Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
2.
Biochemistry ; 55(21): 2944-59, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27163633

RESUMO

Human APOBEC3B (A3B) is a member of the APOBEC3 (A3) family of cytidine deaminases, which function as DNA mutators and restrict viral pathogens and endogenous retrotransposons. Recently, A3B was identified as a major source of genetic heterogeneity in several human cancers. Here, we determined the solution nuclear magnetic resonance structure of the catalytically active C-terminal domain (CTD) of A3B and performed detailed analyses of its deaminase activity. The core of the structure comprises a central five-stranded ß-sheet with six surrounding helices, common to all A3 proteins. The structural fold is most similar to that of A3A and A3G-CTD, with the most prominent difference being found in loop 1. The catalytic activity of A3B-CTD is ∼15-fold lower than that of A3A, although both exhibit a similar pH dependence. Interestingly, A3B-CTD with an A3A loop 1 substitution had significantly increased deaminase activity, while a single-residue change (H29R) in A3A loop 1 reduced A3A activity to the level seen with A3B-CTD. This establishes that loop 1 plays an important role in A3-catalyzed deamination by precisely positioning the deamination-targeted C into the active site. Overall, our data provide important insights into the determinants of the activities of individual A3 proteins and facilitate understanding of their biological function.


Assuntos
Citidina Desaminase/metabolismo , DNA/química , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Domínio Catalítico , Citidina Desaminase/química , DNA/metabolismo , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
3.
Retrovirology ; 13(1): 89, 2016 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-28034301

RESUMO

BACKGROUND: The nucleocapsid (NC) domain of HIV-1 Gag is responsible for specific recognition and packaging of genomic RNA (gRNA) into new viral particles. This occurs through specific interactions between the Gag NC domain and the Psi packaging signal in gRNA. In addition to this critical function, NC proteins are also nucleic acid (NA) chaperone proteins that facilitate NA rearrangements during reverse transcription. Although the interaction with Psi and chaperone activity of HIV-1 NC have been well characterized in vitro, little is known about simian immunodeficiency virus (SIV) NC. Non-human primates are frequently used as a platform to study retroviral infection in vivo; thus, it is important to understand underlying mechanistic differences between HIV-1 and SIV NC. RESULTS: Here, we characterize SIV NC chaperone activity for the first time. Only modest differences are observed in the ability of SIV NC to facilitate reactions that mimic the minus-strand annealing and transfer steps of reverse transcription relative to HIV-1 NC, with the latter displaying slightly higher strand transfer and annealing rates. Quantitative single molecule DNA stretching studies and dynamic light scattering experiments reveal that these differences are due to significantly increased DNA compaction energy and higher aggregation capability of HIV-1 NC relative to the SIV protein. Using salt-titration binding assays, we find that both proteins are strikingly similar in their ability to specifically interact with HIV-1 Psi RNA. In contrast, they do not demonstrate specific binding to an RNA derived from the putative SIV packaging signal. CONCLUSIONS: Based on these studies, we conclude that (1) HIV-1 NC is a slightly more efficient NA chaperone protein than SIV NC, (2) mechanistic differences between the NA interactions of highly similar retroviral NC proteins are revealed by quantitative single molecule DNA stretching, and (3) SIV NC demonstrates cross-species recognition of the HIV-1 Psi RNA packaging signal.


Assuntos
Genoma Viral , HIV-1/química , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/genética , Vírus da Imunodeficiência Símia/química , HIV-1/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiologia , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/genética , Ligação Proteica , Transcrição Reversa , Vírus da Imunodeficiência Símia/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
4.
Nucleic Acids Res ; 42(2): 1095-110, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163103

RESUMO

Human APOBEC3A (A3A) is a single-domain cytidine deaminase that converts deoxycytidine residues to deoxyuridine in single-stranded DNA (ssDNA). It inhibits a wide range of viruses and endogenous retroelements such as LINE-1, but it can also edit genomic DNA, which may play a role in carcinogenesis. Here, we extend our recent findings on the NMR structure of A3A and report structural, biochemical and cell-based mutagenesis studies to further characterize A3A's deaminase and nucleic acid binding activities. We find that A3A binds ssRNA, but the RNA and DNA binding interfaces differ and no deamination of ssRNA is detected. Surprisingly, with only one exception (G105A), alanine substitution mutants with changes in residues affected by specific ssDNA binding retain deaminase activity. Furthermore, A3A binds and deaminates ssDNA in a length-dependent manner. Using catalytically active and inactive A3A mutants, we show that the determinants of A3A deaminase activity and anti-LINE-1 activity are not the same. Finally, we demonstrate A3A's potential to mutate genomic DNA during transient strand separation and show that this process could be counteracted by ssDNA binding proteins. Taken together, our studies provide new insights into the molecular properties of A3A and its role in multiple cellular and antiviral functions.


Assuntos
Citidina Desaminase/química , Proteínas/química , Sequência de Aminoácidos , Aminoácidos/química , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desaminação , Proteínas de Escherichia coli/metabolismo , Transcriptase Reversa do HIV/metabolismo , Humanos , Elementos Nucleotídeos Longos e Dispersos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Proteínas/genética , Proteínas/metabolismo , RNA/química , RNA/metabolismo , Alinhamento de Sequência , Transcrição Gênica
5.
Retrovirology ; 12: 3, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25614027

RESUMO

BACKGROUND: Human APOBEC3H (A3H) belongs to the A3 family of host restriction factors, which are cytidine deaminases that catalyze conversion of deoxycytidine to deoxyuridine in single-stranded DNA. A3 proteins contain either one (A3A, A3C, A3H) or two (A3B, A3D, A3F, A3G) Zn-binding domains. A3H has seven haplotypes (I-VII) that exhibit diverse biological phenotypes and geographical distribution in the human population. Its single Zn-coordinating deaminase domain belongs to a phylogenetic cluster (Z3) that is different from the Z1- and Z2-type domains in other human A3 proteins. A3H HapII, unlike A3A or A3C, has potent activity against HIV-1. Here, we sought to identify the determinants of A3H HapII deaminase and antiviral activities, using site-directed sequence- and structure-guided mutagenesis together with cell-based, biochemical, and HIV-1 infectivity assays. RESULTS: We have constructed a homology model of A3H HapII, which is similar to the known structures of other A3 proteins. The model revealed a large cluster of basic residues (not present in A3A or A3C) that are likely to be involved in nucleic acid binding. Indeed, RNase A pretreatment of 293T cell lysates expressing A3H was shown to be required for detection of deaminase activity, indicating that interaction with cellular RNAs inhibits A3H catalytic function. Similar observations have been made with A3G. Analysis of A3H deaminase substrate specificity demonstrated that a 5' T adjacent to the catalytic C is preferred. Changing the putative nucleic acid binding residues identified by the model resulted in reduction or abrogation of enzymatic activity, while substituting Z3-specific residues in A3H to the corresponding residues in other A3 proteins did not affect enzyme function. As shown for A3G and A3F, some A3H mutants were defective in catalysis, but retained antiviral activity against HIV-1vif (-) virions. Furthermore, endogenous reverse transcription assays demonstrated that the E56A catalytic mutant inhibits HIV-1 DNA synthesis, although not as efficiently as wild type. CONCLUSIONS: The molecular and biological activities of A3H are more similar to those of the double-domain A3 proteins than to those of A3A or A3C. Importantly, A3H appears to use both deaminase-dependent and -independent mechanisms to target reverse transcription and restrict HIV-1 replication.


Assuntos
Aminoidrolases/genética , Aminoidrolases/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Replicação Viral , Sequência de Aminoácidos , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica
6.
Viruses ; 15(7)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37515235

RESUMO

Despite the availability of effective anti-HIV drug therapy, according to UNAIDS estimates, 1 [...].


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Retroviridae/genética , Fármacos Anti-HIV/uso terapêutico , Biologia Molecular
7.
Proc Natl Acad Sci U S A ; 106(46): 19539-44, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19887642

RESUMO

During coevolution with the host, HIV-1 developed the ability to hijack the cellular ubiquitin/proteasome degradation pathway to counteract the antiviral activity of APOBEC3G (A3G), a host cytidine deaminase that can block HIV-1 replication. Abrogation of A3G function involves the HIV-1 Vif protein, which binds A3G and serves as an adapter molecule to recruit A3G to a Cullin5-based E3 ubiquitin ligase complex. Structure-guided mutagenesis of A3G focused on the 14 most surface-exposed Lys residues allowed us to identify four Lys residues (Lys-297, 301, 303, and 334) that are required for Vif-mediated A3G ubiquitination and degradation. Substitution of Arg for these residues confers Vif resistance and restores A3G's antiviral activity in the presence of Vif. In our model, the critical four Lys residues cluster at the C terminus, opposite to the known N-terminal Vif-interaction region in the protein. Thus, spatial constraints imposed by the E3 ligase complex may be an important determinant in Vif-dependent A3G ubiquitination.


Assuntos
Citidina Desaminase/metabolismo , HIV-1/metabolismo , Lisina/metabolismo , Ubiquitinação , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Desaminase APOBEC-3G , Linhagem Celular , Citidina Desaminase/química , Citidina Desaminase/genética , Infecções por HIV/metabolismo , Humanos , Lisina/genética , Ligação Proteica , Estrutura Terciária de Proteína/genética
8.
Nucleic Acids Res ; 37(6): 1755-66, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19158189

RESUMO

During minus-strand DNA synthesis, RNase H degrades viral RNA sequences, generating potential plus-strand DNA primers. However, selection of the 3' polypurine tract (PPT) as the exclusive primer is required for formation of viral DNA with the correct 5'-end and for subsequent integration. Here we show a new function for the nucleic acid chaperone activity of HIV-1 nucleocapsid protein (NC) in reverse transcription: blocking mispriming by non-PPT RNAs. Three representative 20-nt RNAs from the PPT region were tested for primer extension. Each primer had activity in the absence of NC, but less than the PPT. NC reduced priming by these RNAs to essentially base-line level, whereas PPT priming was unaffected. RNase H cleavage and zinc coordination by NC were required for maximal inhibition of mispriming. Biophysical properties, including thermal stability, helical structure and reverse transcriptase (RT) binding affinity, showed significant differences between PPT and non-PPT duplexes and the trends were generally correlated with the biochemical data. Binding studies in reactions with both NC and RT ruled out a competition binding model to explain NC's observed effects on mispriming efficiency. Taken together, these results demonstrate that NC chaperone activity has a major role in ensuring the fidelity of plus-strand priming.


Assuntos
HIV-1/genética , Chaperonas Moleculares/metabolismo , RNA Viral/química , RNA/química , Transcrição Reversa , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Dicroísmo Circular , DNA/química , DNA/metabolismo , Primers do DNA/química , Transcriptase Reversa do HIV/metabolismo , Chaperonas Moleculares/química , Desnaturação de Ácido Nucleico , Purinas/análise , RNA/metabolismo , RNA Viral/metabolismo , Ribonuclease H/metabolismo , Zinco/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
9.
RNA Biol ; 7(6): 754-74, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21160280

RESUMO

The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.


Assuntos
HIV-1/genética , HIV-1/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Transcrição Reversa/genética , Citidina Desaminase/metabolismo , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , Humanos
10.
Nucleic Acids Res ; 35(12): 3974-87, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17553835

RESUMO

HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which is required for highly specific and efficient reverse transcription. Here, we demonstrate that local structure of acceptor RNA at a potential nucleation site, rather than overall thermodynamic stability, is a critical determinant for the minus-strand transfer step (annealing of acceptor RNA to (-) strong-stop DNA followed by reverse transcriptase (RT)-catalyzed DNA extension). In our system, destabilization of a stem-loop structure at the 5' end of the transactivation response element (TAR) in a 70-nt RNA acceptor (RNA 70) appears to be the major nucleation pathway. Using a mutational approach, we show that when the acceptor has a weak local structure, NC has little or no effect. In this case, the efficiencies of both annealing and strand transfer reactions are similar. However, when NC is required to destabilize local structure in acceptor RNA, the efficiency of annealing is significantly higher than that of strand transfer. Consistent with this result, we find that Mg2+ (required for RT activity) inhibits NC-catalyzed annealing. This suggests that Mg2+ competes with NC for binding to the nucleic acid substrates. Collectively, our findings provide new insights into the mechanism of NC-dependent and -independent minus-strand transfer.


Assuntos
Proteínas do Capsídeo/metabolismo , Produtos do Gene gag/metabolismo , Repetição Terminal Longa de HIV , HIV-1/genética , Magnésio/farmacologia , Chaperonas Moleculares/metabolismo , RNA Viral/química , Transcrição Reversa , Proteínas Virais/metabolismo , Sequência de Bases , Cátions Bivalentes , DNA Viral/biossíntese , Magnésio/química , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA Viral/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana
11.
Nucleic Acids Res ; 35(21): 7096-108, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17942420

RESUMO

APOBEC3G (A3G), a host protein that inhibits HIV-1 reverse transcription and replication in the absence of Vif, displays cytidine deaminase and single-stranded (ss) nucleic acid binding activities. HIV-1 nucleocapsid protein (NC) also binds nucleic acids and has a unique property, nucleic acid chaperone activity, which is crucial for efficient reverse transcription. Here we report the interplay between A3G, NC and reverse transcriptase (RT) and the effect of highly purified A3G on individual reactions that occur during reverse transcription. We find that A3G did not affect the kinetics of NC-mediated annealing reactions, nor did it inhibit RNase H cleavage. In sharp contrast, A3G significantly inhibited all RT-catalyzed DNA elongation reactions with or without NC. In the case of (-) strong-stop DNA synthesis, the inhibition was independent of A3G's catalytic activity. Fluorescence anisotropy and single molecule DNA stretching analyses indicated that NC has a higher nucleic acid binding affinity than A3G, but more importantly, displays faster association/disassociation kinetics. RT binds to ssDNA with a much lower affinity than either NC or A3G. These data support a novel mechanism for deaminase-independent inhibition of reverse transcription that is determined by critical differences in the nucleic acid binding properties of A3G, NC and RT.


Assuntos
Citidina Desaminase/metabolismo , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/genética , Transcrição Reversa , Desaminase APOBEC-3G , Sequência de Bases , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/química , DNA Viral/biossíntese , DNA Viral/química , Polarização de Fluorescência , Transcriptase Reversa do HIV/metabolismo , Humanos , Dados de Sequência Molecular , Pinças Ópticas , RNA/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
12.
J Mol Biol ; 325(1): 1-10, 2003 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-12473448

RESUMO

Reverse transcription of the HIV-1 genome is a complex multi-step process. HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone protein that has been shown to greatly facilitate the nucleic acid rearrangements that precede the minus-strand transfer step in reverse transcription. NC destabilizes the highly structured transactivation response region (TAR) present in the R region of the RNA genome, as well as a complementary hairpin structure ("TAR DNA") at the 3'-end of the newly synthesized minus-strand strong-stop DNA ((-) SSDNA). Melting of the latter structure inhibits a self-priming (SP) reaction that competes with the strand transfer reaction. In an in vitro minus-strand transfer system consisting of a (-) SSDNA mimic and a TAR-containing acceptor RNA molecule, we find that when both nucleic acids are present, NC facilitates formation of the transfer product and the SP reaction is greatly reduced. In contrast, in the absence of the acceptor RNA, NC has only a small inhibitory effect on the SP reaction. To further investigate NC-mediated inhibition of SP, we developed a FRET-based assay that allows us to directly monitor conformational changes in the TAR DNA structure upon NC binding. Although the majority ( approximately 71%) of the TAR DNA molecules assume a folded hairpin conformation in the absence of NC, two minor "semi-folded" and "unfolded" populations are also observed. Upon NC binding to the TAR DNA alone, we observe a modest shift in the population towards the less-folded states. In the presence of the RNA acceptor molecule, NC binding to TAR DNA results in a shift of the majority of molecules to the unfolded state. These measurements help to explain why acceptor RNA is required for significant inhibition of the SP reaction by NC, and support the hypothesis that NC-mediated annealing of nucleic acids is a concerted process wherein the unwinding step occurs in synchrony with hybridization.


Assuntos
Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/metabolismo , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Transcrição Gênica/genética , DNA Viral/biossíntese , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Transferência Ressonante de Energia de Fluorescência , RNA Viral/genética , Ativação Transcricional
13.
Virus Res ; 193: 52-64, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24954787

RESUMO

The mature HIV-1 nucleocapsid protein (NCp7) is generated by sequential proteolytic cleavage of precursor proteins containing additional C-terminal peptides: NCp15 (NCp7-spacer peptide 2 (SP2)-p6); and NCp9 (NCp7-SP2). Here, we compare the nucleic acid chaperone activities of the three proteins, using reconstituted systems that model the annealing and elongation steps in tRNA(Lys3)-primed (-) strong-stop DNA synthesis and subsequent minus-strand transfer. The maximum levels of annealing are similar for all of the proteins, but there are important differences in their ability to facilitate reverse transcriptase (RT)-catalyzed DNA extension. Thus, at low concentrations, NCp9 has the greatest activity, but with increasing concentrations, DNA synthesis is significantly reduced. This finding reflects NCp9's strong nucleic acid binding affinity (associated with the highly basic SP2 domain) as well as its slow dissociation kinetics, which together limit the ability of RT to traverse the nucleic acid template. NCp15 has the poorest activity of the three proteins due to its acidic p6 domain. Indeed, mutants with alanine substitutions for the acidic residues in p6 have improved chaperone function. Collectively, these data can be correlated with the known biological properties of NCp9 and NCp15 mutant virions and help to explain why mature NC has evolved as the critical cofactor for efficient virus replication and long-term viral fitness.


Assuntos
HIV-1/genética , HIV-1/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Transcrição Reversa , Sequência de Aminoácidos , Sequência de Bases , Humanos , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Ligação Proteica , RNA de Transferência de Lisina/genética , RNA Viral/química , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
14.
Nat Chem ; 6(1): 28-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24345943

RESUMO

The human APOBEC3 proteins are a family of DNA-editing enzymes that play an important role in the innate immune response against retroviruses and retrotransposons. APOBEC3G is a member of this family that inhibits HIV-1 replication in the absence of the viral infectivity factor Vif. Inhibition of HIV replication occurs by both deamination of viral single-stranded DNA and a deamination-independent mechanism. Efficient deamination requires rapid binding to and dissociation from ssDNA. However, a relatively slow dissociation rate is required for the proposed deaminase-independent roadblock mechanism in which APOBEC3G binds the viral template strand and blocks reverse transcriptase-catalysed DNA elongation. Here, we show that APOBEC3G initially binds ssDNA with rapid on-off rates and subsequently converts to a slowly dissociating mode. In contrast, an oligomerization-deficient APOBEC3G mutant did not exhibit a slow off rate. We propose that catalytically active monomers or dimers slowly oligomerize on the viral genome and inhibit reverse transcription.


Assuntos
Biopolímeros/química , Citidina Desaminase/metabolismo , Desaminase APOBEC-3G , Citidina Desaminase/química , Desaminação , HIV-1/fisiologia , Humanos , DNA Polimerase Dirigida por RNA/metabolismo , Replicação Viral
15.
Virus Res ; 171(2): 346-55, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23149014

RESUMO

During (-) strong-stop DNA [(-) SSDNA] synthesis, RNase H cleavage of genomic viral RNA generates small 5'-terminal RNA fragments (14-18 nt) that remain annealed to the DNA. Unless these fragments are removed, the minus-strand transfer reaction, required for (-) SSDNA elongation, cannot occur. Here, we describe the mechanism of 5'-terminal RNA removal and the roles of HIV-1 nucleocapsid protein (NC) and RNase H cleavage in this process. Using an NC-dependent system that models minus-strand transfer, we show that the presence of short terminal fragments pre-annealed to (-) SSDNA has no impact on strand transfer, implying efficient fragment removal. Moreover, in reactions with an RNase H(-) reverse transcriptase mutant, NC alone is able to facilitate fragment removal, albeit less efficiently than in the presence of both RNase H activity and NC. Results obtained from novel electrophoretic gel mobility shift and Förster Resonance Energy Transfer assays, which each directly measure RNA fragment release from a duplex in the absence of DNA synthesis, demonstrate for the first time that the architectural integrity of NC's zinc finger (ZF) domains is absolutely required for this reaction. This suggests that NC's helix destabilizing activity (associated with the ZFs) facilitates strand exchange through the displacement of these short terminal RNAs by the longer 3' acceptor RNA, which forms a more stable duplex with (-) SSDNA. Taken together with previously published results, we conclude that NC-mediated fragment removal is linked mechanistically with selection of the correct primer for plus-strand DNA synthesis and tRNA removal step prior to plus-strand transfer. Thus, HIV-1 has evolved a single mechanism for these RNA removal reactions that are critical for successful reverse transcription.


Assuntos
DNA Viral/genética , HIV-1/genética , Processamento Pós-Transcricional do RNA , RNA Viral/genética , Transcrição Reversa , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , DNA Viral/química , DNA Viral/metabolismo , Regulação Viral da Expressão Gênica , HIV-1/química , HIV-1/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Dedos de Zinco , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
16.
Nat Commun ; 4: 1890, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23695684

RESUMO

Human APOBEC3A is a single-stranded DNA cytidine deaminase that restricts viral pathogens and endogenous retrotransposons, and has a role in the innate immune response. Furthermore, its potential to act as a genomic DNA mutator has implications for a role in carcinogenesis. A deeper understanding of APOBEC3A's deaminase and nucleic acid-binding properties, which is central to its biological activities, has been limited by the lack of structural information. Here we report the nuclear magnetic resonance solution structure of APOBEC3A and show that the critical interface for interaction with single-stranded DNA substrates includes residues extending beyond the catalytic centre. Importantly, by monitoring deaminase activity in real time, we find that A3A displays similar catalytic activity on APOBEC3A-specific TTCA- or A3G-specific CCCA-containing substrates, involving key determinants immediately 5' of the reactive C. Our results afford novel mechanistic insights into APOBEC3A-mediated deamination and provide the structural basis for further molecular studies.


Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Biocatálise , DNA/metabolismo , Desaminação , Nucleotídeos de Desoxicitosina/metabolismo , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , RNA/metabolismo , Soluções , Especificidade por Substrato , Uridina Trifosfato/metabolismo
18.
Virology ; 421(2): 253-65, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22036671

RESUMO

The HIV-1 capsid protein consists of two independently folded domains connected by a flexible peptide linker (residues 146-150), the function of which remains to be defined. To investigate the role of this region in virus replication, we made alanine or leucine substitutions in each linker residue and two flanking residues. Three classes of mutants were identified: (i) S146A and T148A behave like wild type (WT); (ii) Y145A, I150A, and L151A are noninfectious, assemble unstable cores with aberrant morphology, and synthesize almost no viral DNA; and (iii) P147L and S149A display a poorly infectious, attenuated phenotype. Infectivity of P147L and S149A is rescued specifically by pseudotyping with vesicular stomatitis virus envelope glycoprotein. Moreover, despite having unstable cores, these mutants assemble WT-like structures and synthesize viral DNA, although less efficiently than WT. Collectively, these findings demonstrate that the linker region is essential for proper assembly and stability of cores and efficient replication.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , HIV-1/química , HIV-1/crescimento & desenvolvimento , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Substituição de Aminoácidos , Animais , Aotidae , Proteínas do Capsídeo/genética , Células HEK293 , HIV-1/genética , Células HeLa , Humanos , Glicoproteínas de Membrana/metabolismo , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
19.
Virology ; 405(2): 556-67, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20655566

RESUMO

The HIV-1 Gag polyprotein precursor has multiple domains including nucleocapsid (NC). Although mature NC and NC embedded in Gag are nucleic acid chaperones (proteins that remodel nucleic acid structure), few studies include detailed analysis of the chaperone activity of partially processed Gag proteins and comparison with NC and Gag. Here we address this issue by using a reconstituted minus-strand transfer system. NC and NC-containing Gag proteins exhibited annealing and duplex destabilizing activities required for strand transfer. Surprisingly, unlike NC, with increasing concentrations, Gag proteins drastically inhibited the DNA elongation step. This result is consistent with "nucleic acid-driven multimerization" of Gag and the reported slow dissociation of Gag from bound nucleic acid, which prevent reverse transcriptase from traversing the template ("roadblock" mechanism). Our findings illustrate one reason why NC (and not Gag) has evolved as a critical cofactor in reverse transcription, a paradigm that might also extend to other retrovirus systems.


Assuntos
DNA Viral/metabolismo , Chaperonas Moleculares/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Polarização de Fluorescência , HIV-1/genética , HIV-1/metabolismo , HIV-1/fisiologia , Humanos , Chaperonas Moleculares/genética , Conformação de Ácido Nucleico , Multimerização Proteica , Transcrição Reversa , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA