Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 33(1): 112-128, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653121

RESUMO

Nematodes encompass more than 24,000 described species, which were discovered in almost every ecological habitat, and make up >80% of metazoan taxonomic diversity in soils. The last common ancestor of nematodes is believed to date back to ∼650-750 million years, generating a large and phylogenetically diverse group to be explored. However, for most species high-quality gene annotations are incomprehensive or missing. Combining short-read RNA sequencing with mass spectrometry-based proteomics and machine-learning quality control in an approach called proteotranscriptomics, we improve gene annotations for nine genome-sequenced nematode species and provide new gene annotations for three additional species without genome assemblies. Emphasizing the sensitivity of our methodology, we provide evidence for two hitherto undescribed genes in the model organism Caenorhabditis elegans Extensive phylogenetic systems analysis using this comprehensive proteome annotation provides new insights into evolutionary processes of this metazoan group.


Assuntos
Nematoides , Proteoma , Animais , Proteoma/genética , Anotação de Sequência Molecular , Filogenia , Nematoides/genética , Caenorhabditis elegans/genética , Aprendizado de Máquina
3.
PLoS Biol ; 18(6): e3000741, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32520929

RESUMO

Mitochondrial metabolic remodeling is a hallmark of the Trypanosoma brucei digenetic life cycle because the insect stage utilizes a cost-effective oxidative phosphorylation (OxPhos) to generate ATP, while bloodstream cells switch to aerobic glycolysis. Due to difficulties in acquiring enough parasites from the tsetse fly vector, the dynamics of the parasite's metabolic rewiring in the vector have remained obscure. Here, we took advantage of in vitro-induced differentiation to follow changes at the RNA, protein, and metabolite levels. This multi-omics and cell-based profiling showed an immediate redirection of electron flow from the cytochrome-mediated pathway to an alternative oxidase (AOX), an increase in proline consumption, elevated activity of complex II, and certain tricarboxylic acid (TCA) cycle enzymes, which led to mitochondrial membrane hyperpolarization and increased reactive oxygen species (ROS) levels. Interestingly, these ROS molecules appear to act as signaling molecules driving developmental progression because ectopic expression of catalase, a ROS scavenger, halted the in vitro-induced differentiation. Our results provide insights into the mechanisms of the parasite's mitochondrial rewiring and reinforce the emerging concept that mitochondria act as signaling organelles through release of ROS to drive cellular differentiation.


Assuntos
Metabolômica , Mitocôndrias/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Trifosfato de Adenosina/biossíntese , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Elétrons , Glucose/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oxirredução , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transcriptoma/genética , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética
4.
Nature ; 531(7596): 637-641, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26886793

RESUMO

Animals are grouped into ~35 'phyla' based upon the notion of distinct body plans. Morphological and molecular analyses have revealed that a stage in the middle of development--known as the phylotypic period--is conserved among species within some phyla. Although these analyses provide evidence for their existence, phyla have also been criticized as lacking an objective definition, and consequently based on arbitrary groupings of animals. Here we compare the developmental transcriptomes of ten species, each annotated to a different phylum, with a wide range of life histories and embryonic forms. We find that in all ten species, development comprises the coupling of early and late phases of conserved gene expression. These phases are linked by a divergent 'mid-developmental transition' that uses species-specific suites of signalling pathways and transcription factors. This mid-developmental transition overlaps with the phylotypic period that has been defined previously for three of the ten phyla, suggesting that transcriptional circuits and signalling mechanisms active during this transition are crucial for defining the phyletic body plan and that the mid-developmental transition may be used to define phylotypic periods in other phyla. Placing these observations alongside the reported conservation of mid-development within phyla, we propose that a phylum may be defined as a collection of species whose gene expression at the mid-developmental transition is both highly conserved among them, yet divergent relative to other species.


Assuntos
Padronização Corporal , Desenvolvimento Embrionário , Filogenia , Animais , Padronização Corporal/genética , Sequência Conservada/genética , Desenvolvimento Embrionário/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genes Controladores do Desenvolvimento/genética , Modelos Biológicos , Fenótipo , Especificidade da Espécie , Transcriptoma/genética
5.
Nucleic Acids Res ; 48(11): 5926-5938, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32421815

RESUMO

Alternative polyadenylation (APA) produces isoforms with distinct 3'-ends, yet their functional differences remain largely unknown. Here, we introduce the APA-seq method to detect the expression levels of APA isoforms from 3'-end RNA-Seq data by exploiting both paired-end reads for gene isoform identification and quantification. We detected the expression levels of APA isoforms in individual Caenorhabditis elegans embryos at different stages throughout embryogenesis. Examining the correlation between the temporal profiles of isoforms led us to distinguish two classes of genes: those with highly correlated isoforms (HCI) and those with lowly correlated isoforms (LCI) across time. We hypothesized that variants with similar expression profiles may be the product of biological noise, while the LCI variants may be under tighter selection and consequently their distinct 3' UTR isoforms are more likely to have functional consequences. Supporting this notion, we found that LCI genes have significantly more miRNA binding sites, more correlated expression profiles with those of their targeting miRNAs and a relative lack of correspondence between their transcription and protein abundances. Collectively, our results suggest that a lack of coherence among the regulation of 3' UTR isoforms is a proxy for selective pressures acting upon APA usage and consequently for their functional relevance.


Assuntos
Regiões 3' não Traduzidas/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Poli A/análise , Poliadenilação , Animais , Drosophila melanogaster , Desenvolvimento Embrionário/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Xenopus laevis
6.
Biomacromolecules ; 22(2): 993-1000, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33481568

RESUMO

Spider silk is a protein material that exhibits extraordinary and nontrivial properties such as the ability to soften and decrease its length by up to ∼60% upon exposure to high humidity. This process is commonly called supercontraction and is the result of a transition from a highly oriented glassy phase to a disoriented rubbery phase. In this work, we derive a microscopically motivated and energy-based model that captures the underlying mechanisms that give rise to supercontraction. We propose that the increase in relative humidity and the consequent wetting of a spider silk have two main consequences: (1) the dissociation of hydrogen bonds and (2) the swelling of the fiber. From a mechanical viewpoint, the first consequence leads to the formation of rubbery domains. This process is associated with an entropic gain and a loss of orientation of chains in the silk network, which motivates the contraction of the spider silk. The swelling of the fiber is accompanied by the extension of chains in order to accommodate the influx of water molecules. Supercontraction occurs when the first consequence is more dominant than the second. The model presented in this work allows us to qualitatively track the transition of the chains from glassy to rubbery states and determine the increase in entropy, the loss of orientation, and the swelling as the relative humidity increases. We also derive explicit expressions for the stiffness and the mechanical response of a spider silk under given relative humidity conditions. To illustrate the merit of this model, we show that the model is capable of capturing several experimental findings. The insights from this work can be used as a microstructural design guide to enable the development of new materials with unique spider-like properties.


Assuntos
Seda , Aranhas , Animais , Umidade , Ligação de Hidrogênio , Estresse Mecânico , Água
7.
Nature ; 519(7542): 219-22, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25487147

RESUMO

The concept of germ layers has been one of the foremost organizing principles in developmental biology, classification, systematics and evolution for 150 years (refs 1 - 3). Of the three germ layers, the mesoderm is found in bilaterian animals but is absent in species in the phyla Cnidaria and Ctenophora, which has been taken as evidence that the mesoderm was the final germ layer to evolve. The origin of the ectoderm and endoderm germ layers, however, remains unclear, with models supporting the antecedence of each as well as a simultaneous origin. Here we determine the temporal and spatial components of gene expression spanning embryonic development for all Caenorhabditis elegans genes and use it to determine the evolutionary ages of the germ layers. The gene expression program of the mesoderm is induced after those of the ectoderm and endoderm, thus making it the last germ layer both to evolve and to develop. Strikingly, the C. elegans endoderm and ectoderm expression programs do not co-induce; rather the endoderm activates earlier, and this is also observed in the expression of endoderm orthologues during the embryology of the frog Xenopus tropicalis, the sea anemone Nematostella vectensis and the sponge Amphimedon queenslandica. Querying the phylogenetic ages of specifically expressed genes reveals that the endoderm comprises older genes. Taken together, we propose that the endoderm program dates back to the origin of multicellularity, whereas the ectoderm originated as a secondary germ layer freed from ancestral feeding functions.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Endoderma/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/genética , Análise Espaço-Temporal , Transcriptoma/genética , Animais , Caenorhabditis elegans/citologia , Linhagem da Célula , Ingestão de Alimentos , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Endoderma/citologia , Endoderma/embriologia , Perfilação da Expressão Gênica , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Poríferos/citologia , Poríferos/embriologia , Poríferos/genética , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/genética , Fatores de Tempo , Xenopus/embriologia , Xenopus/genética
8.
Nucleic Acids Res ; 47(4): 1896-1907, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30629181

RESUMO

Telomeres are nucleoprotein structures at the ends of linear chromosomes and present an essential feature for genome integrity. Vertebrate telomeres usually consist of hexameric TTAGGG repeats, however, in cells that use the alternative lengthening of telomeres (ALT) mechanism, variant repeat sequences are interspersed throughout telomeres. Previously, it was shown that NR2C/F transcription factors bind to TCAGGG variant repeats and contribute to telomere maintenance in ALT cells. While specific binders to other variant repeat sequences have been lacking to date, we here identify ZBTB10 as the first TTGGGG-binding protein and demonstrate direct binding via the two zinc fingers with affinity in the nanomolar range. Concomitantly, ZBTB10 co-localizes with a subset of telomeres in ALT-positive U2OS cells and interacts with TRF2/RAP1 via the N-terminal region of TRF2. Our data establishes ZBTB10 as a novel variant repeat binding protein at ALT telomeres.


Assuntos
Proteínas Repressoras/genética , Homeostase do Telômero/genética , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Sítios de Ligação/genética , Cromossomos/genética , Proteínas de Ligação a DNA/genética , Genoma/genética , Humanos , Ligação Proteica/genética , Sequências Repetitivas de Ácido Nucleico/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética
9.
BMC Genomics ; 21(1): 690, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023468

RESUMO

BACKGROUND: The process of identifying all coding regions in a genome is crucial for any study at the level of molecular biology, ranging from single-gene cloning to genome-wide measurements using RNA-seq or mass spectrometry. While satisfactory annotation has been made feasible for well-studied model organisms through great efforts of big consortia, for most systems this kind of data is either absent or not adequately precise. RESULTS: Combining in-depth transcriptome sequencing and high resolution mass spectrometry, we here use proteotranscriptomics to improve gene annotation of protein-coding genes in the Bombyx mori cell line BmN4 which is an increasingly used tool for the analysis of piRNA biogenesis and function. Using this approach we provide the exact coding sequence and evidence for more than 6200 genes on the protein level. Furthermore using spatial proteomics, we establish the subcellular localization of thousands of these proteins. We show that our approach outperforms current Bombyx mori annotation attempts in terms of accuracy and coverage. CONCLUSIONS: We show that proteotranscriptomics is an efficient, cost-effective and accurate approach to improve previous annotations or generate new gene models. As this technique is based on de-novo transcriptome assembly, it provides the possibility to study any species also in the absence of genome sequence information for which proteogenomics would be impossible.


Assuntos
Bombyx/genética , Anotação de Sequência Molecular/métodos , Proteogenômica/métodos , Proteoma , Transcriptoma , Animais , Bombyx/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Espectrometria de Massas/métodos
10.
BMC Genomics ; 21(1): 790, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33183240

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

11.
Int J Mol Sci ; 21(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050583

RESUMO

The long non-coding RNA Malat1 has been implicated in several human cancers, while the mechanism of action is not completely understood. As RNAs in cells function together with RNA-binding proteins (RBPs), the composition of their RBP complex can shed light on their functionality. We here performed quantitative interactomics of 14 non-overlapping fragments covering the full length of Malat1 to identify possible nuclear interacting proteins. Overall, we identified 35 candidates including 14 already known binders, which are able to interact with Malat1 in the nucleus. Furthermore, the use of fragments along the full-length RNA allowed us to reveal two hotspots for protein binding, one in the 5'-region and one in the 3'-region of Malat1. Our results provide confirmation on previous RNA-protein interaction studies and suggest new candidates for functional investigations.


Assuntos
RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Camundongos , Ligação Proteica , Proteoma/química , Proteoma/metabolismo , Proteômica/métodos , RNA Longo não Codificante/química , Proteínas de Ligação a RNA/química
12.
Nucleic Acids Res ; 45(10): 6074-6086, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334977

RESUMO

RNA-binding proteins (RBPs) are central for gene expression by controlling the RNA fate from birth to decay. Various disorders arising from perturbations of RNA-protein interactions document their critical function. However, deciphering their function is complex, limiting the general functional elucidation of this growing class of proteins and their contribution to (patho)physiology. Here, we present sCLIP, a simplified and robust platform for genome-wide interrogation of RNA-protein interactomes based on crosslinking-immunoprecipitation and high-throughput sequencing. sCLIP exploits linear amplification of the immunoprecipitated RNA improving the complexity of the sequencing-library despite significantly reducing the amount of input material and omitting several purification steps. Additionally, it permits a radiolabel-free visualization of immunoprecipitated RNA. In a proof of concept, we identify that CSTF2tau binds many previously not recognized RNAs including histone, snoRNA and snRNAs. CSTF2tau-binding is associated with internal oligoadenylation resulting in shortened snRNA isoforms subjected to rapid degradation. We provide evidence for a new mechanism whereby CSTF2tau controls the abundance of snRNAs resulting in alternative splicing of several RNAs including ANK2 with critical roles in tumorigenesis and cardiac function. Combined with a bioinformatic pipeline sCLIP thus uncovers new functions for established RBPs and fosters the illumination of RBP-protein interaction landscapes in health and disease.


Assuntos
Processamento Alternativo , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoprecipitação/métodos , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Fator Estimulador de Clivagem , DNA Complementar/genética , Biblioteca Gênica , Histonas/genética , Humanos , Proteínas de Neoplasias/metabolismo , Neuroblastoma/patologia , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/isolamento & purificação , RNA Nuclear Pequeno/efeitos da radiação , RNA não Traduzido/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/efeitos da radiação , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Raios Ultravioleta
13.
Development ; 141(5): 1161-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24504336

RESUMO

RNA-Seq enables the efficient transcriptome sequencing of many samples from small amounts of material, but the analysis of these data remains challenging. In particular, in developmental studies, RNA-Seq is challenged by the morphological staging of samples, such as embryos, since these often lack clear markers at any particular stage. In such cases, the automatic identification of the stage of a sample would enable previously infeasible experimental designs. Here we present the 'basic linear index determination of transcriptomes' (BLIND) method for ordering samples comprising different developmental stages. The method is an implementation of a traveling salesman algorithm to order the transcriptomes according to their inter-relationships as defined by principal components analysis. To establish the direction of the ordered samples, we show that an appropriate indicator is the entropy of transcriptomic gene expression levels, which increases over developmental time. Using BLIND, we correctly recover the annotated order of previously published embryonic transcriptomic timecourses for frog, mosquito, fly and zebrafish. We further demonstrate the efficacy of BLIND by collecting 59 embryos of the sponge Amphimedon queenslandica and ordering their transcriptomes according to developmental stage. BLIND is thus useful in establishing the temporal order of samples within large datasets and is of particular relevance to the study of organisms with asynchronous development and when morphological staging is difficult.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Análise de Componente Principal
14.
BMC Genomics ; 14: 138, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23445374

RESUMO

BACKGROUND: In fungi, environmental pH is an important signal for development, and successful host colonization depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore, Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a critical limiting factor for these biofungicides, whose optimal growth pH is 4-6. Gaining an understanding of pH adaptability is an important step in broadening the activity spectrum of these economically important fungi. RESULTS: We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a constitutively active allele (pacCc). ΔpacC mutants exhibited reduced growth at alkaline pH, while pacCc strains grew poorly at acidic pH. In plate confrontation assays ΔpacC mutants showed decreased ability to compete with the plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacCc strain exhibited an overgrowth of R. solani that was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a set of pacC-dependent genes was increased in the constitutively-active pacCc strain, and was pH-independent in some, but not all cases. CONCLUSIONS: PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite biosynthesis and ion transport are among the relevant gene classes. We suggest that ΔpacC mutants may have lost their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and biocontrol at alkaline pH.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Transcriptoma , Trichoderma/genética , Alelos , Sequência de Bases , Basidiomycota/crescimento & desenvolvimento , Sítios de Ligação , Análise por Conglomerados , DNA/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Concentração de Íons de Hidrogênio , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Doenças das Plantas/microbiologia , Rhizoctonia/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trichoderma/crescimento & desenvolvimento
15.
J Speech Lang Hear Res ; 66(12): 5169-5186, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37992412

RESUMO

PURPOSE: Cochlear implant (CI) users demonstrate poor voice discrimination (VD) in quiet conditions based on the speaker's fundamental frequency (fo) and formant frequencies (i.e., vocal-tract length [VTL]). Our purpose was to examine the effect of background noise at levels that allow good speech recognition thresholds (SRTs) on VD via acoustic CI simulations and CI hearing. METHOD: Forty-eight normal-hearing (NH) listeners who listened via noise-excited (n = 20) or sinewave (n = 28) vocoders and 10 prelingually deaf CI users (i.e., whose hearing loss began before language acquisition) participated in the study. First, the signal-to-noise ratio (SNR) that yields 70.7% correct SRT was assessed using an adaptive sentence-in-noise test. Next, the CI simulation listeners performed 12 adaptive VDs: six in quiet conditions, two with each cue (fo, VTL, fo + VTL), and six amid speech-shaped noise. The CI participants performed six VDs: one with each cue, in quiet and amid noise. SNR at VD testing was 5 dB higher than the individual's SRT in noise (SRTn +5 dB). RESULTS: Results showed the following: (a) Better VD was achieved via the noise-excited than the sinewave vocoder, with the noise-excited vocoder better mimicking CI VD; (b) background noise had a limited negative effect on VD, only for the CI simulation listeners; and (c) there was a significant association between SNR at testing and VTL VD only for the CI simulation listeners. CONCLUSIONS: For NH listeners who listen to CI simulations, noise that allows good SRT can nevertheless impede VD, probably because VD depends more on bottom-up sensory processing. Conversely, for prelingually deaf CI users, noise that allows good SRT hardly affects VD, suggesting that they rely strongly on bottom-up processing for both VD and speech recognition.


Assuntos
Implante Coclear , Implantes Cocleares , Perda Auditiva , Percepção da Fala , Humanos , Implante Coclear/métodos , Perda Auditiva/reabilitação , Ruído
16.
Genome Biol Evol ; 15(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37831426

RESUMO

The detection of adaptive selection in a system approach considering all protein-coding genes allows for the identification of mechanisms and pathways that enabled adaptation to different environments. Currently, available programs for the estimation of positive selection signals can be divided into two groups. They are either easy to apply but can analyze only one gene family at a time, restricting system analysis; or they can handle larger cohorts of gene families, but require considerable prerequisite data such as orthology associations, codon alignments, phylogenetic trees, and proper configuration files. All these steps require extensive computational expertise, restricting this endeavor to specialists. Here, we introduce AlexandrusPS, a high-throughput pipeline that overcomes technical challenges when conducting transcriptome-wide positive selection analyses on large sets of nucleotide and protein sequences. The pipeline streamlines 1) the execution of an accurate orthology prediction as a precondition for positive selection analysis, 2) preparing and organizing configuration files for CodeML, 3) performing positive selection analysis using CodeML, and 4) generating an output that is easy to interpret, including all maximum likelihood and log-likelihood test results. The only input needed from the user is the CDS and peptide FASTA files of proteins of interest. The pipeline is provided in a Docker image, requiring no program or module installation, enabling the application of the pipeline in any computing environment. AlexandrusPS and its documentation are available via GitHub (https://github.com/alejocn5/AlexandrusPS).


Assuntos
Família Multigênica , Software , Filogenia , Códon , Proteínas/genética
17.
iScience ; 26(6): 106778, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250769

RESUMO

Genome maintenance is orchestrated by a highly regulated DNA damage response with specific DNA repair pathways. Here, we investigate the phylogenetic diversity in the recognition and repair of three well-established DNA lesions, primarily repaired by base excision repair (BER) and ribonucleotide excision repair (RER): (1) 8-oxoguanine, (2) abasic site, and (3) incorporated ribonucleotide in DNA in 11 species: Escherichia coli, Bacillus subtilis, Halobacterium salinarum, Trypanosoma brucei, Tetrahymena thermophila, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, Homo sapiens, Arabidopsis thaliana, and Zea mays. Using quantitative mass spectrometry, we identified 337 binding proteins across these species. Of these proteins, 99 were previously characterized to be involved in DNA repair. Through orthology, network, and domain analysis, we linked 44 previously unconnected proteins to DNA repair. Our study presents a resource for future study of the crosstalk and evolutionary conservation of DNA damage repair across all domains of life.

18.
Nat Commun ; 14(1): 8252, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086788

RESUMO

Telomeres are nucleoprotein structures at the ends of linear chromosomes. In humans, they consist of TTAGGG repeats, which are bound by dedicated proteins such as the shelterin complex. This complex blocks unwanted DNA damage repair at telomeres, e.g. by suppressing nonhomologous end joining (NHEJ) through its subunit TRF2. Here, we describe ZNF524, a zinc finger protein that directly binds telomeric repeats with nanomolar affinity, and reveal base-specific sequence recognition by cocrystallization with telomeric DNA. ZNF524 localizes to telomeres and specifically maintains the presence of the TRF2/RAP1 subcomplex at telomeres without affecting other shelterin members. Loss of ZNF524 concomitantly results in an increase in DNA damage signaling and recombination events. Overall, ZNF524 is a direct telomere-binding protein involved in the maintenance of telomere integrity.


Assuntos
Telômero , Proteína 2 de Ligação a Repetições Teloméricas , Humanos , Proteína 2 de Ligação a Repetições Teloméricas/genética , Telômero/genética , Telômero/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/metabolismo , DNA/genética , DNA/metabolismo
19.
Comput Struct Biotechnol J ; 20: 3667-3675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891789

RESUMO

Applications in omics research, such as comparative transcriptomics and proteomics, require the knowledge of the species-specific gene sequence and benefit from a comprehensive high-quality annotation of the coding genes to achieve high coverage. While protein-coding genes can in simple cases be detected by scanning the genome for open reading frames, in more complex genomes exonic sequences are separated by introns. Despite advances in sequencing technologies that allow for ever-growing numbers of genomes, the quality of many of the provided genome assemblies do not reach reference quality. These non-contiguous assemblies with gaps and the necessity to predict splice sites limit accurate gene annotation from solely genomic data. In contrast, the transcriptome only contains transcribed gene regions, is devoid of introns and thus provides the optimal basis for the identification of open reading frames. The additional integration of proteomics data to validate predicted protein-coding genes further enriches for accurate gene models. This review outlines the principles of the proteotranscriptomics approach, discusses common challenges and suggests methods for improvement.

20.
Nat Commun ; 13(1): 6153, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257942

RESUMO

Protein abundance is controlled at the transcriptional, translational and post-translational levels, and its regulatory principles are starting to emerge. Investigating these principles requires large-scale proteomics data and cannot just be done with transcriptional outcomes that are commonly used as a proxy for protein abundance. Here, we determine proteome changes resulting from the individual knockout of 3308 nonessential genes in the yeast Schizosaccharomyces pombe. We use similarity clustering of global proteome changes to infer gene functionality that can be extended to other species, such as humans or baker's yeast. Furthermore, we analyze a selected set of deletion mutants by paired transcriptome and proteome measurements and show that upregulation of proteins under stable transcript expression utilizes optimal codons.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Proteoma/genética , Proteoma/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA