RESUMO
BACKGROUND: Constitutional mismatch repair deficiency (CMMRD) syndrome is a rare and aggressive cancer predisposition syndrome. Because a scarcity of data on this condition contributes to management challenges and poor outcomes, we aimed to describe the clinical spectrum, cancer biology, and impact of genetics on patient survival in CMMRD. METHODS: In this cohort study, we collected cross-sectional and longitudinal data on all patients with CMMRD, with no age limits, registered with the International Replication Repair Deficiency Consortium (IRRDC) across more than 50 countries. Clinical data were extracted from the IRRDC database, medical records, and physician-completed case record forms. The primary objective was to describe the clinical features, cancer spectrum, and biology of the condition. Secondary objectives included estimations of cancer incidence and of the impact of the specific mismatch-repair gene and genotype on cancer onset and survival, including after cancer surveillance and immunotherapy interventions. FINDINGS: We analysed data from 201 patients (103 males, 98 females) enrolled between June 5, 2007 and Sept 9, 2022. Median age at diagnosis of CMMRD or a related cancer was 8·9 years (IQR 5·9-12·6), and median follow-up from diagnosis was 7·2 years (3·6-14·8). Endogamy among minorities and closed communities contributed to high homozygosity within countries with low consanguinity. Frequent dermatological manifestations (117 [93%] of 126 patients with complete data) led to a clinical overlap with neurofibromatosis type 1 (35 [28%] of 126). 339 cancers were reported in 194 (97%) of 201 patients. The cumulative cancer incidence by age 18 years was 90% (95% CI 80-99). Median time between cancer diagnoses for patients with more than one cancer was 1·9 years (IQR 0·8-3·9). Neoplasms developed in 15 organs and included early-onset adult cancers. CNS tumours were the most frequent (173 [51%] cancers), followed by gastrointestinal (75 [22%]), haematological (61 [18%]), and other cancer types (30 [9%]). Patients with CNS tumours had the poorest overall survival rates (39% [95% CI 30-52] at 10 years from diagnosis; log-rank p<0·0001 across four cancer types), followed by those with haematological cancers (67% [55-82]), gastrointestinal cancers (89% [81-97]), and other solid tumours (96% [88-100]). All cancers showed high mutation and microsatellite indel burdens, and pathognomonic mutational signatures. MLH1 or MSH2 variants caused earlier cancer onset than PMS2 or MSH6 variants, and inferior survival (overall survival at age 15 years 63% [95% CI 55-73] for PMS2, 49% [35-68] for MSH6, 19% [6-66] for MLH1, and 0% for MSH2; p<0·0001). Frameshift or truncating variants within the same gene caused earlier cancers and inferior outcomes compared with missense variants (p<0·0001). The greater deleterious effects of MLH1 and MSH2 variants as compared with PMS2 and MSH6 variants persisted despite overall improvements in survival after surveillance or immune checkpoint inhibitor interventions. INTERPRETATION: The very high cancer burden and unique genomic landscape of CMMRD highlight the benefit of comprehensive assays in timely diagnosis and precision approaches toward surveillance and immunotherapy. These data will guide the clinical management of children and patients who survive into adulthood with CMMRD. FUNDING: The Canadian Institutes for Health Research, Stand Up to Cancer, Children's Oncology Group National Cancer Institute Community Oncology Research Program, Canadian Cancer Society, Brain Canada, The V Foundation for Cancer Research, BioCanRx, Harry and Agnieszka Hall, Meagan's Walk, BRAINchild Canada, The LivWise Foundation, St Baldrick Foundation, Hold'em for Life, and Garron Family Cancer Center.
Assuntos
Proteínas de Ligação a DNA , Síndromes Neoplásicas Hereditárias , Humanos , Masculino , Feminino , Criança , Pré-Escolar , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/terapia , Estudos Transversais , Adolescente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/epidemiologia , Reparo de Erro de Pareamento de DNA , Estudos Longitudinais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Incidência , Proteína 2 Homóloga a MutS/genética , Proteína 1 Homóloga a MutL/genética , Adulto , Adulto Jovem , MutaçãoRESUMO
Over the past decade, our understanding of the molecular drivers of pediatric low-grade glioma (PLGG) has expanded dramatically. These tumors are predominantly driven by RAS/MAPK pathway activating alterations (fusions and point mutations), most frequently in BRAF, FGFR1, and NF1. Furthermore, additional second hits in tumor suppressor genes (TP53, ATRX, CDKN2A) can portend more aggressive behaviour. Accordingly, comprehensive molecular profiling-specifically genetic sequencing, often plus copy number profiling-has become critical for guiding the diagnosis and management of PLGG. In this review, we discuss the most important genetic alterations that inform on classification and prognosis of PLGG, highlighting their diagnostic and therapeutic relevance.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Biomarcadores Tumorais/genéticaRESUMO
INTODUCTION: Diffuse leptomeningeal glioneuronal tumors (DLGNTs) pose a rare and challenging entity within pediatric central nervous system neoplasms. Despite their rarity, DLGNTs exhibit complex clinical presentations and unique molecular characteristics, necessitating a deeper understanding of their diagnostic and therapeutic nuances. METHODS: This review synthesizes contemporary literature on DLGNT, encompassing epidemiology, clinical manifestations, pathological features, treatment strategies, prognostic markers, and future research directions. To compile the existing body of knowledge on DLGNT, a comprehensive search of relevant databases was conducted. RESULTS: DLGNT primarily affects pediatric populations but can manifest across all age groups. Its diagnosis is confounded by nonspecific clinical presentations and overlapping radiological features with other CNS neoplasms. Magnetic resonance imaging (MRI) serves as a cornerstone for DLGNT diagnosis, revealing characteristic leptomeningeal enhancement and intraparenchymal involvement. Histologically, DLGNT presents with low to moderate cellularity and exhibits molecular alterations in the MAPK/ERK signalling pathway. Optimal management of DLGNT necessitates a multidisciplinary approach encompassing surgical resection, chemotherapy, radiotherapy, and emerging targeted therapies directed against specific genetic alterations. Prognostication remains challenging, with factors such as age at diagnosis, histological subtypes, and genetic alterations influencing disease progression and treatment response. Long-term survival data are limited, underscoring the need for collaborative research efforts. CONCLUSION: Advancements in molecular profiling, targeted therapies, and international collaborations hold promise for improving DLGNT outcomes. Harnessing the collective expertise of clinicians, researchers, and patient advocates, can advance the field of DLGNT research and optimize patient care paradigms.
Assuntos
Neoplasias Meníngeas , Humanos , Neoplasias Meníngeas/terapia , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/genética , CriançaRESUMO
Constitutional mismatch repair deficiency (CMMRD) is an aggressive and highly penetrant cancer predisposition syndrome. Because of its variable clinical presentation and phenotypical overlap with neurofibromatosis, timely diagnosis remains challenging, especially in countries with limited resources. Since current tests are either difficult to implement or interpret or both we used a novel and relatively inexpensive functional genomic assay (LOGIC) which has been recently reported to have high sensitivity and specificity in diagnosing CMMRD. Here we report the clinical and molecular characteristics of nine patients diagnosed with cancer and suspected to have CMMRD and highlight the challenges with variant interpretation and immunohistochemical analysis that led to an uncertain interpretation of genetic findings in 6 of the 9 patients. Using LOGIC, we were able to confirm the diagnosis of CMMRD in 7 and likely exclude it in 2 patients, resolving ambiguous result interpretation. LOGIC also enabled predictive testing of asymptomatic siblings for early diagnosis and implementation of surveillance. This study highlights the varied manifestations and practical limitations of current diagnostic criteria for CMMRD, and the importance of international collaboration for implementing robust and low-cost functional assays for resolving diagnostic challenges.
Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Humanos , Líbano , Neoplasias Encefálicas/diagnóstico , Neoplasias Colorretais/diagnóstico , Fenótipo , Genômica , GenótipoRESUMO
The color variation of hematoxylin and eosin (H&E)-stained tissues has presented a challenge for applications of artificial intelligence (AI) in digital pathology. Many color normalization algorithms have been developed in recent years in order to reduce the color variation between H&E images. However, previous efforts in benchmarking these algorithms have produced conflicting results and none have sufficiently assessed the efficacy of the various color normalization methods for improving diagnostic performance of AI systems. In this study, we systematically investigated eight color normalization algorithms for AI-based classification of H&E-stained histopathology slides, in the context of using images both from one center and from multiple centers. Our results show that color normalization does not consistently improve classification performance when both training and testing data are from a single center. However, using four multi-center datasets of two cancer types (ovarian and pleural) and objective functions, we show that color normalization can significantly improve the classification accuracy of images from external datasets (ovarian cancer: 0.25 AUC increase, p = 1.6 e-05; pleural cancer: 0.21 AUC increase, p = 1.4 e-10). Furthermore, we introduce a novel augmentation strategy by mixing color-normalized images using three easily accessible algorithms that consistently improves the diagnosis of test images from external centers, even when the individual normalization methods had varied results. We anticipate our study to be a starting point for reliable use of color normalization to improve AI-based, digital pathology-empowered diagnosis of cancers sourced from multiple centers. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Inteligência Artificial , Amarelo de Eosina-(YS) , Neoplasias/diagnóstico , Neoplasias/patologia , Coloração e Rotulagem , Algoritmos , Hematoxilina , Humanos , Reino UnidoRESUMO
Sarcomatoid mesothelioma is an aggressive malignancy that can be challenging to distinguish from benign spindle cell mesothelial proliferations based on biopsy, and this distinction is crucial to patient treatment and prognosis. A novel deep learning based classifier may be able to aid pathologists in making this critical diagnostic distinction. SpindleMesoNET was trained on cases of malignant sarcomatoid mesothelioma and benign spindle cell mesothelial proliferations. Performance was assessed through cross-validation on the training set, on an independent set of challenging cases referred for expert opinion ('referral' test set), and on an externally stained set from outside institutions ('externally stained' test set). SpindleMesoNET predicted the benign or malignant status of cases with AUC's of 0.932, 0.925, and 0.989 on the cross-validation, referral and external test sets, respectively. The accuracy of SpindleMesoNET on the referral set cases (92.5%) was comparable to the average accuracy of 3 experienced pathologists on the same slide set (91.7%). We conclude that SpindleMesoNET can accurately distinguish sarcomatoid mesothelioma from benign spindle cell mesothelial proliferations. A deep learning system of this type holds potential for future use as an ancillary test in diagnostic pathology.
Assuntos
Aprendizado Profundo/classificação , Mesotelioma Maligno/diagnóstico , Mesotelioma/diagnóstico , Neoplasias Pleurais/diagnóstico , Área Sob a Curva , Proliferação de Células , Diagnóstico Diferencial , Humanos , Processamento de Imagem Assistida por Computador , Mesotelioma/classificação , Mesotelioma Maligno/classificação , Redes Neurais de Computação , Neoplasias Pleurais/classificação , Prognóstico , Curva ROC , Sensibilidade e EspecificidadeRESUMO
Deep learning-based computer vision methods have recently made remarkable breakthroughs in the analysis and classification of cancer pathology images. However, there has been relatively little investigation of the utility of deep neural networks to synthesize medical images. In this study, we evaluated the efficacy of generative adversarial networks to synthesize high-resolution pathology images of 10 histological types of cancer, including five cancer types from The Cancer Genome Atlas and the five major histological subtypes of ovarian carcinoma. The quality of these images was assessed using a comprehensive survey of board-certified pathologists (n = 9) and pathology trainees (n = 6). Our results show that the real and synthetic images are classified by histotype with comparable accuracies and the synthetic images are visually indistinguishable from real images. Furthermore, we trained deep convolutional neural networks to diagnose the different cancer types and determined that the synthetic images perform as well as additional real images when used to supplement a small training set. These findings have important applications in proficiency testing of medical practitioners and quality assurance in clinical laboratories. Furthermore, training of computer-aided diagnostic systems can benefit from synthetic images where labeled datasets are limited (e.g. rare cancers). We have created a publicly available website where clinicians and researchers can attempt questions from the image survey (http://gan.aimlab.ca/). © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Patologia Clínica/métodos , HumanosRESUMO
BACKGROUND: Aberrations in Capicua (CIC) have recently been implicated as a negative prognostic factor in a multitude of cancer types through the derepression of targets downstream of the mitogen-activated protein kinase (MAPK) signaling cascade, such as oncogenic E26 transformation-specific (ETS) transcription factors. The Ataxin-family protein ATXN1L has previously been reported to interact with CIC in both developmental and disease contexts to facilitate the repression of CIC target genes and promote the post-translational stability of CIC. However, little is known about the mechanisms at the base of ATXN1L-mediated CIC post-translational stability. RESULTS: Functional in vitro studies utilizing ATXN1LKO human cell lines revealed that loss of ATXN1L leads to the accumulation of polyubiquitinated CIC protein, promoting its degradation through the proteasome. Although transcriptomic signatures of ATXN1LKO cell lines indicated upregulation of the mitogen-activated protein kinase pathway, ERK activity was found to contribute to CIC function but not stability. Degradation of CIC protein following loss of ATXN1L was instead observed to be mediated by the E3 ubiquitin ligase TRIM25 which was further validated using glioma-derived cell lines and the TCGA breast carcinoma and liver hepatocellular carcinoma cohorts. CONCLUSIONS: The post-translational regulation of CIC through ATXN1L and TRIM25 independent of ERK activity suggests that the regulation of CIC stability and function is more intricate than previously appreciated and involves several independent pathways. As CIC status has become a prognostic factor in several cancer types, further knowledge into the mechanisms which govern CIC stability and function may prove useful for future therapeutic approaches.
Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Linhagem Celular , Humanos , Proteólise , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Embryonal tumor with multilayered rosettes (ETMR) is a rare and highly aggressive embryonal central nervous system tumor that primarily affects young children. It is characterized by (1) amplification of the C19MC miRNA cluster at 19q13.42 and (2) immunohistochemical tumor cell positivity for LIN28A. We describe the case of a 3-year-old girl who presented with a 2-week history of multiple neurological deficits. Based primarily on imaging findings that revealed a large pontine tumor, biopsy was not performed and the patient was clinically diagnosed with a "diffuse intrinsic pontine glioma." She was subsequently treated with radiation and concurrent adjuvant temozolomide, but unfortunately there was minimal response and the patient died 6 months after diagnosis. Autopsy revealed an ETMR that was confirmed via C19MC fluorescence in situ hybridization and LIN28 immunohistochemistry. Although widespread central nervous system dissemination was observed, large portions of the main pontine mass exhibited evidence of extensive glial and neuronal maturation (ie, differentiation). We consider this tissue "maturation" to have been induced by chemotherapy and radiation. Herein, we discuss the importance of antemortem biopsy of intrinsic pontine tumors and the clinical significance of glial and neuronal maturation post therapy in the context of ETMR.
Assuntos
Neoplasias do Tronco Encefálico/patologia , Tronco Encefálico/patologia , Neoplasias Embrionárias de Células Germinativas/patologia , Neuroglia/patologia , Neurônios/patologia , Autopsia , Tronco Encefálico/fisiologia , Neoplasias do Tronco Encefálico/diagnóstico , Neoplasias do Tronco Encefálico/terapia , Diferenciação Celular , Quimiorradioterapia , Pré-Escolar , Evolução Fatal , Feminino , Humanos , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Embrionárias de Células Germinativas/terapia , Neuroglia/fisiologia , Neurônios/fisiologiaRESUMO
BACKGROUND: Spinal cord stimulation (SCS) is a well-established treatment for chronic neuropathic pain in the lower limbs. Upper limb pain comprises a significant proportion of neuropathic pain patients, but is often difficult to target specifically and consistently with paresthesias. We hypothesized that the use of dorsal nerve root stimulation (DNRS), as an option along with SCS, would help us better relieve pain in these patients. METHODS: All 35 patients trialed with spinal stimulation for upper limb pain between July 1, 2011, and October 31, 2013, were included. We performed permanent implantation in 23/35 patients based on a visual analogue scale pain score decrease of ≥50% during trial stimulation. RESULTS: Both the SCS and DNRS groups had significant improvements in average visual analogue scale pain scores at 12 months compared with baseline, and the majority of patients in both groups obtained ≥50% pain relief. The majority of patients in both groups were able to reduce their opioid use, and on average had improvements in Short Form-36 quality of life scores. Complication rates did not differ significantly between the two groups. CONCLUSIONS: Treatment with SCS or DNRS provides meaningful long-term relief of chronic neuropathic pain in the upper limbs.
Assuntos
Medula Cervical/fisiologia , Neuralgia/terapia , Estimulação da Medula Espinal/métodos , Raízes Nervosas Espinhais/fisiologia , Extremidade Superior/fisiopatologia , Absorciometria de Fóton , Adolescente , Adulto , Analgésicos Opioides/uso terapêutico , Medula Cervical/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neuralgia/diagnóstico por imagem , Medição da Dor , Estudos Retrospectivos , Raízes Nervosas Espinhais/diagnóstico por imagem , Fatores de Tempo , Resultado do Tratamento , Adulto JovemRESUMO
This case illustrates the utility and impact of molecular testing and molecular tumor board discussion in the management of AYA patients with brain tumors.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Feminino , Humanos , Masculino , Adulto Jovem , Astrocitoma/genética , Astrocitoma/tratamento farmacológico , Neoplasias Encefálicas/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
Diffuse intrinsic pontine glioma (DIPG) remains a significant therapeutic challenge due to the lack of effective and safe treatment options. This study explores the potential of combining histone deacetylase (HDAC) and carbonic anhydrase 9 (CA9) inhibitors in treating DIPG. Analysis of RNA sequencing data and tumor tissue from patient samples for the expression of the carbonic anhydrase family and hypoxia signaling pathway activity revealed clinical relevance for targeting CA9 in DIPG. A synergy screen was conducted using CA9 inhibitor SLC-0111 and HDAC inhibitors panobinostat, vorinostat, entinostat, and pyroxamide. The combination of SLC-0111 and pyroxamide demonstrated the highest synergy and was selected for further analysis. Combining SLC-0111 and pyroxamide effectively inhibited DIPG cell proliferation, reduced cell migration and invasion potential, and enhanced histone acetylation, leading to decreased cell population in S Phase. Additionally, the combination therapy induced a greater reduction in intracellular pH than either agent alone. Data from this study suggest that the combination of SLC-0111 and pyroxamide holds promise for treating experimental DIPG, and further investigation of this combination therapy in preclinical models is warranted to evaluate its potential as a viable treatment for DIPG.
Assuntos
Neoplasias do Tronco Encefálico , Proliferação de Células , Glioma Pontino Intrínseco Difuso , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/patologia , Proliferação de Células/efeitos dos fármacos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/genética , Sinergismo Farmacológico , Animais , Sulfonamidas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos de FenilureiaRESUMO
With the success of immunotherapy in cancer, understanding the tumor immune microenvironment (TIME) has become increasingly important; however in pediatric brain tumors this remains poorly characterized. Accordingly, we developed a clinical immune-oncology gene expression assay and used it to profile a diverse range of 1382 samples with detailed clinical and molecular annotation. In low-grade gliomas we identify distinct patterns of immune activation with prognostic significance in BRAF V600E-mutant tumors. In high-grade gliomas, we observe immune activation and T-cell infiltrates in tumors that have historically been considered immune cold, as well as genomic correlates of inflammation levels. In mismatch repair deficient high-grade gliomas, we find that high tumor inflammation signature is a significant predictor of response to immune checkpoint inhibition, and demonstrate the potential for multimodal biomarkers to improve treatment stratification. Importantly, while overall patterns of immune activation are observed for histologically and genetically defined tumor types, there is significant variability within each entity, indicating that the TIME must be evaluated as an independent feature from diagnosis. In sum, in addition to the histology and molecular profile, this work underscores the importance of reporting on the TIME as an essential axis of cancer diagnosis in the era of personalized medicine.
Assuntos
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Glioma/imunologia , Glioma/genética , Glioma/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Feminino , Masculino , Adolescente , Regulação Neoplásica da Expressão Gênica , Prognóstico , Proteínas Proto-Oncogênicas B-raf/genética , Pré-Escolar , Perfilação da Expressão Gênica , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Mutação , Linfócitos T/imunologia , Medicina de Precisão/métodos , Linfócitos do Interstício Tumoral/imunologia , Relevância ClínicaRESUMO
Immune checkpoint inhibition (ICI) is effective for replication-repair-deficient, high-grade gliomas (RRD-HGG). The clinical/biological impact of immune-directed approaches after failing ICI monotherapy is unknown. We performed an international study on 75 patients treated with anti-PD-1; 20 are progression free (median follow-up, 3.7 years). After second progression/recurrence (n = 55), continuing ICI-based salvage prolonged survival to 11.6 months (n = 38; P < 0.001), particularly for those with extreme mutation burden (P = 0.03). Delayed, sustained responses were observed, associated with changes in mutational spectra and the immune microenvironment. Response to reirradiation was explained by an absence of deleterious postradiation indel signatures (ID8). CTLA4 expression increased over time, and subsequent CTLA4 inhibition resulted in response/stable disease in 75%. RAS-MAPK-pathway inhibition led to the reinvigoration of peripheral immune and radiologic responses. Local (flare) and systemic immune adverse events were frequent (biallelic mismatch-repair deficiency > Lynch syndrome). We provide a mechanistic rationale for the sustained benefit in RRD-HGG from immune-directed/synergistic salvage therapies. Future approaches need to be tailored to patient and tumor biology. SIGNIFICANCE: Hypermutant RRD-HGG are susceptible to checkpoint inhibitors beyond initial progression, leading to improved survival when reirradiation and synergistic immune/targeted agents are added. This is driven by their unique biological and immune properties, which evolve over time. Future research should focus on combinatorial regimens that increase patient survival while limiting immune toxicity. This article is featured in Selected Articles from This Issue, p. 201.
Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioma , Humanos , Antígeno CTLA-4 , Glioma/tratamento farmacológico , Glioma/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Antineoplásicos/uso terapêutico , Imunoterapia , Microambiente TumoralRESUMO
PURPOSE: Checkpoint inhibitors have limited efficacy for children with unselected solid and brain tumors. We report the first prospective pediatric trial (NCT02992964) using nivolumab exclusively for refractory nonhematologic cancers harboring tumor mutation burden (TMB) ≥5 mutations/megabase (mut/Mb) and/or mismatch repair deficiency (MMRD). PATIENTS AND METHODS: Twenty patients were screened, and 10 were ultimately included in the response cohort of whom nine had TMB >10 mut/Mb (three initially eligible based on MMRD) and one patient had TMB between 5 and 10 mut/Mb. RESULTS: Delayed immune responses contributed to best overall response of 50%, improving on initial objective responses (20%) and leading to 2-year overall survival (OS) of 50% [95% confidence interval (CI), 27-93]. Four children, including three with refractory malignant gliomas are in complete remission at a median follow-up of 37 months (range, 32.4-60), culminating in 2-year OS of 43% (95% CI, 18.2-100). Biomarker analyses confirmed benefit in children with germline MMRD, microsatellite instability, higher activated and lower regulatory circulating T cells. Stochastic mutation accumulation driven by underlying germline MMRD impacted the tumor microenvironment, contributing to delayed responses. No benefit was observed in the single patient with an MMR-proficient tumor and TMB 7.4 mut/Mb. CONCLUSIONS: Nivolumab resulted in durable responses and prolonged survival for the first time in a pediatric trial of refractory hypermutated cancers including malignant gliomas. Novel biomarkers identified here need to be translated rapidly to clinical care to identify children who can benefit from checkpoint inhibitors, including upfront management of cancer. See related commentary by Mardis, p. 4701.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Nivolumabe/uso terapêutico , Estudos Prospectivos , Mutação , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Biomarcadores Tumorais/genética , Reparo de Erro de Pareamento de DNA/genética , Microambiente TumoralRESUMO
Background: Disseminated pediatric low-grade gliomas and glioneuronal tumors (dpLGG/GNTs) are associated with a poorer prognosis than nondisseminated pLGG/GNTs. To date there is no comprehensive report characterizing the genome profile of dpLGG/GNTs and their relative survival. This systematic review aims to identify the pattern of genetic alterations and long-term outcomes described for dpLGG/GNT. Methods: A systematic review of the literature was performed to identify relevant articles. A quality and risk of bias assessment of articles was done using the GRADE framework and ROBINS-I tool, respectively. Results: Fifty studies published from 1994 to 2020 were included in this review with 366 cases reported. There was sporadic reporting of genetic alterations. The most common molecular alterations observed among subjects were 1p deletion (75%) and BRAF-KIAA1549 fusion (55%). BRAF p.V600E mutation was found in 7% of subjects. A higher proportion of subjects demonstrated primary dissemination compared to secondary dissemination (65% vs 25%). First-line chemotherapy consisted of an alkylation-based regimen and vinca alkaloids. Surgical intervention ranged from biopsy alone (59%) to surgical resection (41%) and CSF diversion (28%). Overall, 73% of cases were alive at last follow-up. Survival did not vary by tumor type or timing of dissemination. All studies reviewed either ranked low or moderate for both quality and risk of bias assessments. Conclusions: Chromosome 1p deletion and BRAF-KIAA1549 fusion were the most common alterations identified in dpLGG/GNT cases reviewed. The relative molecular heterogeneity between DLGG and DLGNT, however, deserves further exploration and ultimately correlation with their biologic behavior to better understand the pathogenesis of dpLGG/GNT.
RESUMO
Marginal zone B-cell lymphoma (MZBCL) of mucosa-associated lymphoid tissue (MALT) type, which is primary to the central nervous system (CNS), is a rare lesion, with those originating within the parenchyma even more so. We present the case of a 64-year-old male with weakness in the left hand and focal motor seizures of his arm, who was found to have a right frontal intraparenchymal lesion. Following resection, histopathological and immunohistochemical evaluations were completed, leading to a diagnosis of a primary CNS MZBCL of MALT type in the context of a negative workup of systemic disease. Neuroimaging, histopathological, and immunohistochemical findings, as well as a comprehensive literature review of similar cases, are discussed.
RESUMO
Dr. O.P. Yadava, CEO & Chief Cardiac Surgeon, National Heart Institute, New Delhi, India and Editor-in-Chief, Indian Journal of Thoracic and Cardiovascular Surgery in conversation with Dr. Adrian J Levine, Consultant Cardiac Surgeon, University Hospital of the North Midlands, UK. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12055-021-01221-1.
RESUMO
Infection with the SARS-CoV-2 virus affects a wide range of systems. Significant involvement of the central nervous system has been described, including ischemic and hemorrhagic strokes. Thus far, neuropathologic reports of patients who passed away from COVID-19 have generally described non-specific findings, such as variable reactive gliosis and meningeal chronic inflammatory infiltrates, as well as the consequences of the infection's systemic complications on the brain, including ischemic infarcts and hypoxic/ischemic encephalopathy. The neuropathological changes in patients with COVID-19 and large hemorrhagic strokes have not been described in detail. We report the case of an elderly male who had a long course of COVID-19 and ultimately passed away from a large intracerebral hemorrhage. In addition to acute hemorrhage, neuropathologic examination demonstrated non-specific reactive changes and chronic periventricular lesions with macrophagic and perivascular lymphocytic infiltrates without evidence of demyelination or presence of SARS-CoV-2 by PCR test. This manuscript expands the spectrum of reported neuropathological changes in patients with COVID-19.