Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 68(1): 60-70, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32011770

RESUMO

Flat panels are the most spread type of photobioreactors for studying light effects on a microalgae culture. Their low thickness, usually between 1 and 3 cm, aims at ensuring light homogeneity across the culture. Yet because optical density has to remain very low, studies are still limited to low cell density cultures. To alleviate this problem, even thinner photobioreactors can be designed. Nevertheless, thin flat panel reactors are very prone to induce high shear stress. This work aimed at designing a new millimeter thin panel photobioreactor to study light effects on Chlorella and Scenedesmus genera. We proposed a numerical workflow that is capable of assessing the shear stress intensity in such a reactor. The numerical predictions were validated at three different levels: 2D preliminary simulations were able to reproduce bubble commonly known behaviors; close to the nozzle, the predictions were successfully confronted to shadowgraphy experimental reference; at the mini bioreactor scale, experimental and numerical mixing were found to be close. After these throughout validations, shear stress intensity in the photobioreactor was calculated over 1000 Lagrangian tracers. The experienced shear stress was agglomerated at the population level. From the computed shear stress, it was possible to choose the minimal reactor thickness that would not hinder cell growth.


Assuntos
Chlorella/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Modelos Biológicos , Fotobiorreatores , Scenedesmus/crescimento & desenvolvimento , Estresse Mecânico
2.
Bioresour Technol ; 330: 124995, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33744090

RESUMO

Chlorella vulgaris was grown using mixed sources of nitrogen (nitrate and nitrite). Starting from B3N as basal medium, nitrate was substituted by nitrite keeping total nitrogen constant over 7 conditions: 0, 20, 40, 50, 60, 80 and 100% NO2-. Growth rate, nitrogen uptake, photosynthetic apparatus status and pigment contents were monitored. Nitrite addition triggered a growth rate inhibition from early introduction (20% NO2-, 81 mgNO2-/l). Nitrate uptake rate increased with nitrate content in the culture medium (maximum at 5.87 mg/l/Nd, 100% NO3-), while nitrite uptake remained constant around 2.93 mgN/l/d. Photosynthetic apparatus was not impacted by the nitrogen source substitution. Pigments profiles (chlorophyll a, b and total carotenoids) were not statistically different for all the tested conditions. From a biotechnological perspective, this finding rules out the use of nitrite substitution as a pigment manipulating stress strategy.


Assuntos
Chlorella vulgaris , Nitratos , Clorofila A , Nitritos , Nitrogênio
3.
Biotechnol Adv ; 41: 107545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32272160

RESUMO

This work reviews applications of high added value molecules produced from microalgae. Older forms of valorization - health food and quality feed, polyunsaturated fatty acids, pigments, carbohydrates - are currently penetrating their markets. They are driven by desirable properties: texturer and dye for food industry, antioxidant for cosmetics and the appetite of the general public for biosourced compounds. Most recent developments, such as peptides, vitamins, polyphenols, phytosterols and phytohormones, are struggling to meet their market and reach economical competitiveness. Still they are pushed forward by the very powerful driver that is pharmaceutical industry. In addition this work also proposes to link microalgae phyla and related potential applications. This is done through highlighting of which bioactive compounds can be found in which phyla. While some seem to be restricted to aquaculture, Cyanobacteria, Chlorophyta and Rhodophyta show great promises.


Assuntos
Clorófitas , Cianobactérias , Microalgas , Rodófitas , Antioxidantes
4.
Biotechnol Rep (Amst) ; 25: e00399, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31867227

RESUMO

This work reports the design of a light concentrator intended to be used to cast uniform lighting over a photobioreactor. Household aluminum foils was chosen as reflective material to build the concentrator. This choice raised the question of which side to use. Thus measurements of household aluminum foil reflectivity spectra on both bright and matte sides were undergone. These measurements were done using an integrating sphere, over a 250-2500 nm range. Diffuse and total reflectivities were acquired, for two samples each time. The obtained results are very repeatable and in good agreement with literature on rolled aluminum sheets, for the bright side at least, as matte side data were not found. Specular reflectivity is higher for the bright side while diffuse reflectivity is higher for the matte one. Furthermore, both sides of the foil have the same total reflectivity, around 86 % in the visible range of the spectrum, 97% in the near infrared. Our measurements are readability usable and available as supplementary materials. Finally, we applied these findings to the in silico design of lab scale light concentrator illuminating a new photobioreactor. A modified version of the raytracing software Soltrace was used to determine which of the two sides of our household aluminum foil was be best suited for our application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA