Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(21): 9677-82, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20457894

RESUMO

The enzyme UDP-GlcNAc:alpha3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (GnT1, encoded by Mgat1) controls the synthesis of paucimannose N-glycans in Drosophila. We have previously reported that null mutations in Drosophila Mgat1 are viable but exhibit defects in locomotion, brain abnormalities, and a severely reduced life span. Here, we show that knockdown of Mgat1 in the central nervous system (CNS) of wild-type flies decreases locomotor activity and life span. This phenotype is similar to that observed in Drosophila Mgat1(1) null mutants, demonstrating that Mgat1 is required in the CNS. We also found that neuronal expression of a wild-type Mgat1 transgene rescued the shortened life span of Mgat1(1) null mutants and resulted in a dramatic 135% increase in mean life span relative to genetically identical controls. Neuronal expression of a wild-type Mgat1 transgene in wild-type flies resulted in a modest 9% increase in mean life span relative to genetically identical controls. In both Mgat1(1) null mutants and wild-type flies, neuronal expression of wild-type Mgat1 transgene resulted in a significant increase in GnT1 activity and resistance to oxidative stress. Whereas dietary restriction is not absolutely essential for the increased life span, it plays a role in the process. Interestingly, we observe a direct correlation between GnT1 activity and mean life span up to a maximum of appropriately 136 days, showing that the ability of GnT1 activity to increase life span is limited. Altogether, these observations suggest that Mgat1-dependent N-glycosylation plays an important role in the control of Drosophila life span.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Longevidade , Mutação , N-Acetilglucosaminiltransferases/metabolismo , Neurônios/metabolismo , Ração Animal , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Locomoção , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/genética , Estresse Oxidativo
2.
FEBS Lett ; 555(3): 437-42, 2003 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-14675752

RESUMO

Enthoprotin, a newly identified component of clathrin-coated vesicles, interacts with the trans-Golgi network (TGN) clathrin adapters AP-1 and GGA2. Here we perform a multi-faceted analysis of the site in enthoprotin that is responsible for the binding to the gamma-adaptin ear (gamma-ear) domain of AP-1. Alanine scan mutagenesis and nuclear magnetic resonance (NMR) studies reveal the full extent of the site as well as critical residues for this interaction. NMR studies of the gamma-ear in complex with a synthetic peptide from enthoprotin provide structural details of the binding site for TGN accessory proteins within the gamma-ear.


Assuntos
Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Motivos de Aminoácidos/genética , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Fator de Transcrição AP-1/química , Fator de Transcrição AP-1/metabolismo , Transfecção
3.
PLoS One ; 6(10): e25466, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22043285

RESUMO

Clathrin interactor 1 [CLINT1] (also called enthoprotin/EpsinR) is an Epsin N-terminal homology (ENTH) domain-containing adaptor protein that functions in anterograde and retrograde clathrin-mediated trafficking between the trans-Golgi network and the endosome. Removal of both Saccharomyces cerevisiae homologs, Ent3p and Ent5p, result in yeast that are viable, but that display a cold-sensitive growth phenotype and mistrafficking of various vacuolar proteins. Similarly, either knock-down or overexpression of vertebrate CLINT1 in cell culture causes mistrafficking of proteins. Here, we have characterized Drosophila CLINT1, liquid-facets Related (lqfR). LqfR is ubiquitously expressed throughout development and is localized to the Golgi and endosome. Strong hypomorphic mutants generated by imprecise P-element excision exhibit extra macrochaetae, rough eyes and are female sterile. Although essentially no eggs are laid, the ovaries do contain late-stage egg chambers that exhibit abnormal morphology. Germline clones reveal that LqfR expression in the somatic follicle cells is sufficient to rescue the oogenesis defects. Clones of mutant lqfR follicle cells have a decreased cell size consistent with a downregulation of Akt1. We find that while total Akt1 levels are increased there is also a significant decrease in activated phosphorylated Akt1. Taken together, these results show that LqfR function is required to regulate follicle cell size and signaling during Drosophila oogenesis.


Assuntos
Proteínas de Drosophila/fisiologia , Morfogênese , Oogênese , Ovário , Proteínas de Transporte Vesicular/fisiologia , Animais , Drosophila/fisiologia , Endossomos/metabolismo , Feminino , Fenótipo , Transporte Proteico , Rede trans-Golgi/metabolismo
4.
Mol Biol Cell ; 22(12): 2094-105, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21490149

RESUMO

Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing "glue granules" that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1- and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Clatrina/metabolismo , Drosophila melanogaster/metabolismo , Vesículas Secretórias/metabolismo , Animais , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Microscopia Eletrônica , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Transporte Proteico , Glândulas Salivares/metabolismo , Rede trans-Golgi/metabolismo
5.
Annu Rev Biophys ; 39: 407-27, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20192774

RESUMO

Phosphatidylserine (PS) is the most abundant negatively charged phospholipid in eukaryotic membranes. PS directs the binding of proteins that bear C2 or gamma-carboxyglutamic domains and contributes to the electrostatic association of polycationic ligands with cellular membranes. Rather than being evenly distributed, PS is found preferentially in the inner leaflet of the plasma membrane and in endocytic membranes. The loss of PS asymmetry is an early indicator of apoptosis and serves as a signal to initiate blood clotting. This review discusses the determinants and functional implications of the subcellular distribution and membrane topology of PS.


Assuntos
Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo
6.
J Biol Chem ; 281(18): 12776-85, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16522637

RESUMO

UDP-GlcNAc:alpha3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (encoded by Mgat1) controls the synthesis of hybrid, complex, and paucimannose N-glycans. Mice make hybrid and complex N-glycans but little or no paucimannose N-glycans. In contrast, Drosophila melanogaster and Caenorhabditis elegans make paucimannose N-glycans but little or no hybrid or complex N-glycans. To determine the functional requirement for beta1,2-N-acetylglucosaminyltransferase I in Drosophila, we generated null mutations by imprecise excision of a nearby transposable element. Extracts from Mgat1(1)/Mgat1(1) null mutants showed no beta1,2-N-acetylglucosaminyltransferase I enzyme activity. Moreover, mass spectrometric analysis of these extracts showed dramatic changes in N-glycans compatible with lack of beta1,2-N-acetylglucosaminyltransferase I activity. Interestingly, Mgat1(1)/Mgat1(1) null mutants are viable but exhibit pronounced defects in adult locomotory activity when compared with Mgat1(1)/CyO-GFP heterozygotes or wild type flies. In addition, in null mutants males are sterile and have a severely reduced mean and maximum life span. Microscopic examination of mutant adult fly brains showed the presence of fused beta lobes. The removal of both maternal and zygotic Mgat1 also gave rise to embryos that no longer express the horseradish peroxidase antigen within the central nervous system. Taken together, the data indicate that beta1,2-N-acetylglucosaminyltransferase I-dependent N-glycans are required for locomotory activity, life span, and brain development in Drosophila.


Assuntos
Mutação , N-Acetilglucosaminiltransferases/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Configuração de Carboidratos , Drosophila melanogaster , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Heterozigoto , Espectrometria de Massas , Camundongos , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA