/cytogenetics content integration, limited total training time, increased remote work, increased sendout testing, and a lack of prior cytogenetics knowledge among incoming fellows. Conclusion: This survey attempted to assess the challenges that LGG PDs have been facing in offering and integrating clinical molecular genetics and clinical cytogenetics fellowship training. Common challenges between programs were noted, and a set of 6 concluding comments are provided to facilitate future discussion.

6.
Front Genet ; 14: 1298574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304066

RESUMO

Background: Leigh syndrome is a rare, genetic, and severe mitochondrial disorder characterized by neuromuscular issues (ataxia, seizure, hypotonia, developmental delay, dystonia) and ocular abnormalities (nystagmus, atrophy, strabismus, ptosis). It is caused by pathogenic variants in either mitochondrial or nuclear DNA genes, with an estimated incidence rate of 1 per 40,000 live births. Case presentation: Herein, we present an infant male with nystagmus, hypotonia, and developmental delay who carried a clinical diagnosis of Leigh-like syndrome. Cerebral magnetic resonance imaging changes further supported the clinical evidence of an underlying mitochondrial disorder, but extensive diagnostic testing was negative. Trio exome sequencing under a research protocol uncovered compound-heterozygous missense variants in the HTRA2 gene (MIM: #606441): NM_013247.5:c.1037A>T:(p.Glu346Val) (maternal) and NM_013247.5:c.1172T>A:(p.Val391Glu) (paternal). Both variants are absent from public databases, making them extremely rare in the population. The maternal variant is adjacent to an exon-intron boundary and predicted to disrupt splicing, while the paternal variant alters a highly conserved amino acid and is predicted to be damaging by nearly all in silico tools. Biallelic variants in HTRA2 cause 3-methylglutaconic aciduria, type VIII (MGCA8), an extremely rare autosomal recessive disorder with fewer than ten families reported to date. Variant interpretation is challenging given the paucity of known disease-causing variants, and indeed we assess both paternal and maternal variants as Variants of Uncertain Significance under current American College of Medical Genetics guidelines. However, based on the inheritance pattern, suggestive evidence of pathogenicity, and significant clinical correlation with other reported MGCA8 patients, the clinical care team considers this a diagnostic result. Conclusion: Our findings ended the diagnostic odyssey for this family and provide further insights into the genetic and clinical spectrum of this critically under-studied disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA