Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharmacol ; 101(3): 168-180, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34907000

RESUMO

Therapeutic outcomes achieved in head and neck squamous cell carcinoma (HNSCC) patients by concurrent cisplatin-based chemoradiotherapy initially reflect both tumor regression and tumor stasis. However, local and distant metastasis and disease relapse are common in HNSCC patients. In the current work, we demonstrate that cisplatin treatment induces senescence in both p53 wild-type HN30 and p53 mutant HN12 head and neck cancer models. We also show that tumor cells can escape from senescence both in vitro and in vivo. We further establish the effectiveness of the senolytic, ABT-263 (Navitoclax), in elimination of senescent tumor cells after cisplatin treatment. Navitoclax increased apoptosis by 3.3-fold (P ≤ 0.05) at day 7 compared with monotherapy by cisplatin. Additionally, we show that ABT-263 interferes with the interaction between B-cell lymphoma-x large (BCL-XL) and BAX, anti- and pro-apoptotic proteins, respectively, followed by BAX activation, suggesting that ABT-263-induced apoptotic cell death is mediated through BAX. Our in vivo studies also confirm senescence induction in tumor cells by cisplatin, and the promotion of apoptosis coupled with a significant delay of tumor growth after sequential treatment with ABT-263. Sequential treatment with cisplatin followed by ABT-263 extended the humane endpoint to ∼130 days compared with cisplatin alone, where mice survived ∼75 days. These results support the premise that senolytic agents could be used to eliminate residual senescent tumor cells after chemotherapy and thereby potentially delay disease recurrence in head and neck cancer patients. SIGNIFICANCE STATEMENT: Disease recurrence is the most common cause of death in head and neck cancer patients. B-cell lymphoma-x large inhibitors such as ABT-263 (Navitoclax) have the capacity to be used in combination with cisplatin in head and neck cancer patients to eliminate senescent cells and possibly prevent disease relapse.


Assuntos
Compostos de Anilina/administração & dosagem , Antineoplásicos/administração & dosagem , Senescência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Sulfonamidas/administração & dosagem , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/genética , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Camundongos , Mutação , Sulfonamidas/farmacologia , Proteína X Associada a bcl-2/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(11): E2594-E2603, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29476008

RESUMO

HER2 (ERBB2) amplification is a driving oncogenic event in breast cancer. Clinical trials have consistently shown the benefit of HER2 inhibitors (HER2i) in treating patients with both local and advanced HER2+ breast cancer. Despite this benefit, their efficacy as single agents is limited, unlike the robust responses to other receptor tyrosine kinase inhibitors like EGFR inhibitors in EGFR-mutant lung cancer. Interestingly, the lack of HER2i efficacy occurs despite sufficient intracellular signaling shutdown following HER2i treatment. Exploring possible intrinsic causes for this lack of response, we uncovered remarkably depressed levels of NOXA, an endogenous inhibitor of the antiapoptotic MCL-1, in HER2-amplified breast cancer. Upon investigation of the mechanism leading to low NOXA, we identified a micro-RNA encoded in an intron of HER2, termed miR-4728, that targets the mRNA of the Estrogen Receptor α (ESR1). Reduced ESR1 expression in turn prevents ERα-mediated transcription of NOXA, mitigating apoptosis following treatment with the HER2i lapatinib. Importantly, resistance can be overcome with pharmacological inhibition of MCL-1. More generally, while many cancers like EGFR-mutant lung cancer are driven by activated kinases that when drugged lead to robust monotherapeutic responses, we demonstrate that the efficacy of targeted therapies directed against oncogenes active through focal amplification may be mitigated by coamplified genes.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes/genética , MicroRNAs/genética , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , MicroRNAs/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor ErbB-2/metabolismo
3.
Breast Cancer Res ; 22(1): 132, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256808

RESUMO

BACKGROUND: Targeted therapies for triple-negative breast cancer (TNBC) are limited; however, the epidermal growth factor receptor (EGFR) represents a potential target, as the majority of TNBC express EGFR. The purpose of these studies was to evaluate the effectiveness of two EGFR-targeted antibody-drug conjugates (ADC: ABT-414; ABBV-321) in combination with navitoclax, an antagonist of the anti-apoptotic BCL-2 and BCL-XL proteins, in order to assess the translational relevance of these combinations for TNBC. METHODS: The pre-clinical efficacy of combined treatments was evaluated in multiple patient-derived xenograft (PDX) models of TNBC. Microscopy-based dynamic BH3 profiling (DBP) was used to assess mitochondrial apoptotic signaling induced by navitoclax and/or ADC treatments, and the expression of EGFR and BCL-2/XL was analyzed in 46 triple-negative patient tumors. RESULTS: Treatment with navitoclax plus ABT-414 caused a significant reduction in tumor growth in five of seven PDXs and significant tumor regression in the highest EGFR-expressing PDX. Navitoclax plus ABBV-321, an EGFR-targeted ADC that displays more effective wild-type EGFR-targeting, elicited more significant tumor growth inhibition and regressions in the two highest EGFR-expressing models evaluated. The level of mitochondrial apoptotic signaling induced by single or combined drug treatments, as measured by DBP, correlated with the treatment responses observed in vivo. Lastly, the majority of triple-negative patient tumors were found to express EGFR and co-express BCL-XL and/or BCL-2. CONCLUSIONS: The dramatic tumor regressions achieved using combined agents in pre-clinical TNBC models underscore the abilities of BCL-2/XL antagonists to enhance the effectiveness of EGFR-targeted ADCs and highlight the clinical potential for usage of such targeted ADCs to alleviate toxicities associated with combinations of BCL-2/XL inhibitors and systemic chemotherapies.


Assuntos
Compostos de Anilina/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Imunoconjugados/farmacologia , Sulfonamidas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Compostos de Anilina/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/análise , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Humanos , Imunoconjugados/uso terapêutico , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
4.
Haematologica ; 105(3): 697-707, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31123034

RESUMO

The pathogenesis of acute myeloid leukemia (AML) involves serial acquisition of mutations controlling several cellular processes, requiring combination therapies affecting key downstream survival nodes in order to treat the disease effectively. The BCL2 selective inhibitor venetoclax has potent anti-leukemia efficacy; however, resistance can occur due to its inability to inhibit MCL1, which is stabilized by the MAPK pathway. In this study, we aimed to determine the anti-leukemia efficacy of concomitant targeting of the BCL2 and MAPK pathways by venetoclax and the MEK1/2 inhibitor cobimetinib, respectively. The combination demonstrated synergy in seven of 11 AML cell lines, including those resistant to single agents, and showed growth-inhibitory activity in over 60% of primary samples from patients with diverse genetic alterations. The combination markedly impaired leukemia progenitor functions, while maintaining normal progenitors. Mass cytometry data revealed that BCL2 protein is enriched in leukemia stem/progenitor cells, primarily in venetoclax-sensitive samples, and that cobimetinib suppressed cytokine-induced pERK and pS6 signaling pathways. Through proteomic profiling studies, we identified several pathways inhibited downstream of MAPK that contribute to the synergy of the combination. In OCI-AML3 cells, the combination downregulated MCL1 protein levels and disrupted both BCL2:BIM and MCL1:BIM complexes, releasing BIM to induce cell death. RNA sequencing identified several enriched pathways, including MYC, mTORC1, and p53 in cells sensitive to the drug combination. In vivo, the venetoclax-cobimetinib combination reduced leukemia burden in xenograft models using genetically engineered OCI-AML3 and MOLM13 cells. Our data thus provide a rationale for combinatorial blockade of MEK and BCL2 pathways in AML.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Apoptose , Azetidinas , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Piperidinas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas
5.
Blood ; 130(22): 2392-2400, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-28847998

RESUMO

The antiapoptotic proteins BCL-2 and myeloid cell leukemia sequence 1 (MCL-1) promote multiple myeloma (MM) cell survival. Venetoclax is a selective, orally bioavailable small-molecule BCL-2 inhibitor; bortezomib can indirectly inhibit MCL-1. In preclinical studies, venetoclax enhanced bortezomib activity, suggesting that cotargeting of BCL-2 and MCL-1 could be an effective treatment strategy in myeloma. This phase 1b trial studied patients with relapsed/refractory MM receiving daily venetoclax (50-1200 mg per designated dose cohort; 800 mg in safety expansion) in combination with bortezomib and dexamethasone. A total of 66 patients were enrolled (54 in the dose-escalation cohorts and 12 in the safety expansion). Patients had received a median of 3 prior therapies (range, 1-13); 26 (39%) were refractory to prior bortezomib and 35 (53%) to lenalidomide; 39 (59%) had prior stem cell transplant. The combination was generally well tolerated, and common adverse events included mild gastrointestinal toxicities (diarrhea [46%], constipation [41%], and nausea [38%]) and grade 3/4 cytopenias (thrombocytopenia [29%] and anemia [15%]). The overall response rate (ORR) was 67% (44/66); 42% achieved very good partial response or better (≥VGPR). Median time to progression and duration of response were 9.5 and 9.7 months, respectively. ORR of 97% and ≥VGPR 73% were seen in patients not refractory to bortezomib who had 1 to 3 prior therapies. Patients with high BCL2 expression had a higher ORR (94% [17/18]) than patients with low BCL2 expression (59% [16/27]). This novel combination of venetoclax with bortezomib and dexamethasone has an acceptable safety profile and promising efficacy in patients with relapsed/refractory MM. This trial was registered at www.clinicaltrials.gov as #NCT01794507.


Assuntos
Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Dexametasona/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Sulfonamidas/uso terapêutico , Adulto , Idoso , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bortezomib/administração & dosagem , Bortezomib/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Sulfonamidas/administração & dosagem , Sulfonamidas/efeitos adversos , Resultado do Tratamento
6.
Blood ; 130(22): 2401-2409, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29018077

RESUMO

Venetoclax is a selective, orally bioavailable BCL-2 inhibitor that induces cell death in multiple myeloma (MM) cells, particularly in those harboring t(11;14), which express high levels of BCL-2 relative to BCL-XL and MCL-1. In this phase 1 study, patients with relapsed/refractory MM received venetoclax monotherapy. After a 2-week lead-in with weekly dose escalation, daily venetoclax was given at 300, 600, 900, or 1200 mg in dose-escalation cohorts and 1200 mg in the safety expansion. Dexamethasone could be added on progression during treatment. Sixty-six patients were enrolled (30, dose-escalation cohorts; 36, safety expansion). Patients received a median of 5 prior therapies (range, 1-15); 61% were bortezomib and lenalidomide double refractory, and 46% had t(11;14). Venetoclax was generally well tolerated. Most common adverse events included mild gastrointestinal symptoms (nausea [47%], diarrhea [36%], vomiting [21%]). Cytopenias were the most common grade 3/4 events, with thrombocytopenia (32%), neutropenia (27%), anemia (23%), and leukopenia (23%) reported. The overall response rate (ORR) was 21% (14/66), and 15% achieved very good partial response or better (≥VGPR). Most responses (12/14 [86%]) were reported in patients with t(11;14). In this group, ORR was 40%, with 27% of patients achieving ≥VGPR. Biomarker analysis confirmed that response to venetoclax correlated with higher BCL2:BCL2L1 and BCL2:MCL1 mRNA expression ratios. Venetoclax monotherapy at a daily dose up to 1200 mg has an acceptable safety profile and evidence of single-agent antimyeloma activity in patients with relapsed/refractory MM, predominantly in patients with t(11;14) abnormality and those with a favorable BCL2 family profile. Registered at www.clinicaltrials.gov: #NCT01794520.


Assuntos
Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Sulfonamidas/uso terapêutico , Adulto , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Recidiva Local de Neoplasia/tratamento farmacológico , Sulfonamidas/efeitos adversos , Sulfonamidas/farmacocinética
7.
BMC Cancer ; 17(1): 399, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578655

RESUMO

BACKGROUND: Venetoclax (ABT-199), a first-in-class orally bioavailable BCL-2-selective inhibitor, was recently approved by the FDA for use in patients with 17p-deleted chronic lymphocytic leukemia who have received prior therapy. It is also being evaluated in numerous clinical trials for treating patients with various hematologic malignancies. As with any targeted cancer therapy, it is critically important to identify potential mechanisms of resistance, both for patient stratification and developing strategies to overcome resistance, either before it develops or as it emerges. METHODS: In order to gain a more comprehensive insight into the nature of venetoclax resistance mechanisms, we evaluated the changes in the BCL-2 family members at the genetic and expression levels in seven different venetoclax-resistant derived leukemia and lymphoma cell lines. RESULTS: Gene and protein expression analyses identified a number of different alterations in the expression of pro- and anti-apoptotic BCL-2 family members. In the resistant derived cells, an increase in either or both the anti-apoptotic proteins BCL-XL or MCL-1, which are not targeted by venetoclax was observed, and either concomitant or exclusive with a decrease in one or more pro-apoptotic proteins. In addition, mutational analysis also revealed a mutation in the BH3 binding groove (F104L) that could potentially interfere with venetoclax-binding. Not all changes may be causally related to venetoclax resistance and may only be an epiphenomenon. For resistant cell lines showing elevations in BCL-XL or MCL-1, strong synergistic cell killing was observed when venetoclax was combined with either BCL-XL- or MCL-1-selective inhibitors, respectively. This highlights the importance of BCL-XL- and MCL-1 as causally contributing to venetoclax resistance. CONCLUSIONS: Overall our study identified numerous changes in multiple resistant lines; the changes were neither mutually exclusive nor universal across the cell lines tested, thus exemplifying the complexity and heterogeneity of potential resistance mechanisms. Identifying and evaluating their contribution has important implications for both patient selection and the rational development of strategies to overcome resistance.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia/genética , Leucemia/patologia , Linfoma/genética , Linfoma/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína bcl-X/genética
10.
Mol Cancer ; 14: 126, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26134786

RESUMO

BACKGROUND: Defects in programmed cell death, or apoptosis, are a hallmark of cancer. The anti-apoptotic B-cell lymphoma 2 (BCL-2) family proteins, including BCL-2, BCL-X(L), and MCL-1 have been characterized as key survival factors in multiple cancer types. Because cancer types with BCL2 and MCL1 amplification are more prone to inhibition of their respectively encoded proteins, we hypothesized that cancers with a significant frequency of BCL2L1 amplification would have greater dependency on BCL-X(L) for survival. METHODS: To identify tumor subtypes that have significant frequency of BCL2L1 amplification, we performed data mining using The Cancer Genome Atlas (TCGA) database. We then assessed the dependency on BCL-X(L) in a panel of cell lines using a selective and potent BCL-X(L) inhibitor, A-1155463, and BCL2L1 siRNA. Mechanistic studies on the role of BCL-X(L) were further undertaken via a variety of genetic manipulations. RESULTS: We identified colorectal cancer as having the highest frequency of BCL2L1 amplification across all tumor types examined. Colorectal cancer cell lines with BCL2L1 copy number >3 were more sensitive to A-1155463. Consistently, cell lines with high expression of BCL-XL and NOXA, a pro-apoptotic protein that antagonizes MCL-1 activity were sensitive to A-1155463. Silencing the expression of BCL-X(L) via siRNA killed the cell lines that were sensitive to A-1155463 while having little effect on lines that were resistant. Furthermore, silencing the expression of MCL-1 in resistant cell lines conferred sensitivity to A-1155463, whereas silencing NOXA abrogated sensitivity. CONCLUSIONS: This work demonstrates the utility of characterizing frequent genomic alterations to identify cancer survival genes. In addition, these studies demonstrate the utility of the highly potent and selective compound A-1155463 for investigating the role of BCL-X(L) in mediating the survival of specific tumor types, and indicate that BCL-X(L) inhibition could be an effective treatment for colorectal tumors with high BCL-X(L) and NOXA expression.


Assuntos
Neoplasias Colorretais/genética , Genômica , Proteína bcl-X/genética , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Análise por Conglomerados , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Isoquinolinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
11.
Cancer Cell Int ; 15(1): 5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685063

RESUMO

BACKGROUND: Evasion of apoptosis is a hallmark of cancer cells. One mechanism to deregulate the apoptotic pathway is by upregulation of the anti-apoptotic Bcl-2 family members. Navitoclax (ABT-263) is a Bcl-2/Bcl-xL inhibitor that restores the ability of cancer cells to undergo apoptosis. METHODS: In this study we performed a high-throughput screen with 640 FDA-approved drugs to identify potential therapeutic combinations with navitoclax in a non-small cell lung cancer (NSCLC) cell line. RESULTS: Other than a panel of cancer compounds such as doxorubicin, camptothecin, and docetaxel, four antihelminthic compounds (benzimidazoles) potentiated navitoclax activity. Treatment with benzimidazoles led to induction of the pro-apoptotic protein Noxa at the mRNA and protein level. Noxa binds and antagonizes antiapoptotic protein Mcl-1. siRNA-mediated knock-down of Noxa completely rescued benzimidazole-potentiated navitoclax activity. In addition, inhibiting caspase 3 and 9 partially rescued benzimidazole-potentiated navitoclax activity. CONCLUSIONS: We have identified compounds and mechanisms which potentiate navitoclax activity in lung cancer cell lines. Further validation of the benzimidazole-potentiated navitoclax effect in vivo is required to evaluate the potential for translating this observation into clinical benefit.

12.
Cancer Res Commun ; 3(12): 2497-2509, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37956312

RESUMO

The BCL2 inhibitor venetoclax promotes apoptosis in blood cancer cells and is approved for treatment of chronic lymphocytic leukemia and acute myeloid leukemia. However, multiple myeloma cells are frequently more dependent on MCL-1 for survival, conferring resistance to venetoclax. Here we report that mevalonate pathway inhibition with statins can overcome resistance to venetoclax in multiple myeloma cell lines and primary cells. In addition, statins sensitize to apoptosis induced by MCL-1 inhibitor, S63845. In retrospective analysis of venetoclax clinical studies in multiple myeloma, background statin use was associated with a significantly enhanced rate of stringent complete response and absence of progressive disease. Statins sensitize multiple myeloma cells to venetoclax by upregulating two proapoptotic proteins: PUMA via a p53-independent mechanism and NOXA via the integrated stress response. These findings provide rationale for prospective testing of statins with venetoclax regimens in multiple myeloma. SIGNIFICANCE: BH3 mimetics including venetoclax hold promise for treatment of multiple myeloma but rational combinations are needed to broaden efficacy. This study presents mechanistic and clinical data to support addition of pitavastatin to venetoclax regimens in myeloma. The results open a new avenue for repurposing statins in blood cancer.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Inibidores de Hidroximetilglutaril-CoA Redutases , Mieloma Múltiplo , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Mieloma Múltiplo/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Estudos Retrospectivos , Estudos Prospectivos , Antineoplásicos/farmacologia , Neoplasias Hematológicas/tratamento farmacológico
14.
Nat Med ; 28(3): 557-567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241842

RESUMO

Myelodysplastic syndromes (MDS) are heterogeneous neoplastic disorders of hematopoietic stem cells (HSCs). The current standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, almost 50% of MDS patients fail HMA therapy and progress to acute myeloid leukemia, facing a dismal prognosis due to lack of approved second-line treatment options. As cancer stem cells are the seeds of disease progression, we investigated the biological properties of the MDS HSCs that drive disease evolution, seeking to uncover vulnerabilities that could be therapeutically exploited. Through integrative molecular profiling of HSCs and progenitor cells in large patient cohorts, we found that MDS HSCs in two distinct differentiation states are maintained throughout the clinical course of the disease, and expand at progression, depending on recurrent activation of the anti-apoptotic regulator BCL-2 or nuclear factor-kappa B-mediated survival pathways. Pharmacologically inhibiting these pathways depleted MDS HSCs and reduced tumor burden in experimental systems. Further, patients with MDS who progressed after failure to frontline HMA therapy and whose HSCs upregulated BCL-2 achieved improved clinical responses to venetoclax-based therapy in the clinical setting. Overall, our study uncovers that HSC architectures in MDS are potential predictive biomarkers to guide second-line treatments after HMA failure. These findings warrant further investigation of HSC-specific survival pathways to identify new therapeutic targets of clinical potential in MDS.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Síndromes Mielodisplásicas , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Células-Tronco Hematopoéticas/patologia , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas
15.
Blood Adv ; 5(23): 5410-5414, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34555843

RESUMO

The covalent inhibitor of Bruton's tyrosine kinase ibrutinib and the specific Bcl-2 inhibitor venetoclax are both highly efficacious single-agent drugs in the treatment of chronic lymphocytic leukemia (CLL). Based on their complementary modes of action, ibrutinib and venetoclax are hypothesized to act in a synergistic fashion. Currently, it is unclear whether combined treatment is indeed superior to continuous single-agent treatment and what mechanisms underlie the resistance to combination treatment. In addition, the effects of such treatment on the skewed T-cell compartment characteristic of CLL are as yet unknown. In the murine Eµ-TCL1 adoptive transfer model resembling aggressive CLL, we found that combined treatment resulted in the deepest responses, with the longest duration related to a combination of decreased proliferation and increased induction of apoptosis. In addition, alterations in T-cell subsets were most prominent after combination treatment, with increased naive cells and reduced effector memory cells. Remarkably, effects of single agents but also combination treatment were eventually interrupted by relapse, and we found downregulation of BIM expression as a plausible cause of acquired drug resistance. Nevertheless, in this murine model, the combination of venetoclax and ibrutinib has increased efficacy over single agents, accompanied by a restoration of the T-cell compartment.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adenina/análogos & derivados , Animais , Compostos Bicíclicos Heterocíclicos com Pontes , Modelos Animais de Doenças , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Camundongos , Piperidinas , Proteínas Proto-Oncogênicas , Pirazóis , Pirimidinas , Sulfonamidas
16.
Cell Death Dis ; 12(11): 1005, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707089

RESUMO

BH3 mimetics are increasingly used as anti-cancer therapeutics either alone or in conjunction with other chemotherapies. However, mounting evidence has also demonstrated that BH3 mimetics modulate varied amounts of apoptotic signaling in healthy immune populations. In order to maximize their clinical potential, it will be essential to understand how BH3 mimetics affect discrete immune populations and to determine how BH3 mimetic pressure causes immune system adaptation. Here we focus on the BCL-2 specific inhibitor venetoclax (ABT-199) and its effects following short-term and long-term BCL-2 blockade on T cell subsets. Seven day "short-term" ex vivo and in vivo BCL-2 inhibition led to divergent cell death sensitivity patterns in CD8+ T cells, CD4+ T cells, and Tregs resulting in shifting of global T cell populations towards a more memory T cell state with increased expression of BCL-2, BCL-XL, and MCL-1. However, twenty-eight day "long-term" BCL-2 blockade following T cell-depleted bone marrow transplantation did not lead to changes in the global T cell landscape. Despite the lack of changes in T cell proportions, animals treated with venetoclax developed CD8+ and CD4+ T cells with high levels of BCL-2 and were more resistant to apoptotic stimuli following expansion post-transplant. Further, we demonstrate through RNA profiling that T cells adapt while under BCL-2 blockade post-transplant and develop a more activated genotype. Taken together, these data emphasize the importance of evaluating how BH3 mimetics affect the immune system in different treatment modalities and disease contexts and suggest that venetoclax should be further explored as an immunomodulatory compound.


Assuntos
Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Morte Celular/efeitos dos fármacos , Células T de Memória/efeitos dos fármacos , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Sulfonamidas/farmacologia
17.
Cancers (Basel) ; 13(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065859

RESUMO

Synovial sarcoma (SS) is frequently diagnosed in teenagers and young adults and continues to be treated with polychemotherapy with variable success. The SS18-SSX gene fusion is pathognomonic for the disease, and high expression of the anti-apoptotic BCL-2 pathologically supports the diagnosis. As the oncogenic SS18-SSX fusion gene itself is not druggable, BCL-2 inhibitor-based therapies are an appealing therapeutic opportunity. Venetoclax, an FDA-approved BCL-2 inhibitor that is revolutionizing care in some BCL-2-expressing hematological cancers, affords an intriguing therapeutic possibility to treat SS. In addition, there are now dozens of venetoclax-based combination therapies in clinical trials in hematological cancers, attributing to the limited toxicity of venetoclax. However, preclinical studies of venetoclax in SS have demonstrated an unexpected ineffectiveness. In this study, we analyzed the response of SS to venetoclax and the underlying BCL-2 family biology in an effort to understand venetoclax treatment failure and find a therapeutic strategy to sensitize SS to venetoclax. We found remarkably depressed levels of the endogenous MCL-1 inhibitor, NOXA, in SS compared to other sarcomas. Expressing NOXA led to sensitization to venetoclax, as did the addition of the MCL-1 BH3 mimetic, S63845. Importantly, the venetoclax/S63845 combination induced tumor regressions in SS patient-derived xenograft (PDX) models. As a very close analog of S63845 (S64315) is now in clinical trials with venetoclax in AML (NCT03672695), the combination of MCL-1 BH3 mimetics and venetoclax should be considered for SS patients as a new therapy.

18.
ACS Med Chem Lett ; 12(6): 1011-1016, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34141086

RESUMO

BCL-XL, an antiapoptotic member of the BCL-2 family of proteins, drives tumor survival and maintenance and thus represents a key target for cancer treatment. Herein we report the rational design of a novel series of selective BCL-XL inhibitors exemplified by A-1293102. This molecule contains structural elements of selective BCL-XL inhibitor A-1155463 and the dual BCL-XL/BCL-2 inhibitors ABT-737 and navitoclax, while representing a distinct pharmacophore as assessed by an objective cheminformatic evaluation. A-1293102 exhibited picomolar binding affinity to BCL-XL and both efficiently and selectively killed BCL-XL-dependent tumor cells. X-ray crystallographic analysis demonstrated a key hydrogen bonding network in the P2 binding pocket of BCL-XL, while the bent-back moiety achieved efficient occupancy of the P4 pocket in a manner similar to that of navitoclax. A-1293102 represents one of the few distinct structural series of selective BCL-XL inhibitors, and thus serves as a useful tool for biological studies as well as a lead compound for further optimization.

19.
Cancer Discov ; 11(1): 68-79, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887697

RESUMO

The antiapoptotic protein BCL2 plays critical roles in regulating lymphocyte development and immune responses, and has also been implicated in tumorigenesis and tumor survival. However, it is unknown whether BCL2 is critical for antitumor immune responses. We evaluated whether venetoclax, a selective small-molecule inhibitor of BCL2, would influence the antitumor activity of immune checkpoint inhibitors (ICI). We demonstrate in mouse syngeneic tumor models that venetoclax can augment the antitumor efficacy of ICIs accompanied by the increase of PD-1+ T effector memory cells. Venetoclax did not impair human T-cell function in response to antigen stimuli in vitro and did not antagonize T-cell activation induced by anti-PD-1. Furthermore, we demonstrate that the antiapoptotic family member BCL-XL provides a survival advantage in effector T cells following inhibition of BCL2. Taken together, these data provide evidence that venetoclax should be further explored in combination with ICIs for cancer therapy. SIGNIFICANCE: The antiapoptotic oncoprotein BCL2 plays critical roles in tumorigenesis, tumor survival, lymphocyte development, and immune system regulation. Here we demonstrate that venetoclax, the first FDA/European Medicines Agency-approved BCL2 inhibitor, unexpectedly can be combined preclinically with immune checkpoint inhibitors to enhance anticancer immunotherapy, warranting clinical evaluation of these combinations.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Inibidores de Checkpoint Imunológico , Linfócitos T , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sulfonamidas/farmacologia
20.
ACS Med Chem Lett ; 12(7): 1108-1115, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267880

RESUMO

Cyclin-dependent kinase 9 (CDK9) is a serine/threonine kinase involved in the regulation of transcription elongation. An inhibition of CDK9 downregulates a number of short-lived proteins responsible for tumor maintenance and survival, including the antiapoptotic BCL-2 family member MCL-1. As pan-CDK inhibitors under development have faced dosing and toxicity challenges in the clinical setting, we generated selective CDK9 inhibitors that could be amenable to an oral administration. Here, we report the lead optimization of a series of azaindole-based inhibitors. To overcome early challenges with promiscuity and cardiovascular toxicity, carboxylates were introduced into the pharmacophore en route to compounds such as 14 and 16. These CDK9 inhibitors demonstrated a reduced toxicity, adequate pharmacokinetic properties, and a robust in vivo efficacy in mice upon oral dosing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA