RESUMO
[18F]Flortaucipir is an FDA-approved tau-PET tracer that is increasingly utilized in clinical settings for the diagnosis of Alzheimer's disease. Still, a large-scale comparison of the in vivo PET uptake to quantitative post-mortem tau pathology and to other co-pathologies is lacking. Here, we examined the correlation between in vivo [18F]flortaucipir PET uptake and quantitative post-mortem tau pathology in corresponding brain regions from the AVID A16 end-of-life study (n = 63). All participants underwent [18F]flortaucipir PET scans prior to death, followed by a detailed post-mortem neuropathological examination using AT8 (tau) immunohistochemistry. Correlations between [18F]flortaucipir standardized uptake value ratios (SUVRs) and AT8 immunohistochemistry were assessed across 18 regions-of-interest (ROIs). To assess [18F]flortaucipir specificity and level of detection for tau pathology, correlations between [18F]flortaucipir SUVR and neuritic plaque score and TDP-43 stage were also computed and retention was further assessed in individuals with possible primary age-related tauopathy (PART), defined as Thal phase ≤ 2 and Braak stage I-IV. We found modest-to-strong correlations between in vivo [18F]flortaucipir SUVR and post-mortem tau pathology density in corresponding brain regions in all neocortical regions analyzed (rho-range = 0.61-0.79, p < 0.0001 for all). The detection threshold of [18F]flortaucipir PET was determined to be 0.85% of surface area affected by tau pathology in a temporal meta-ROI, and 0.15% in a larger cortical meta-ROI. No significant associations were found between [18F]flortaucipir SUVRs and post-mortem tau pathology in individuals with possible PART. Further, there was no correlation observed between [18F]flortaucipir and level of amyloid-ß neuritic plaque load (rho-range = - 0.16-0.12; p = 0.48-0.61) or TDP-43 stage (rho-range = - 0.10 to - 0.30; p = 0.18-0.65). In conclusion, our in vivo vs post-mortem study shows that the in vivo [18F]flortaucipir PET signal primarily reflects tau pathology, also at relatively low densities of tau proteinopathy, and does not bind substantially to tau neurites in neuritic plaques or in individuals with PART.
Assuntos
Encéfalo , Carbolinas , Tomografia por Emissão de Pósitrons , Proteínas tau , Humanos , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Feminino , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Masculino , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Compostos Radiofarmacêuticos , Radioisótopos de FlúorRESUMO
Different tau biomarkers become abnormal at different stages of Alzheimer's disease, with CSF phospho-tau typically becoming elevated at subthreshold levels of tau-PET binding. To capitalize on the temporal order of tau biomarker-abnormality and capture the earliest changes of tau accumulation, we implemented an observational study design to examine longitudinal changes in tau-PET, cortical thickness and cognitive decline in amyloid-ß-positive individuals with elevated CSF p-tau levels (P+) but subthreshold Tau-PET retention (T-). To this end, individuals without dementia (i.e. cognitively unimpaired or mild cognitive impairment, n = 231) were selected from the BioFINDER-2 study. Amyloid-ß-positive (A+) individuals were categorized into biomarker groups based on cut-offs for abnormal CSF p-tau217 and 18F-RO948 (Tau) PET, yielding groups of tau-concordant-negative (A+P-T-; n = 30), tau-discordant (i.e. A+P+T-; n = 48) and tau-concordant-positive (A+P+T+; n = 18) individuals. In addition, 135 amyloid-ß-negative, tau-negative, cognitively unimpaired individuals served as controls. Differences in annual change in regional tau-PET, cortical thickness and cognition between the groups were assessed using general linear models, adjusted for age, sex, clinical diagnosis and (for cognitive measures only) education. Mean follow-up time was â¼2 years. Longitudinal increase in tau-PET was faster in the A+P+T- group than in the control and A+P-T- groups across medial temporal and neocortical regions, with the highest accumulation rates in the medial temporal lobe. The A+P+T- group showed a slower rate of increase in tau-PET compared to the A+P+T+ group, primarily in neocortical regions. We did not detect differences in yearly change in cortical thickness or in cognitive decline between the A+P+T- and A+P-T- groups. The A+P+T+ group, however, showed faster cognitive decline compared to all other groups. Altogether, these findings suggest that the A+P+T- biomarker profile in persons without dementia is associated with an isolated effect on increased tau-PET accumulation rates but not on cortical thinning and cognitive decline. While this suggests that the tau-discordant biomarker profile is not strongly associated with short-term clinical decline, this group does represent an interesting population for monitoring the effects of interventions with disease-modifying agents on tau accumulation in early Alzheimer's disease, and for examining the emergence of tau aggregates in Alzheimer's disease. Further, we suggest updating the AT(N) criteria for Alzheimer's disease biomarker classification to APT(N).
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Amiloide , Cognição , BiomarcadoresRESUMO
Early diagnosis is crucial to treatment success. This is especially relevant for Alzheimer's disease (AD), with its protracted preclinical phase. Most health care systems do not have the resources to conduct large-scale AD screenings in middle-aged individuals in need of novel AD treatment options and early, accurate diagnosis. Recent developments in blood-based biomarkers and remote cognitive testing offer novel, cost-effective, and scalable methods to detect cognitive and biomarker changes that may indicate early AD. In research cohorts, promising results have been reported, but these modalities have not been validated in population-based settings. The validation of a realistic screening approach for early Alzheimer's disease (REAL AD) study aims to validate the diagnostic and prognostic performance of the combined use of blood-based biomarkers and remote cognitive testing as a screening approach for early AD employing an existing health care infrastructure (the Swedish Västra Götaland Region Primary Healthcare). REAL AD aims to provide a concrete, individualized diagnostic framework, which could significantly improve AD prognosis. HIGHLIGHTS: In Sweden, most Alzheimer's disease (AD) diagnoses are made in primary care, where access to AD biomarkers is almost non-existent. Most health care systems have limited resources for the screening of middle-aged adults for early evidence of AD pathology. Blood-based biomarkers and remote cognitive testing offer novel, cost-effective, and scalable methods for detecting cognitive and biomarker changes that may indicate early AD. The REAL AD study aims to validate the diagnostic and prognostic performance of blood-based biomarkers and remote cognitive testing as a screening approach for early AD in an existing primary health care infrastructure in the Västra Götaland Region in Sweden. Studies such as REAL AD will play a vital role in helping to move the field toward concrete implementation of biomarkers in AD diagnostic workup at all care levels, eventually providing more comprehensive treatments options for the large and growing AD population, and for those at risk.
RESUMO
INTRODUCTION: Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis. METHODS: Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data. JPM was compared to a linear regression approach analogous to the one used in the amyloid PET Centiloid scale. RESULTS: A strong linear relationship was observed between CTR values across brain regions. Using the JPM approach, CTR estimates were similar to, but more accurate than, those derived using the linear regression approach. DISCUSSION: Preliminary findings using the JPM support the development and adoption of a universal scale for tau-PET quantification. HIGHLIGHTS: Tested a novel joint propagation model (JPM) to harmonize quantification of tau PET. Units of common scale are termed "CenTauRs". Tested a Centiloid-like linear regression approach. Using five cohorts with head-to-head tau PET, JPM outperformed linearregressionbased approach. Strong linear relationship was observed between CenTauRs values across brain regions.
Assuntos
Doença de Alzheimer , Encéfalo , Tomografia por Emissão de Pósitrons , Proteínas tau , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Humanos , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Masculino , Feminino , Idoso , Estudos de Coortes , Compostos Radiofarmacêuticos , Modelos EstatísticosRESUMO
PURPOSE: To examine [18F]RO948 retention in FTD, sampling the underlying protein pathology heterogeneity. METHODS: A total of 61 individuals with FTD (n = 35), matched cases of AD (n = 13) and Aß-negative cognitively unimpaired individuals (n = 13) underwent [18F]RO948PET and MRI. FTD included 21 behavioral variant FTD (bvFTD) cases, 11 symptomatic C9orf72 mutation carriers, one patient with non-genetic bvFTD-ALS, one individual with bvFTD due to a GRN mutation, and one due to a MAPT mutation (R406W). Tracer retention was examined using a region-of-interest and voxel-wise approaches. Two individuals (bvFTD due to C9orf72) underwent postmortem neuropathological examination. Tracer binding was additionally assessed in vitro using [3H]RO948 autoradiography in six separate cases. RESULTS: [18F]RO948 retention across ROIs was clearly lower than in AD and comparable to that in Aß-negative cognitively unimpaired individuals. Only minor loci of tracer retention were seen in bvFTD; these did not overlap with the observed cortical atrophy in the cases, the expected pattern of atrophy, nor the expected or verified protein pathology distribution. Autoradiography analyses showed no specific [3H]RO948 binding. The R406W MAPT mutation carriers were clear exceptions with AD-like retention levels and specific in-vitro binding. CONCLUSION: [18F]RO948 uptake is not significantly increased in the majority of FTD patients, with a clear exception being specific MAPT mutations.
Assuntos
Demência Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Proteína C9orf72/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons , Mutação , AtrofiaRESUMO
INTRODUCTION: This study investigated the comparability of cerebrospinal fluid (CSF) cutoffs for Elecsys immunoassays for amyloid beta (Aß)42/Aß40 or Aß42/phosphorylated tau (p-tau)181 and the effects of measurement variability when predicting Alzheimer's disease (AD)-related outcomes (i.e., Aß-positron emission tomography [PET] visual read and AD neuropathology). METHODS: We studied 750 participants (BioFINDER study, Alzheimer's Disease Neuroimaging Initiative [ADNI], and University of California San Francisco [UCSF]). Youden's index was used to identify cutoffs and to calculate accuracy (Aß-PET visual read as outcome). Using longitudinal variability in Aß-negative controls, we identified a gray zone around cut-points where the risk of an inconsistent predicted outcome was >5%. RESULTS: For Aß42/Aß40, cutoffs across cohorts were <0.059 (BioFINDER), <0.057 (ADNI), and <0.058 (UCSF). For Aß42/p-tau181, cutoffs were <41.90 (BioFINDER), <39.20 (ADNI), and <46.02 (UCSF). Accuracy was ≈90% for both Aß42/Aß40 and Aß42/p-tau181 using these cutoffs. Using Aß-PET as an outcome, 8.7% of participants fell within a gray zone interval for Aß42/Aß40, compared to 4.5% for Aß42/p-tau181. Similar findings were observed using a measure of overall AD neuropathologic change (7.7% vs. 3.3%). In a subset with CSF and plasma Aß42/40, the number of individuals within the gray zone was ≈1.5 to 3 times greater when using plasma Aß42/40. DISCUSSION: CSF Aß42/p-tau181 was more robust to the effects of measurement variability, suggesting that it may be the preferred Elecsys-based measure in clinical practice and trials.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Imunoensaio , Tomografia por Emissão de PósitronsRESUMO
INTRODUCTION: Biomarkers for the prediction of cognitive decline in patients with amnestic mild cognitive impairment (MCI) and amnestic mild dementia are needed for both clinical practice and clinical trials. METHODS: We evaluated the ability of tau-PET (positron emission tomography), cortical atrophy on magnetic resonance imaging (MRI), baseline cognition, apolipoprotein E gene (APOE) status, plasma and cerebrospinal fluid (CSF) levels of phosphorylated tau-217, neurofilament light (NfL), and amyloid beta (Aß)42/40 ratio (individually and in combination) to predict cognitive decline over 2 years in BioFINDER-2 and Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS: Baseline tau-PET and a composite baseline cognitive score were the strongest independent predictors of cognitive decline. Cortical thickness and NfL provided some additional information. Using a predictive algorithm to enrich patient selection in a theoretical clinical trial led to a significantly lower required sample size. DISCUSSION: Models including baseline tau-PET and cognition consistently provided the best prediction of change in cognitive function over 2 years in patients with amnestic MCI or mild dementia.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidianoRESUMO
INTRODUCTION: We studied usefulness of combining blood amyloid beta (Aß)42/Aß40, phosphorylated tau (p-tau)217, and neurofilament light (NfL) to detect abnormal brain Aß deposition in different stages of early Alzheimer's disease (AD). METHODS: Plasma biomarkers were measured using mass spectrometry (Aß42/Aß40) and immunoassays (p-tau217 and NfL) in cognitively unimpaired individuals (CU, N = 591) and patients with mild cognitive impairment (MCI, N = 304) from two independent cohorts (BioFINDER-1, BioFINDER-2). RESULTS: In CU, a combination of plasma Aß42/Aß40 and p-tau217 detected abnormal brain Aß status with area under the curve (AUC) of 0.83 to 0.86. In MCI, the models including p-tau217 alone or Aß42/Aß40 and p-tau217 had similar AUCs (0.86-0.88); however, the latter showed improved model fit. The models were implemented in an online application providing individualized risk assessments (https://brainapps.shinyapps.io/PredictABplasma/). DISCUSSION: A combination of plasma Aß42/Aß40 and p-tau217 discriminated Aß status with relatively high accuracy, whereas p-tau217 showed strongest associations with Aß pathology in MCI but not in CU.
Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Amiloide , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Fragmentos de Peptídeos , Tomografia por Emissão de Pósitrons/métodos , Proteínas tauRESUMO
PURPOSE OF REVIEW: This review provides a concise overview of recent advances in cerebrospinal fluid (CSF) and blood-based biomarkers of Alzheimer's disease lesions. RECENT FINDINGS: Important recent advances for CSF Alzheimer's disease biomarkers include the introduction of fully automated assays, the development and implementation of certified reference materials for CSF Aß42 and a unified protocol for handling of samples, which all support reliability and availability of CSF Alzheimer's disease biomarkers. Aß deposition can be detected using Aß42/Aß40 ratio in both CSF and plasma, though a much more modest change is seen in plasma. Tau aggregation can be detected using phosphorylated tau (P-tau) at threonine 181 and 217 in CSF, with similar accuracy in plasma. Neurofilament light (NfL) be measured in CSF and shows similar diagnostic accuracy in plasma. Though total tau (T-tau) can also be measured in plasma, this measure is of limited clinical relevance for Alzheimer's disease in its current immunoassay format. SUMMARY: Alzheimer's disease biomarkers, including Aß, P-tau and NfL can now be reliably measured in both CSF and blood. Plasma-based measures of P-tau show particular promise, with potential applications in both clinical practice and in clinical trials.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Fragmentos de Peptídeos , Reprodutibilidade dos Testes , Proteínas tauRESUMO
OBJECTIVE: The clinical phenotype of the rare behavioural variant of Alzheimer's disease (bvAD) is insufficiently understood. Given the strong clinico-anatomical correlations of tau pathology in AD, we investigated the distribution of tau deposits in bvAD, in-vivo and ex-vivo, using positron emission tomography (PET) and postmortem examination. METHODS: For the tau PET study, seven amyloid-ß positive bvAD patients underwent [18F]flortaucipir or [18F]RO948 PET. We converted tau PET uptake values into standardised (W-)scores, adjusting for age, sex and mini mental state examination in a 'typical' memory-predominant AD (n=205) group. W-scores were computed within entorhinal, temporoparietal, medial and lateral prefrontal, insular and whole-brain regions-of-interest, frontal-to-entorhinal and frontal-to-parietal ratios and within intrinsic functional connectivity network templates. For the postmortem study, the percentage of AT8 (tau)-positive area in hippocampus CA1, temporal, parietal, frontal and insular cortices were compared between autopsy-confirmed patients with bvAD (n=8) and typical AD (tAD;n=7). RESULTS: Individual regional W-scores ≥1.96 (corresponding to p<0.05) were observed in three cases, that is, case #5: medial prefrontal cortex (W=2.13) and anterior default mode network (W=3.79), case #2: lateral prefrontal cortex (W=2.79) and salience network (W=2.77), and case #7: frontal-to-entorhinal ratio (W=2.04). The remaining four cases fell within the normal distributions of the tAD group. Postmortem AT8 staining indicated no group-level regional differences in phosphorylated tau levels between bvAD and tAD (all p>0.05). CONCLUSIONS: Both in-vivo and ex-vivo, patients with bvAD showed heterogeneous distributions of tau pathology. Since key regions involved in behavioural regulation were not consistently disproportionally affected by tau pathology, other factors are more likely driving the clinical phenotype in bvAD.
RESUMO
BACKGROUND: The 2017 Alzheimer's disease (AD) Strategic Biomarker Roadmap (SBR) structured the validation of AD diagnostic biomarkers into 5 phases, systematically assessing analytical validity (Phases 1-2), clinical validity (Phases 3-4), and clinical utility (Phase 5) through primary and secondary Aims. This framework allows to map knowledge gaps and research priorities, accelerating the route towards clinical implementation. Within an initiative aimed to assess the development of biomarkers of tau pathology, we revised this methodology consistently with progress in AD research. METHODS: We critically appraised the adequacy of the 2017 Biomarker Roadmap within current diagnostic frameworks, discussed updates at a workshop convening the Alzheimer's Association and 8 leading AD biomarker research groups, and detailed the methods to allow consistent assessment of aims achievement for tau and other AD diagnostic biomarkers. RESULTS: The 2020 update applies to all AD diagnostic biomarkers. In Phases 2-3, we admitted a greater variety of study designs (e.g., cross-sectional in addition to longitudinal) and reference standards (e.g., biomarker confirmation in addition to clinical progression) based on construct (in addition to criterion) validity. We structured a systematic data extraction to enable transparent and formal evidence assessment procedures. Finally, we have clarified issues that need to be addressed to generate data eligible to evidence-to-decision procedures. DISCUSSION: This revision allows for more versatile and precise assessment of existing evidence, keeps up with theoretical developments, and helps clinical researchers in producing evidence suitable for evidence-to-decision procedures. Compliance with this methodology is essential to implement AD biomarkers efficiently in clinical research and diagnostics.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Biomarcadores , Estudos Transversais , Progressão da Doença , Humanos , Padrões de Referência , Proteínas tauRESUMO
PURPOSE: This study aims to determine whether comparable target regions of interest (ROIs) and cut-offs can be used across [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau positron emission tomography (PET) tracers for differential diagnosis of Alzheimer's disease (AD) dementia vs either cognitively unimpaired (CU) individuals or non-AD neurodegenerative diseases. METHODS: A total of 1755 participants underwent tau PET using either [18F]flortaucipir (n = 975), [18F]RO948 (n = 493), or [18F]MK6240 (n = 287). SUVR values were calculated across four theory-driven ROIs and several tracer-specific data-driven (hierarchical clustering) regions of interest (ROIs). Diagnostic performance and cut-offs for ROIs were determined using receiver operating characteristic analyses and the Youden index, respectively. RESULTS: Comparable diagnostic performance (area under the receiver operating characteristic curve [AUC]) was observed between theory- and data-driven ROIs. The theory-defined temporal meta-ROI generally performed very well for all three tracers (AUCs: 0.926-0.996). An SUVR value of approximately 1.35 was a common threshold when using this ROI. CONCLUSION: The temporal meta-ROI can be used for differential diagnosis of dementia patients with [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau PET with high accuracy, and that using very similar cut-offs of around 1.35 SUVR. This ROI/SUVR cut-off can also be applied across tracers to define tau positivity.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Carbolinas , Diagnóstico Diferencial , Humanos , Tomografia por Emissão de Pósitrons , Proteínas tauRESUMO
PURPOSE: A substantial proportion of amyloid-ß (Aß)+ patients with clinically diagnosed Alzheimer's disease (AD) dementia and mild cognitive impairment (MCI) are tau PET-negative, while some clinically diagnosed non-AD neurodegenerative disorder (non-AD) patients or cognitively unimpaired (CU) subjects are tau PET-positive. We investigated which demographic, clinical, genetic, and imaging variables contributed to tau PET status. METHODS: We included 2338 participants (430 Aß+ AD dementia, 381 Aß+ MCI, 370 non-AD, and 1157 CU) who underwent [18F]flortaucipir (n = 1944) or [18F]RO948 (n = 719) PET. Tau PET positivity was determined in the entorhinal cortex, temporal meta-ROI, and Braak V-VI regions using previously established cutoffs. We performed bivariate binary logistic regression models with tau PET status (positive/negative) as dependent variable and age, sex, APOEε4, Aß status (only in CU and non-AD analyses), MMSE, global white matter hyperintensities (WMH), and AD-signature cortical thickness as predictors. Additionally, we performed multivariable binary logistic regression models to account for all other predictors in the same model. RESULTS: Tau PET positivity in the temporal meta-ROI was 88.6% for AD dementia, 46.5% for MCI, 9.5% for non-AD, and 6.1% for CU. Among Aß+ participants with AD dementia and MCI, lower age, MMSE score, and AD-signature cortical thickness showed the strongest associations with tau PET positivity. In non-AD and CU participants, presence of Aß was the strongest predictor of a positive tau PET scan. CONCLUSION: We identified several demographic, clinical, and neurobiological factors that are important to explain the variance in tau PET retention observed across the AD pathological continuum, non-AD neurodegenerative disorders, and cognitively unimpaired persons.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Demografia , Humanos , Tomografia por Emissão de Pósitrons , Proteínas tauRESUMO
BACKGROUND: Alzheimer's disease co-pathology is common in dementia with Lewy bodies and Parkinson's disease with dementia (Lewy body disease) and can reliably be detected with positron emission tomography (PET) or cerebrospinal fluid (CSF) biomarkers. Recently developed blood biomarkers are more accessible and less expensive alternatives. OBJECTIVE: To investigate if plasma phospho-tau217 and phospho-tau181 can detect Alzheimer's pathology in Lewy body disease with dementia. METHODS: In this cross-sectional study we investigated plasma phospho-tau217 and phospho-tau181 in 35 patients with Lewy body disease with dementia. Patients underwent tau-PET imaging (18 F-RO948). RESULTS: Plasma phospho-tau217 correlated with plasma phospho-tau181, CSF phospho-tau217 (rs = 0.68, P < 0.001), and negatively with CSF ß-amyloid42/40 (rs = -0.52, P = 0.001). Plasma phospho-tau217 and phospho-tau181 correlated with tau-PET signal in the temporal cortex (rs > 0.56, P < 0.001) and predicted abnormal tau-PET status and ß-amyloid status (area under the curve > 0.78 and > 0.81, respectively). CONCLUSION: Plasma phospho-tau might be a useful marker for Alzheimer's co-pathology in Lewy body disease with dementia. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Biomarcadores , Estudos Transversais , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Plasma , Proteínas tauRESUMO
The development of tau-PET allows paired helical filament tau pathology to be visualized in vivo. Increased knowledge about conditions affecting the rate of tau accumulation could guide the development of therapies halting the progression of Alzheimer's disease. However, the factors modifying the rate of tau accumulation over time in Alzheimer's disease are still largely unknown. Large-scale longitudinal cohort studies, adjusting for baseline tau load, are needed to establish such risk factors. In the present longitudinal study, 419 participants from four cohorts in the USA (Avid 05e, n = 157; Expedition-3, n = 82; ADNI, n = 123) and Sweden (BioFINDER, n = 57) were scanned repeatedly with tau-PET. The study participants were cognitively unimpaired (n = 153), or patients with mild cognitive impairment (n = 139) or Alzheimer's disease dementia (n = 127). Participants underwent two to four tau-PET (18F-flortaucipir) scans with a mean (± standard deviation) of 537 (±163) days between the first and last scan. The change in tau-PET signal was estimated in temporal meta- and neocortical regions of interest. Subject specific tau-PET slopes were predicted simultaneously by age, sex, amyloid status (determined by amyloid-ß PET), APOE ε4 genotype, study cohort, diagnosis and baseline tau load. We found that accelerated increase in tau-PET signal was observed in amyloid-ß-positive mild cognitive impairment (3.0 ± 5.3%) and Alzheimer's disease dementia (2.9 ± 5.7%), respectively, when compared to either amyloid-ß-negative cognitively unimpaired (0.4 ± 2.7%), amyloid-ß-negative mild cognitive impairment (-0.4 ± 2.3%) or amyloid-ß-positive cognitively unimpaired (1.2 ± 2.8%). Tau-PET uptake was accelerated in females (temporal region of interest: t = 2.86, P = 0.005; neocortical region of interest: t = 2.90, P = 0.004), younger individuals (temporal region of interest: t = -2.49, P = 0.013), and individuals with higher baseline tau-PET signal (temporal region of interest: t = 3.83, P < 0.001; neocortical region of interest: t = 5.01, P < 0.001). Tau-PET slopes decreased with age in amyloid-ß-positive subjects, but were stable by age in amyloid-ß-negative subjects (age × amyloid-ß status interaction: t = -2.39, P = 0.018). There were no effects of study cohort or APOE ε4 positivity. In a similar analysis on longitudinal amyloid-ß-PET (in ADNI subjects only, n = 639), we found significant associations between the rate of amyloid-ß accumulation and APOE ε4 positivity, older age and baseline amyloid-ß positivity, but no effect of sex. In conclusion, in this longitudinal PET study comprising four cohorts, we found that the tau accumulation rate is greater in females and younger amyloid-ß-positive individuals, while amyloid-ß accumulation is greater in APOE ε4 carriers and older individuals. These findings are important considerations for the design of clinical trials, and might improve our understanding of factors associated with faster tau aggregation and spread.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apolipoproteína E4/genética , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Disfunção Cognitiva/metabolismo , Feminino , Genótipo , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neocórtex/diagnóstico por imagem , Neocórtex/metabolismo , Tomografia por Emissão de Pósitrons , Fatores de Risco , Caracteres SexuaisRESUMO
Neurofilament light (NfL) is a marker of neuroaxonal injury, a prominent feature of Alzheimer's disease. It remains uncertain, however, how it relates to amyloid and tau pathology or neurodegeneration across the Alzheimer's disease continuum. The aim of this study was to investigate how plasma NfL relates to amyloid and tau PET and MRI measures of brain atrophy in participants with and without cognitive impairment. We retrospectively examined the association between plasma NfL and MRI measures of grey/white matter volumes in the Alzheimer's Disease Neuroimaging Initiative [ADNI: n = 1149; 382 cognitively unimpaired control subjects and 767 cognitively impaired participants (mild cognitive impairment n = 420, Alzheimer's disease dementia n = 347)]. Longitudinal plasma NfL was measured using single molecule array (Simoa) technology. Cross-sectional associations between plasma NfL and PET amyloid and tau measures were independently assessed in two cohorts: ADNI [n = 198; 110 cognitively unimpaired, 88 cognitively impaired (MCI n = 67, Alzheimer's disease dementia n = 21), data accessed October 2018]; and Translational Biomarkers in Aging and Dementia [TRIAD, n = 116; 74 cognitively unimpaired, 42 cognitively impaired (MCI n = 16, Alzheimer's disease dementia n = 26), data obtained November 2017 to January 2019]. Associations between plasma NfL and imaging-derived measures were examined voxel-wise using linear regression (cross-sectional) and linear mixed effect models (longitudinal). Cross-sectional analyses in both cohorts showed that plasma NfL was associated with PET findings in brain regions typically affected by Alzheimer's disease; associations were specific to amyloid PET in cognitively unimpaired and tau PET in cognitively impaired (P < 0.05). Longitudinal analyses showed that NfL levels were associated with grey/white matter volume loss; grey matter atrophy in cognitively unimpaired was specific to APOE ε4 carriers (P < 0.05). These findings suggest that plasma NfL increases in response to amyloid-related neuronal injury in preclinical stages of Alzheimer's disease, but is related to tau-mediated neurodegeneration in symptomatic patients. As such, plasma NfL may a useful measure to monitor effects in disease-modifying drug trials.
Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores/sangue , Proteínas de Neurofilamentos/sangue , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/psicologia , Peptídeos beta-Amiloides/sangue , Apolipoproteína E4/genética , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico por imagem , Estudos de Coortes , Estudos Transversais , Progressão da Doença , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Substância Branca/diagnóstico por imagem , Proteínas tau/sangueRESUMO
INTRODUCTION: This study investigated the diagnostic and disease-monitoring potential of plasma biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia and cognitively unimpaired (CU) individuals. METHODS: Plasma was analyzed using Simoa assays from 99 CU, 107 MCI, and 103 AD dementia participants. RESULTS: Phosphorylated-tau181 (P-tau181), neurofilament light, amyloid-ß (Aß42/40), Total-tau and Glial fibrillary acidic protein were altered in AD dementia but P-tau181 significantly outperformed all biomarkers in differentiating AD dementia from CU (area under the curve [AUC] = 0.91). P-tau181 was increased in MCI converters compared to non-converters. Higher P-tau181 was associated with steeper cognitive decline and gray matter loss in temporal regions. Longitudinal change of P-tau181 was strongly associated with gray matter loss in the full sample and with Aß measures in CU individuals. DISCUSSION: P-tau181 detected AD at MCI and dementia stages and was strongly associated with cognitive decline and gray matter loss. These findings highlight the potential value of plasma P-tau181 as a non-invasive and cost-effective diagnostic and prognostic biomarker in AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/sangue , Biomarcadores/sangue , Encéfalo/patologia , Disfunção Cognitiva , Proteínas tau/sangue , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/sangue , Disfunção Cognitiva/fisiopatologia , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Fosforilação , PrognósticoRESUMO
PURPOSE: The hippocampus is affected by tau pathology early in Alzheimer's disease (AD) development. Accurate quantification of hippocampal tau signal using the tau-PET tracer 18F-flortaucipir is complicated, however, by off-target binding in the adjacent choroid plexus. We here present a new method for compensating for this off-target choroid plexus signal. METHODS: As off-target binding in the choroid plexus is known to be higher using 18F-flortaucipir compared to 18F-RO948, we created a binary hippocampal mask in template space where 18F-flortaucipir signal was higher than 18F-RO948, using data from 30 patients that underwent both 18F-flortaucipir and 18F-RO948 PET. This mask, presumably representing hippocampal voxels affected by off-target binding from the choroid plexus, was then converted to native space and applied as an exclusion mask to 145 patients across the AD-spectrum scanned with 18F-flortaucipir. As an alternative approach exclusion masks were generated by expanding the choroid plexus ROI in native space. Results were analysed both without and with partial volume error correction (non-PVEc/PVEc). RESULTS: Unmasked hippocampal standardized uptake value ratios (SUVR) were significantly correlated to choroid plexus SUVRs using both non-PVEc (p < 0.001, r = 0.28) and PVEc data (p < 0.05, r = 0.18). After applying the mask, however, these correlations disappeared. The diagnostic accuracy in separating cognitively impaired (CI) from cognitively unimpaired (CU) subjects improved after masking, from an AUC of 0.792 (95% C.I.,0.715-0.869) to 0.837 (95% C.I.,0.768-0.906) for non-PVEc data (p < 0.001), and from 0.798 (95% C.I.,0.722-0.873) to 0.834 (95% C.I.,0.766-0.903) for PVEc data (p < 0.001). The correlations to memory improved significantly for MMSE for unmasked vs. masked data both without (r = -0.440 vs. r = -0.499, p < 0.001) and with (r = -0.454 vs. r = -0.503, p < 0.001) PVEc. Similar results were found using the ADAS-Cog Delayed Word Recall test. CONCLUSION: Choroid plexus off-target binding interferes with the estimation of true hippocampal retention using 18F-flortaucipir PET. Using a mask to correct for this off-target signal, we improved the diagnostic accuracy of 18F-flortaucipir in the hippocampus and the correlation between 18F-flortaucipir hippocampal SUVR and cognitive measures.
Assuntos
Doença de Alzheimer/diagnóstico por imagem , Plexo Corióideo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Carbolinas/farmacocinética , Plexo Corióideo/metabolismo , Disfunção Cognitiva/metabolismo , Estudos de Coortes , Meios de Contraste/farmacocinética , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem/normas , Tomografia por Emissão de Pósitrons/normasRESUMO
PURPOSE: [18F]flortaucipir binds to paired helical filament tau and accurately identifies tau in Alzheimer's disease (AD). However, "off-target" binding interferes with the quantification of [18F]flortaucipir in several brain regions. Recently, other tau PET tracers have been developed. Here, we compare [18F]flortaucipir with the novel tau tracer [18F]RO948 head-to-head in vivo. METHODS: We included 18 participants with AD, three with amyloid-ß-positive amnestic mild cognitive impairment, and four healthy controls. All underwent [18F]flortaucipir (80-100 min) and [18F]RO948 (70-90) PET scans within approximately 1 month. Four study participants underwent 0-100-min dynamic scanning. Standardized uptake value ratios (SUVRs) were created using an inferior cerebellar reference region. RESULTS: Neocortical tracer retention was highly comparable using both SUVR and distribution volume ratio-1 values obtained from dynamic scans. However, [18F]RO948 retention was significantly higher in the entorhinal cortex and lower in the basal ganglia, thalamus, and choroid plexus compared with [18F]flortaucipir. Increased off-target binding was observed with age for both tracers. Several cases exhibited strong [18F]RO948 retention in the skull/meninges. This extra-cerebral signal, however, did not affect diagnostic accuracy and remained relatively unchanged when re-examining a subsample after 1 year. Kinetic modeling showed an increase in [18F]flortaucipir SUVR over the scanning interval, compared with a plateau for [18F]RO948. CONCLUSION: [18F]RO948 and [18F]flortaucipir bound comparably in neocortical regions, but [18F]RO948 showed higher retention in the medial temporal lobe and lower intracerebral "off-target" binding. Time-dependent bias of SUVR estimates may prove less of a factor with [18F]RO948, compared with previous tau ligands.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Carbolinas , Humanos , Tomografia por Emissão de Pósitrons , Proteínas tauRESUMO
The accumulation of pathological misfolded tau is a feature common to a collective of neurodegenerative disorders known as tauopathies, of which Alzheimer's disease (AD) is the most common. Related tauopathies include progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), Down's syndrome (DS), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). Investigation of the role of tau pathology in the onset and progression of these disorders is now possible due the recent advent of tau-specific ligands for use with positron emission tomography (PET), including first- (e.g., [18F]THK5317, [18F]THK5351, [18F]AV1451, and [11C]PBB3) and second-generation compounds [namely [18F]MK-6240, [18F]RO-948 (previously referred to as [18F]RO69558948), [18F]PI-2620, [18F]GTP1, [18F]PM-PBB3, and [18F]JNJ64349311 ([18F]JNJ311) and its derivative [18F]JNJ-067)]. In this review we describe and discuss findings from in vitro and in vivo studies using both initial and new tau ligands, including their relation to biomarkers for amyloid-ß and neurodegeneration, and cognitive findings. Lastly, methodological considerations for the quantification of in vivo ligand binding are addressed, along with potential future applications of tau PET, including therapeutic trials.