Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(4): 843-855.e19, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30017245

RESUMO

Many patients with advanced cancers achieve dramatic responses to a panoply of therapeutics yet retain minimal residual disease (MRD), which ultimately results in relapse. To gain insights into the biology of MRD, we applied single-cell RNA sequencing to malignant cells isolated from BRAF mutant patient-derived xenograft melanoma cohorts exposed to concurrent RAF/MEK-inhibition. We identified distinct drug-tolerant transcriptional states, varying combinations of which co-occurred within MRDs from PDXs and biopsies of patients on treatment. One of these exhibited a neural crest stem cell (NCSC) transcriptional program largely driven by the nuclear receptor RXRG. An RXR antagonist mitigated accumulation of NCSCs in MRD and delayed the development of resistance. These data identify NCSCs as key drivers of resistance and illustrate the therapeutic potential of MRD-directed therapy. They also highlight how gene regulatory network architecture reprogramming may be therapeutically exploited to limit cellular heterogeneity, a key driver of disease progression and therapy resistance.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/tratamento farmacológico , Neoplasia Residual/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor X Retinoide gama/antagonistas & inibidores , Animais , Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , Masculino , Melanoma/metabolismo , Melanoma/patologia , Camundongos SCID , Mutação , Neoplasia Residual/metabolismo , Neoplasia Residual/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
EMBO J ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719996

RESUMO

Extracellular vesicles (EVs) are important mediators of communication between cells. Here, we reveal a new mode of intercellular communication by melanosomes, large EVs secreted by melanocytes for melanin transport. Unlike small EVs, which are disintegrated within the receiver cell, melanosomes stay intact within them, gain a unique protein signature, and can then be further transferred to another cell as "second-hand" EVs. We show that melanoma-secreted melanosomes passaged through epidermal keratinocytes or dermal fibroblasts can be further engulfed by resident macrophages. This process leads to macrophage polarization into pro-tumor or pro-immune cell infiltration phenotypes. Melanosomes that are transferred through fibroblasts can carry AKT1, which induces VEGF secretion from macrophages in an mTOR-dependent manner, promoting angiogenesis and metastasis in vivo. In melanoma patients, macrophages that are co-localized with AKT1 are correlated with disease aggressiveness, and immunotherapy non-responders are enriched in macrophages containing melanosome markers. Our findings suggest that interactions mediated by second-hand extracellular vesicles contribute to the formation of the metastatic niche, and that blocking the melanosome cues of macrophage diversification could be helpful in halting melanoma progression.

3.
Nature ; 592(7852): 138-143, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731925

RESUMO

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Assuntos
Antígenos de Bactérias/análise , Antígenos de Bactérias/imunologia , Bactérias/imunologia , Antígenos HLA/imunologia , Melanoma/imunologia , Melanoma/microbiologia , Peptídeos/análise , Peptídeos/imunologia , Apresentação de Antígeno , Bactérias/classificação , Bactérias/genética , Linhagem Celular Tumoral , Técnicas de Cocultura , Antígenos HLA/análise , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/patologia , Metástase Neoplásica/imunologia , Filogenia , RNA Ribossômico 16S/genética
4.
PLoS Biol ; 20(2): e3001317, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35192608

RESUMO

Cell invasion is an initiating event during tumor cell metastasis and an essential process during development. A screen of C. elegans orthologs of genes overexpressed in invasive human melanoma cells has identified several components of the conserved DNA pre-replication complex (pre-RC) as positive regulators of anchor cell (AC) invasion. The pre-RC genes function cell-autonomously in the G1-arrested AC to promote invasion, independently of their role in licensing DNA replication origins in proliferating cells. While the helicase activity of the pre-RC is necessary for AC invasion, the downstream acting DNA replication initiation factors are not required. The pre-RC promotes the invasive fate by regulating the expression of extracellular matrix genes and components of the PI3K signaling pathway. Increasing PI3K pathway activity partially suppressed the AC invasion defects caused by pre-RC depletion, suggesting that the PI3K pathway is one critical pre-RC target. We propose that the pre-RC, or a part of it, acts in the postmitotic AC as a transcriptional regulator that facilitates the switch to an invasive phenotype.


Assuntos
Caenorhabditis elegans/genética , Ciclo Celular/genética , Movimento Celular/genética , Replicação do DNA/genética , Origem de Replicação/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Larva/citologia , Larva/genética , Larva/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Vulva/citologia , Vulva/metabolismo
5.
Cell Mol Life Sci ; 81(1): 90, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353833

RESUMO

Extracellular vesicles (EVs) are important players in melanoma progression, but their use as clinical biomarkers has been limited by the difficulty of profiling blood-derived EV proteins with high depth of coverage, the requirement for large input amounts, and complex protocols. Here, we provide a streamlined and reproducible experimental workflow to identify plasma- and serum- derived EV proteins of healthy donors and melanoma patients using minimal amounts of sample input. SEC-DIA-MS couples size-exclusion chromatography to EV concentration and deep-proteomic profiling using data-independent acquisition. From as little as 200 µL of plasma per patient in a cohort of three healthy donors and six melanoma patients, we identified and quantified 2896 EV-associated proteins, achieving a 3.5-fold increase in depth compared to previously published melanoma studies. To compare the EV-proteome to unenriched blood, we employed an automated workflow to deplete the 14 most abundant proteins from plasma and serum and thereby approximately doubled protein group identifications versus native blood. The EV proteome diverged from corresponding unenriched plasma and serum, and unlike the latter, separated healthy donor and melanoma patient samples. Furthermore, known melanoma markers, such as MCAM, TNC, and TGFBI, were upregulated in melanoma EVs but not in depleted melanoma plasma, highlighting the specific information contained in EVs. Overall, EVs were significantly enriched in intact membrane proteins and proteins related to SNARE protein interactions and T-cell biology. Taken together, we demonstrated the increased sensitivity of an EV-based proteomic workflow that can be easily applied to larger melanoma cohorts and other indications.


Assuntos
Vesículas Extracelulares , Melanoma , Humanos , Proteoma , Proteômica , Cromatografia em Gel
6.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37220897

RESUMO

SUMMARY: Recently, CITE-seq emerged as a multimodal single-cell technology capturing gene expression and surface protein information from the same single cells, which allows unprecedented insights into disease mechanisms and heterogeneity, as well as immune cell profiling. Multiple single-cell profiling methods exist, but they are typically focused on either gene expression or antibody analysis, not their combination. Moreover, existing software suites are not easily scalable to a multitude of samples. To this end, we designed gExcite, a start-to-end workflow that provides both gene and antibody expression analysis, as well as hashing deconvolution. Embedded in the Snakemake workflow manager, gExcite facilitates reproducible and scalable analyses. We showcase the output of gExcite on a study of different dissociation protocols on PBMC samples. AVAILABILITY AND IMPLEMENTATION: gExcite is open source available on github at https://github.com/ETH-NEXUS/gExcite_pipeline. The software is distributed under the GNU General Public License 3 (GPL3).


Assuntos
Leucócitos Mononucleares , Software , Fluxo de Trabalho , Expressão Gênica , Análise de Célula Única
7.
Mol Syst Biol ; 19(9): e11503, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37602975

RESUMO

Single-cell proteomics aims to characterize biological function and heterogeneity at the level of proteins in an unbiased manner. It is currently limited in proteomic depth, throughput, and robustness, which we address here by a streamlined multiplexed workflow using data-independent acquisition (mDIA). We demonstrate automated and complete dimethyl labeling of bulk or single-cell samples, without losing proteomic depth. Lys-N digestion enables five-plex quantification at MS1 and MS2 level. Because the multiplexed channels are quantitatively isolated from each other, mDIA accommodates a reference channel that does not interfere with the target channels. Our algorithm RefQuant takes advantage of this and confidently quantifies twice as many proteins per single cell compared to our previous work (Brunner et al, PMID 35226415), while our workflow currently allows routine analysis of 80 single cells per day. Finally, we combined mDIA with spatial proteomics to increase the throughput of Deep Visual Proteomics seven-fold for microdissection and four-fold for MS analysis. Applying this to primary cutaneous melanoma, we discovered proteomic signatures of cells within distinct tumor microenvironments, showcasing its potential for precision oncology.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Proteoma , Proteômica , Medicina de Precisão , Microambiente Tumoral
8.
Clin Proteomics ; 21(1): 26, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565978

RESUMO

BACKGROUND: Clinical samples are irreplaceable, and their transformation into searchable and reusable digital biobanks is critical for conducting statistically empowered retrospective and integrative research studies. Currently, mainly data-independent acquisition strategies are employed to digitize clinical sample cohorts comprehensively. However, the sensitivity of DIA is limited, which is why selected marker candidates are often additionally measured targeted by parallel reaction monitoring. METHODS: Here, we applied the recently co-developed hybrid-PRM/DIA technology as a new intelligent data acquisition strategy that allows for the comprehensive digitization of rare clinical samples at the proteotype level. Hybrid-PRM/DIA enables enhanced measurement sensitivity for a specific set of analytes of current clinical interest by the intelligent triggering of multiplexed parallel reaction monitoring (MSxPRM) in combination with the discovery-driven digitization of the clinical biospecimen using DIA. Heavy-labeled reference peptides were utilized as triggers for MSxPRM and monitoring of endogenous peptides. RESULTS: We first evaluated hybrid-PRM/DIA in a clinical context on a pool of 185 selected proteotypic peptides for tumor-associated antigens derived from 64 annotated human protein groups. We demonstrated improved reproducibility and sensitivity for the detection of endogenous peptides, even at lower concentrations near the detection limit. Up to 179 MSxPRM scans were shown not to affect the overall DIA performance. Next, we applied hybrid-PRM/DIA for the integrated digitization of biobanked melanoma samples using a set of 30 AQUA peptides against 28 biomarker candidates with relevance in molecular tumor board evaluations of melanoma patients. Within the DIA-detected approximately 6500 protein groups, the selected marker candidates such as UFO, CDK4, NF1, and PMEL could be monitored consistently and quantitatively using MSxPRM scans, providing additional confidence for supporting future clinical decision-making. CONCLUSIONS: Combining PRM and DIA measurements provides a new strategy for the sensitive and reproducible detection of protein markers from patients currently being discussed in molecular tumor boards in combination with the opportunity to discover new biomarker candidates.

9.
Br J Dermatol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916477

RESUMO

BACKGROUND: Basal cell carcinoma (BCC) is the most frequently diagnosed skin cancer and the most common malignancy in humans. Different morphological subtypes of BCC are associated with low- or high-risk of recurrence and aggressiveness, but the underlying biology of how the individual subtypes arise remains largely unknown. Because the majority of BCCs appear to arise from mutations in the same pathway, we hypothesized that BCC development, growth and invasive potential is also influenced by the tumor microenvironment and in particular by cancer-associated fibroblasts (CAFs) and their secreted factors. OBJECTIVE: We aimed to characterize the stroma of the different BCC subtypes with a focus on CAF populations. METHODS: To investigate the stromal features of the different BCC subtypes, we applied laser-capture microdissection (LCM) followed by RNA sequencing. A cohort of 15 BCC samples from 5 different "pure" subtypes (superficial, nodular, micronodular, sclerosing and basosquamous; n=3 each) were selected and included in the analysis. Healthy skin was used as a control (n=6). We confirmed the results by immunohistochemistry. We validated our findings in two independent, public single-cell RNA sequencing (scRNAseq) datasets and by RNAscope. RESULTS: The stroma of the different BCC subtypes have distinct gene expression signatures. Nodular and micronodular seem to have the most similar signatures, while superficial and sclerosing the most different. By comparing low- and high-risk BCC subtypes, we observed that Collagen 10A1 (COL10A1) is overexpressed in the stroma of sclerosing/infiltrative and basosquamous but not micronodular high-risk subtypes. Those findings were confirmed by immunohistochemistry in a cohort of 89 different BCC and 13 healthy skin samples. Moreover, scRNAseq analysis of BCCs of two independent datasets showed that the COL10A1-expressing population of cells is associated with the stroma adjacent to invasive BCC and shows extracellular matrix remodeling features. CONCLUSION: We identified COL10A1 as a marker of high-risk BCC, in particular of the sclerosing/infiltrative and basosquamous subtypes. We demonstrated at the single cell level that COL10A1 is expressed by a specific CAF population associated with the stroma of invasive BCC. This opens up new tailored treatment options as well as a new prognostic biomarker for BCC progression.

10.
EMBO J ; 38(15): e95874, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31267558

RESUMO

MAPK inhibitors (MAPKi) show outstanding clinical response rates in melanoma patients harbouring BRAF mutations, but resistance is common. The ability of melanoma cells to switch from melanocytic to mesenchymal phenotypes appears to be associated with therapeutic resistance. High-throughput, subcellular proteome analyses and RNAseq on two panels of primary melanoma cells that were either sensitive or resistant to MAPKi revealed that only 15 proteins were sufficient to distinguish between these phenotypes. The two proteins with the highest discriminatory power were PTRF and IGFBP7, which were both highly upregulated in the mesenchymal-resistant cells. Proteomic analysis of CRISPR/Cas-derived PTRF knockouts revealed targets involved in lysosomal activation, endocytosis, pH regulation, EMT, TGFß signalling and cell migration and adhesion, as well as a significantly reduced invasive index and ability to form spheres in 3D culture. Overexpression of PTRF led to MAPKi resistance, increased cell adhesion and sphere formation. In addition, immunohistochemistry of patient samples showed that PTRF expression levels were a significant biomarker of poor progression-free survival, and IGFBP7 levels in patient sera were shown to be higher after relapse.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Proteínas de Ligação a RNA/metabolismo , Adulto , Idoso , Carbamatos/farmacologia , Adesão Celular , Linhagem Celular Tumoral , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/sangue , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , Análise de Sequência de RNA , Sulfonamidas/farmacologia , Análise de Sobrevida , Regulação para Cima , Vemurafenib/farmacologia
11.
Nature ; 547(7664): 453-457, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28678785

RESUMO

Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFß-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.


Assuntos
Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Caderinas/metabolismo , Morte Celular , Linhagem Celular Tumoral , Linhagem da Célula , Transdiferenciação Celular , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal , Humanos , Ferro/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Melanoma/metabolismo , Melanoma/patologia , Mesoderma/efeitos dos fármacos , Mesoderma/enzimologia , Mesoderma/metabolismo , Mesoderma/patologia , Neoplasias/genética , Neoplasias/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteômica , Proteínas Proto-Oncogênicas B-raf/genética , Reprodutibilidade dos Testes , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
12.
J Eur Acad Dermatol Venereol ; 37(5): 922-931, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36785973

RESUMO

BACKGROUND: The COVID-19 lockdown had a dramatic impact on primary care access and resulted in postponed skin cancer screenings. This raises concerns for a diagnostic delay on primary cutaneous melanomas, which can subsequently increase morbidity and mortality. OBJECTIVES: The aim of the study was to investigate the impact of the COVID-19-related restrictions on the melanoma diagnosis in five European skin cancer reference centres in Switzerland, Germany, Austria and Italy. METHODS: A total of 7865 cutaneous melanoma cases were collected between 01 September 2018 and 31 August 2021. The time period was stratified into pre-COVID (pre-lockdown) and post-COVID (lockdown and post-lockdown) according to the established restrictions in each country. The data collection included demographic, clinical and histopathological data from histologically confirmed cutaneous melanomas. Personal and family history of melanoma, and presence of immunosuppression were used to assess the diagnosis delay in high-risk individuals. RESULTS: There was an overall increase of the Breslow tumour thickness (mean 1.25 mm vs. 1.02 mm) during the post-COVID period, as well as an increase in the proportion of T3-T4 melanomas, rates of ulceration and the number of mitotic rates ≥2 (all, p < 0.001). Patients with immunosuppression and personal history of melanoma showed a decrease in the mean log10-transformed Breslow during lockdown and post-COVID. In the multivariate analysis, age at melanoma diagnosis (p < 0.01) and personal history of melanoma (p < 0.01) showed significant differences in the mean Breslow thickness. CONCLUSIONS: The study confirms the diagnostic delay in cutaneous melanomas due to the COVID-19 lockdown. High-risk individuals, such as patients with personal history of melanoma and elderly individuals, were more hesitant to restart their regular skin cancer screenings post-COVID. Further studies with longer follow-up are required to evaluate the consequences of this diagnostic delay in long-term outcomes.


Assuntos
COVID-19 , Melanoma , Neoplasias Cutâneas , Humanos , Idoso , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/patologia , Melanoma/diagnóstico , Melanoma/epidemiologia , Melanoma/patologia , Estudos Retrospectivos , Diagnóstico Tardio , Pandemias , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Teste para COVID-19 , Melanoma Maligno Cutâneo
13.
Allergy ; 77(2): 595-608, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34157151

RESUMO

BACKGROUND: Coronavirus disease-2019 (COVID-19) has been associated with cutaneous findings, some being the result of drug hypersensitivity reactions such as maculopapular drug rashes (MDR). The aim of this study was to investigate whether COVID-19 may impact the development of the MDR. METHODS: Blood and skin samples from COVID-19 patients (based on a positive nasopharyngeal PCR) suffering from MDR (COVID-MDR), healthy controls, non-COVID-19-related patients with drug rash with eosinophilia and systemic symptoms (DRESS), and MDR were analyzed. We utilized imaging mass cytometry (IMC) to characterize the cellular infiltrate in skin biopsies. Furthermore, RNA sequencing transcriptome of skin biopsy samples and high-throughput multiplexed proteomic profiling of serum were performed. RESULTS: IMC revealed by clustering analyses a more prominent, phenotypically shifted cytotoxic CD8+ T cell population and highly activated monocyte/macrophage (Mo/Mac) clusters in COVID-MDR. The RNA sequencing transcriptome demonstrated a more robust cytotoxic response in COVID-MDR skin. However, severe acute respiratory syndrome coronavirus 2 was not detected in skin biopsies at the time point of MDR diagnosis. Serum proteomic profiling of COVID-MDR patients revealed upregulation of various inflammatory mediators (IL-4, IL-5, IL-6, TNF, and IFN-γ), eosinophil and Mo/Mac -attracting chemokines (MCP-2, MCP-3, MCP-4 and CCL11). Proteomics analyses demonstrated a massive systemic cytokine storm in COVID-MDR compared with the relatively milder cytokine storm observed in DRESS, while MDR did not exhibit such features. CONCLUSION: A systemic cytokine storm may promote activation of Mo/Mac and cytotoxic CD8+ T cells in severe COVID-19 patients, which in turn may impact the development of MDR.


Assuntos
COVID-19 , Exantema , Preparações Farmacêuticas , Linfócitos T CD8-Positivos , Humanos , Proteômica , SARS-CoV-2
14.
RNA Biol ; 19(1): 996-1006, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993275

RESUMO

RNA editing refers to non-transient RNA modifications that occur after transcription and prior to translation by the ribosomes. RNA editing is more widespread in cancer cells than in non-transformed cells and is associated with tumorigenesis of various cancer tissues. However, RNA editing can also generate neo-antigens that expose tumour cells to host immunosurveillance. Global RNA editing in melanoma and its relevance to clinical outcome currently remain poorly characterized. The present study compared RNA editing as well as gene expression in tumour cell lines from melanoma patients of short or long metastasis-free survival, patients relapsing or not after immuno- and targeted therapy and tumours harbouring BRAF or NRAS mutations. Overall, our results showed that NTRK gene expression can be a marker of resistance to BRAF and MEK inhibition and gives some insights of candidate genes as potential biomarkers. In addition, this study revealed an increase in Adenosine-to-Inosine editing in Alu regions and in non-repetitive regions, including the hyperediting of the MOK and DZIP3 genes in relapsed tumour samples during targeted therapy and of the ZBTB11 gene in NRAS mutated melanoma cells. Therefore, RNA editing could be a promising tool for identifying predictive markers, tumour neoantigens and targetable pathways that could help in preventing relapses during immuno- or targeted therapies.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Humanos , Melanoma/genética , Melanoma/terapia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
Lab Invest ; 101(12): 1561-1570, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34446805

RESUMO

CD8+ tumor-infiltrating T cells can be regarded as one of the most relevant predictive biomarkers in immune-oncology. Highly infiltrated tumors, referred to as inflamed (clinically "hot"), show the most favorable response to immune checkpoint inhibitors in contrast to tumors with a scarce immune infiltrate called immune desert or excluded (clinically "cold"). Nevertheless, quantitative and reproducible methods examining their prevalence within tumors are lacking. We therefore established a computational diagnostic algorithm to quantitatively measure spatial densities of tumor-infiltrating CD8+ T cells by digital pathology within the three known tumor compartments as recommended by the International Immuno-Oncology Biomarker Working Group in 116 prospective metastatic melanomas of the Swiss Tumor Profiler cohort. Workflow robustness was confirmed in 33 samples of an independent retrospective validation cohort. The introduction of the intratumoral tumor center compartment proved to be most relevant for establishing an immune diagnosis in metastatic disease, independent of metastatic site. Cut-off values for reproducible classification were defined and successfully assigned densities into the respective immune diagnostic category in the validation cohort with high sensitivity, specificity, and precision. We provide a robust diagnostic algorithm based on intratumoral and stromal CD8+ T-cell densities in the tumor center compartment that translates spatial densities of tumor-infiltrating CD8+ T cells into the clinically relevant immune diagnostic categories "inflamed", "excluded", and "desert". The consideration of the intratumoral tumor center compartment allows immune phenotyping in the clinically highly relevant setting of metastatic lesions, even if the invasive margin compartment is not captured in biopsy material.


Assuntos
Linfócitos T CD8-Positivos , Processamento de Imagem Assistida por Computador , Imunofenotipagem/métodos , Melanoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aprendizado Profundo , Feminino , Humanos , Masculino , Melanoma/imunologia , Pessoa de Meia-Idade
16.
Brief Bioinform ; 20(3): 778-788, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29272324

RESUMO

Molecular profiling of tumor biopsies plays an increasingly important role not only in cancer research, but also in the clinical management of cancer patients. Multi-omics approaches hold the promise of improving diagnostics, prognostics and personalized treatment. To deliver on this promise of precision oncology, appropriate bioinformatics methods for managing, integrating and analyzing large and complex data are necessary. Here, we discuss the specific requirements of bioinformatics methods and software that arise in the setting of clinical oncology, owing to a stricter regulatory environment and the need for rapid, highly reproducible and robust procedures. We describe the workflow of a molecular tumor board and the specific bioinformatics support that it requires, from the primary analysis of raw molecular profiling data to the automatic generation of a clinical report and its delivery to decision-making clinical oncologists. Such workflows have to various degrees been implemented in many clinical trials, as well as in molecular tumor boards at specialized cancer centers and university hospitals worldwide. We review these and more recent efforts to include other high-dimensional multi-omics patient profiles into the tumor board, as well as the state of clinical decision support software to translate molecular findings into treatment recommendations.


Assuntos
Biologia Computacional , Oncologia , Medicina de Precisão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
17.
Histopathology ; 77(3): 460-470, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32374893

RESUMO

AIMS: Despite their low individual metastatic potential, thin melanomas (≤1 mm Breslow thickness) contribute significantly to melanoma mortality overall. Therefore, identification of prognostic biomarkers is particularly important in this subgroup of melanoma. Prompted by preclinical results, we investigated cyclin D1 protein and Ki-67 expression in in-situ, metastatic and non-metastatic thin melanomas. METHODS AND RESULTS: Immunohistochemistry was performed on 112 melanoma specimens, comprising 22 in situ, 48 non-metastatic and 42 metastatic thin melanomas. Overall, epidermal and dermal cyclin D1 and Ki-67 expression were semiquantitatively evaluated by three independent investigators and compared between groups. Epidermal Ki-67 expression did not differ statistically in in-situ and invasive melanoma (P = 0.7). Epidermal cyclin D1 expression was significantly higher in thin invasive than in in-situ melanoma (P = 0.003). No difference was found in cyclin D1 expression between metastatic and non-metastatic invasive tumours. Metastatic and non-metastatic thin melanomas did not show significant differences in epidermal expression of Ki-67 and cyclin D1 (P = 0.148 and P = 0.611, respectively). In contrast, strong dermal expression of Ki-67 was more frequent in metastatic than non-metastatic samples (28.6 versus 8.3%, respectively, P = 0.001). The prognostic value of dermal Ki-67 expression was confirmed by multivariate analysis (P = 0.047). CONCLUSION: We found an increased expression of cyclin D1 in invasive thin melanomas compared to in-situ melanomas, which supports a potential role of this protein in early invasion in melanoma, as suggested by preclinical findings. Moreover, our results confirm that high dermal Ki-67 expression is associated with an increased risk of development of metastasis in thin melanoma and could possibly serve as a prognostic biomarker in clinical practice, especially if combined with additional methods.


Assuntos
Biomarcadores Tumorais/análise , Ciclina D1/metabolismo , Antígeno Ki-67/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/patologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Prognóstico , Melanoma Maligno Cutâneo
18.
Nat Chem Biol ; 14(1): 94-101, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29083417

RESUMO

Wnt (wingless)/ß-catenin signaling is critical for tumor progression and is frequently activated in colorectal cancer as a result of the mutation of adenomatous polyposis coli (APC); however, therapeutic agents targeting this pathway for clinical use are lacking. Here we report that nitazoxanide (NTZ), a clinically approved antiparasitic drug, efficiently inhibits Wnt signaling independent of APC. Using chemoproteomic approaches, we have identified peptidyl arginine deiminase 2 (PAD2) as the functional target of NTZ in Wnt inhibition. By targeting PAD2, NTZ increased the deamination (citrullination) and turnover of ß-catenin in colon cancer cells. Replacement of arginine residues disrupted the transcriptional activity, and NTZ induced degradation of ß-catenin. In Wnt-activated colon cancer cells, knockout of either PAD2 or ß-catenin substantially increased resistance to NTZ treatment. Our data highlight the potential of NTZ as a modulator of ß-catenin citrullination for the treatment of cancer patients with Wnt pathway mutations.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Tiazóis/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Citrulinação , Neoplasias do Colo/patologia , Técnicas de Inativação de Genes , Humanos , Nitrocompostos , Proteína-Arginina Desiminase do Tipo 2 , Desiminases de Arginina em Proteínas/genética , Via de Sinalização Wnt/genética , beta Catenina/genética
19.
Bioinformatics ; 34(1): 107-108, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968639

RESUMO

Motivation: Next-generation sequencing is now an established method in genomics, and massive amounts of sequencing data are being generated on a regular basis. Analysis of the sequencing data is typically performed by lab-specific in-house solutions, but the agreement of results from different facilities is often small. General standards for quality control, reproducibility and documentation are missing. Results: We developed NGS-pipe, a flexible, transparent and easy-to-use framework for the design of pipelines to analyze whole-exome, whole-genome and transcriptome sequencing data. NGS-pipe facilitates the harmonization of genomic data analysis by supporting quality control, documentation, reproducibility, parallelization and easy adaptation to other NGS experiments. Availability and implementation: https://github.com/cbg-ethz/NGS-pipe. Contact: niko.beerenwinkel@bsse.ethz.ch.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Software , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Neoplasias/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA/normas , Análise de Sequência de RNA/normas
20.
Nature ; 494(7436): 251-5, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23302800

RESUMO

Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, with ≥50% of tumours expressing the BRAF(V600E) oncoprotein. Moreover, the marked tumour regression and improved survival of late-stage BRAF-mutated melanoma patients in response to treatment with vemurafenib demonstrates the essential role of oncogenic BRAF in melanoma maintenance. However, as most patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is critical to providing improved therapy. Here we investigate the cause and consequences of vemurafenib resistance using two independently derived primary human melanoma xenograft models in which drug resistance is selected by continuous vemurafenib administration. In one of these models, resistant tumours show continued dependency on BRAF(V600E)→MEK→ERK signalling owing to elevated BRAF(V600E) expression. Most importantly, we demonstrate that vemurafenib-resistant melanomas become drug dependent for their continued proliferation, such that cessation of drug administration leads to regression of established drug-resistant tumours. We further demonstrate that a discontinuous dosing strategy, which exploits the fitness disadvantage displayed by drug-resistant cells in the absence of the drug, forestalls the onset of lethal drug-resistant disease. These data highlight the concept that drug-resistant cells may also display drug dependency, such that altered dosing may prevent the emergence of lethal drug resistance. Such observations may contribute to sustaining the durability of the vemurafenib response with the ultimate goal of curative therapy for the subset of melanoma patients with BRAF mutations.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indóis/administração & dosagem , Indóis/efeitos adversos , Melanoma/tratamento farmacológico , Melanoma/patologia , Sulfonamidas/administração & dosagem , Sulfonamidas/efeitos adversos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Esquema de Medicação , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Transplante de Neoplasias , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Tela Subcutânea , Sulfonamidas/farmacologia , Fatores de Tempo , Vemurafenib , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA