Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Water Resour Res ; 58(6): 1-18, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35813986

RESUMO

We present and demonstrate a recursive-estimation framework to infer groundwater/surface-water exchange based on temperature time series collected at different vertical depths below the sediment/water interface. We formulate the heat-transport problem as a state-space model (SSM), in which the spatial derivatives in the convection/conduction equation are approximated using finite differences. The SSM is calibrated to estimate time-varying specific discharge using the Extended Kalman Filter (EKF) and Extended Rauch-Tung-Striebel Smoother (ERTSS). Whereas the EKF is suited to real-time ("online") applications and uses only the past and current measurements for estimation (filtering), the ERTSS is intended for near-real time or batch-processing ("offline") applications and uses a window of data for batch estimation (smoothing). The two algorithms are demonstrated with synthetic and field-experimental data and are shown to be efficient and rapid for the estimation of time-varying flux over seasonal periods; further, the recursive approaches are effective in the presence of rapidly changing flux and (or) nonperiodic thermal boundary conditions, both of which are problematic for existing approaches to heat tracing of time-varying groundwater/surface-water exchange.

2.
J Environ Manage ; 302(Pt A): 113944, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715616

RESUMO

There is a growing need to assess long-term impacts of active remediation strategies on treated aquifers. A variety of biogeochemical alterations can result from interactions of the amendment with the aquifer, conceivably leading to a geophysical signal associated with the long-term alteration of an aquifer. This concept of post-remediation geophysical assessment was investigated in a shallow, chlorinated solvent-contaminated aquifer six to eight years after amendment delivery. Surface resistivity imaging and cross-borehole resistivity and induced polarization (IP) imaging were performed on a transect that spanned treated and untreated zones of the aquifer. Established relationships between IP parameters and surface electrical conductivity were used to predict vertical profiles of electrolytic conductivity and surface conductivity from the inverted cross-borehole images. Aqueous geochemistry data, along with natural gamma and magnetic susceptibility logs, were used to constrain the interpretation. The electrical conductivity structure determined from surface and borehole imaging was foremost controlled by the electrolytic conductivity of the interconnected pore space, being linearly related to fluid specific conductance. The electrolytic conductivity (and thus the conductivity images alone) did not discriminate between treated and untreated zones of the aquifer. In contrast, inverted phase angles and surface conductivities did discriminate between treated and untreated zones of the aquifer, with the treated zone being up to an order of magnitude more polarizable in places. Supporting aqueous chemistry and borehole logging datasets indicate that this geophysical signal from the long-term impact of the remediation on the aquifer is most likely associated with the formation of polarizable, dispersed iron sulfide minerals.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Monitoramento Ambiental , Solventes , Poluentes Químicos da Água/análise
3.
Acc Chem Res ; 51(8): 1746-1754, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30070820

RESUMO

The initial studies of the dynamics of photoinduced charge separation conducted in our laboratories 20 years ago found strongly distance-dependent rate constants over short distances but failed to detect intermediates in the transport of positive charge (holes). These observations were consistent with the single-step superexchange or tunneling mechanism that had been observed for numerous donor-bridge-acceptor systems at that time. Subsequent studies found weak distance dependence for hole transport over longer distances in DNA, characteristic of incoherent hopping of either localized or delocalized holes. The introduction of synthetic DNA capped hairpin constructs possessing hole donor and acceptor chromophores (or purine bases) at opposite ends of a base-pair domain made it possible to determine the time required for transit of charge from one chromophore to the other and, in some cases, to distinguish between the transit time and the much faster initial charge injection time. These studies eliminated conventional tunneling as a viable mechanism for charge transport in DNA except at very short donor-acceptor separations; however, they did not establish the presence or nature of intermediates in the charge separation process. Recent studies in our laboratories have succeeded in identifying key intermediates as well as untangling the dynamics and efficiency of the charge separation process from start to finish. The dynamics of the initial charge injection process is dependent upon both its free energy and the stacking of the hole donor chromophore and adjacent purine base. The transport of positive charge (holes) over multiple base pairs in duplex DNA occurs most efficiently via repeating adenine bases, known as A-tracts. The transit time across an A-tract is strongly dependent upon the free energy for hole injection, whereas the efficiency of charge separation depends on the competition between charge delocalization and charge recombination in the contact radical ion pair. The guanine cation radical has been detected both by femtosecond transient absorption and by stimulated Raman spectroscopies when the guanine is located near the chromophore employed for hole injection into an A-tract. Replacement of guanine by its derivative 8-phenylethynylguanine (EG), permits tracking of hole transport across longer poly(purine) sequences as a consequence of the stronger transient absorption and stimulated Raman scattering for EG+• vs G+•. We have recently obtained evidence based on femtosecond transient absorption spectroscopy for the formation of delocalized A-polarons in A-tracts possessing four or more A-T base pairs. Similar methods have been used to track hole transport across less-common DNA structures including diblock and triblock poly(purines), locked nucleic acids, three-way junctions, and G-quadruplexes. Similar methods are have been applied to the study of photoinduced electron transport in DNA.


Assuntos
DNA/química , Adenina/química , DNA/genética , DNA/efeitos da radiação , Corantes Fluorescentes/química , Radicais Livres/química , Guanina/química , Sequências Repetidas Invertidas , Fotoquímica/métodos , Eletricidade Estática , Raios Ultravioleta
4.
Faraday Discuss ; 207(0): 217-232, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29362748

RESUMO

The ground- and excited-state electronic interactions between the nucleobase analog 8-(4'-phenylethynyl)deoxyguanosine, EG, with natural nucleobases and 7-deazaguanine, as well as between adjacent EG base analogs, have been characterized using a combination of steady-state spectroscopy and time-resolved fluorescence, absorption, and stimulated Raman spectroscopies. The properties of the nucleoside EG-H2 are only weakly perturbed upon incorporation into synthetic DNA hairpins in which thymine, cytosine or adenine are the bases flanking EG. Incorporation of the nucleoside to be adjacent to guanine or deazaguanine results in the formation of short-lived (40-80 ps) exciplexes, the charge transfer character of which increases as the oxidation potential of the donor decreases. Hairpins possessing two or three adjacent EG base analogs display exciton-coupled circular dichroism in the ground state and form long-lived fluorescent excited states upon electronic excitation. Incorporation of EG into the helical scaffold of the DNA hairpins places it adjacent to its neighboring nucleobases or a second EG, thus providing the close proximity required for the formation of exciplex or excimer intermediates upon geometric relaxation of the short-lived EG excited state. The three time-resolved spectroscopic methods employed permit both the characterization of the several intermediates and the kinetics of their formation and decay.


Assuntos
DNA/química , Fluorescência , Guanina/química , Conformação de Ácido Nucleico , Purinas/química , Guanina/análogos & derivados
5.
J Environ Manage ; 220: 233-245, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29783177

RESUMO

Identifying and quantifying groundwater exchange is critical when considering contaminant fate and transport at the groundwater/surface-water interface. In this paper, areally distributed temperature and point seepage measurements are used to efficiently assess spatial and temporal groundwater discharge patterns through a glacial-kettle lakebed area containing a zero-valent iron permeable reactive barrier (PRB). Concern was that the PRB was becoming less permeable with time owing to biogeochemical processes within the PRB. Patterns of groundwater discharge over an 8-year period were examined using fiber-optic distributed temperature sensing (FO-DTS) and snapshot-in-time point measurements of temperature. The resulting thermal maps show complex and uneven distributions of temperatures across the lakebed and highlight zones of rapid seepage near the shoreline and along the outer boundaries of the PRB. Repeated thermal mapping indicates an increase in lakebed temperatures over time at periods of similar stage and surface-water temperature. Flux rates in six seepage meters permanently installed on the lakebed in the PRB area decreased on average by 0.021 md-1 (or about 4.5 percent) annually between 2004 and 2015. Modeling of diurnal temperature signals from shallow vertical profiles yielded mean flux values ranging from 0.39 to 1.15 md-1, with stronger fluxes generally related to colder lakebed temperatures. The combination of an increase in lakebed temperatures, declines in direct seepage, and observations of increased cementation of the lakebed surface provide in situ evidence that the permeability of the PRB is declining. The presence of temporally persistent rapid seepage zones is also discussed.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ferro , Lagos , Movimentos da Água
6.
J Am Chem Soc ; 139(5): 1730-1733, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28094928

RESUMO

The dynamics and efficiency of photoinduced charge transport has been investigated in DNA capped hairpins possessing a stilbenedicarboxamide (Sa) hole donor and stilbenediether (Sd) hole acceptor separated by DNA G-quadruplex structures possessing 2-to-4 tetrads by means of femtosecond and nanosecond transient absorption spectroscopy with global analysis. The results for the quadruplex structures are compared with those for the corresponding duplex structures having G-C base pairs in place of the G-tetrads. Following photoinduced charge separation to form a contact radical ion pair, hole transport to form the Sa-•/Sd+• charge-separated state is slower but more efficient for the quadruplex vs duplex structures. Thus, the G-quadruplex serves as an effective conduit for positive charge rather than as a hole trap when inserted into a duplex, as previously postulated.


Assuntos
DNA/química , Quadruplex G , Éteres/química , Estrutura Molecular , Processos Fotoquímicos , Estilbenos/química , Termodinâmica
7.
J Am Chem Soc ; 139(34): 12084-12092, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28767235

RESUMO

The hole transport dynamics of DNA hairpins possessing a stilbene electron acceptor and donor along with a modified guanine (G) nucleobase, specifically 8-(4'-phenylethynyl)deoxyguanosine, or EG, have been investigated. The nearly indistinguishable oxidation potentials of EG and G and unique spectroscopic characteristics of EG+• make it well-suited for directly observing transient hole occupation during charge transport between a stilbene electron donor and acceptor. In contrast to the cation radical G+•, EG+• possesses a strong absorption near 460 nm and has a distinct Raman-active ethynyl stretch. Both spectroscopic characteristics are easily distinguished from those of the stilbene donor/acceptor radical ion chromophores. Employing EG, we observe its role as a shallow hole trap, or as an intermediate hole transport site when a deeper trap state is present. Using a combination of ultrafast absorption and stimulated Raman spectroscopies, the hole-transport dynamics are observed to be similar in systems having EG vs G bases, with small perturbations to the charge transport rates and yields. These results show EG can be deployed at specified locations throughout the sequence to report on hole occupancy, thereby enabling detailed monitoring of the hole transport dynamics with base-site specificity.


Assuntos
DNA/química , Desoxiguanosina/análogos & derivados , Estilbenos/química , Transporte de Elétrons , Elétrons , Quadruplex G , Conformação de Ácido Nucleico , Análise Espectral Raman
8.
Chemistry ; 23(43): 10328-10337, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28543996

RESUMO

The self-assembly behavior of DNA conjugates possessing a perylenediimide (PDI) head group and an N-oligonucleotide tail has been investigated using a combination of optical spectroscopy and cryogenic transmission electron microscopy (cryo-TEM) imaging. To obtain insight into the interplay between PDI hydrophobic interactions and DNA base-pairing we employed systematic variation in the length and composition of the oligo tails. Conjugates with short (TA)n or (CG)n oligo tails (n≤3) form helical or nonhelical fibers constructed from π-stacked PDI head groups with pendent oligo tails in aqueous solution. Conjugates with longer (TA)n oligo tails also form stacks of PDI head groups, which are further aggregated by base-pairing between their oligo tails, leading to fiber bundling and formation of bilayers. The longer (CG)n conjugates form PDI end-capped duplexes, which further assemble into PDI-stacked arrays of duplexes leading to large scale ordered assemblies. Cryo-TEM imaging reveals that (CG)3 gives rise to both fibers and large assemblies, whereas (CG)5 assembles preferentially into large ordered structures.


Assuntos
Pareamento de Bases , DNA de Cadeia Simples/química , Imidas/química , Perileno/análogos & derivados , Dicroísmo Circular/métodos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão/métodos , Modelos Moleculares , Estrutura Molecular , Perileno/química , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos , Relação Estrutura-Atividade
9.
J Environ Manage ; 204(Pt 2): 709-720, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28434821

RESUMO

Geophysical methods are used increasingly for characterization and monitoring at remediation sites in fractured-rock aquifers. The complex heterogeneity of fractured rock poses enormous challenges to groundwater remediation professionals, and new methods are needed to cost-effectively infer fracture and fracture-zone locations, orientations and properties, and to develop conceptual site models for flow and transport. Despite the potential of geophysical methods to "see" between boreholes, two issues have impeded the adoption of geophysical methods by remediation professionals. First, geophysical results are commonly only indirectly related to the properties of interest (e.g., permeability) to remediation professionals, and qualitative or quantitative interpretation is required to convert geophysical results to hydrogeologic information. Additional demonstration/evaluation projects are needed in the site remediation literature to fully transfer geophysical methods from research to practice. Second, geophysical methods are commonly viewed as inherently risky by remediation professionals. Although it is widely understood that a given method may or may not work at a particular site, the reasons are not always clear to end users of geophysical products. Synthetic modeling tools are used in research to assess the potential of a particular method to successfully image a target, but these tools are not widely used in industry. Here, we seek to advance the application of geophysical methods to solve problems facing remediation professionals with respect to fractured-rock aquifers. To this end, we (1) provide an overview of geophysical methods applied to characterization and monitoring of fractured-rock aquifers; (2) review case studies showcasing different geophysical methods; and (3) discuss best practices for method selection and rejection based on synthetic modeling and decision support tools.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Monitoramento Ambiental , Movimentos da Água
10.
J Am Chem Soc ; 138(17): 5491-4, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27082662

RESUMO

The excited state behavior of DNA hairpins possessing a diphenylacetylenedicarboxamide (DPA) linker separated from a single guanine-cytosine (G-C) base pair by zero-to-six adenine-thymine (A-T) base pairs has been investigated. In the case of hairpins with zero or one A-T separating DPA and G, formation of both DPA anion radical (DPA(-•)) and G cation radical (G(+•)) are directly observed and characterized by their transient absorption and stimulated Raman spectra. For hairpins with two or more intervening A-T, the transient absorption spectra of DPA(-•) and the adenine polaron (An(+•)) are observed. In addition to characterization of the hole carriers, the dynamics of each step in the charge separation and charge recombination process as well as the overall efficiency of charge separation have been determined, thus providing a complete account of the mechanism and dynamics of photoinduced charge transport in these DNA hairpins.


Assuntos
DNA/química , Processos Fotoquímicos , Conformação de Ácido Nucleico , Análise Espectral/métodos
11.
Chemistry ; 22(14): 4904-14, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26928984

RESUMO

The electronic excited states populated upon absorption of UV photons by DNA are extensively studied in relation to the UV-induced damage to the genetic code. Here, we report a new unexpected relaxation pathway in adenine-thymine double-stranded structures (AT)n . Fluorescence measurements on (AT)n hairpins (six and ten base pairs) and duplexes (20 and 2000 base pairs) reveal the existence of an emission band peaking at approximately 320 nm and decaying on the nanosecond time scale. Time-dependent (TD)-DFT calculations, performed for two base pairs and exploring various relaxation pathways, allow the assignment of this emission band to excited states resulting from mixing between Frenkel excitons and adenine-to-thymine charge-transfer states. Emission from such high-energy long-lived mixed (HELM) states is in agreement with their fluorescence anisotropy (0.03), which is lower than that expected for π-π* states (≥0.1). An increase in the size of the system quenches π-π* fluorescence while enhancing HELM fluorescence. The latter process varies linearly with the hypochromism of the absorption spectra, both depending on the coupling between π-π* and charge-transfer states. Subsequently, we identify the common features between the HELM states of (AT)n structures with those reported previously for alternating (GC)n : high emission energy, low fluorescence anisotropy, nanosecond lifetimes, and sensitivity to conformational disorder. These features are also detected for calf thymus DNA in which HELM states could evolve toward reactive π-π* states, giving rise to delayed fluorescence.


Assuntos
Adenina/química , Citosina/química , DNA/química , Oligonucleotídeos/síntese química , Timina/química , Animais , Bovinos , DNA/metabolismo , Transferência de Energia , Oligonucleotídeos/química , Teoria Quântica , Espectrometria de Fluorescência , Raios Ultravioleta
12.
J Am Chem Soc ; 137(15): 5113-22, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25822073

RESUMO

DNA-based molecular electronics will require charges to be transported from one site within a 2D or 3D architecture to another. While this has been shown previously in linear, π-stacked DNA sequences, the dynamics and efficiency of charge transport across DNA three-way junction (3WJ) have yet to be determined. Here, we present an investigation of hole transport and trapping across a DNA-based three-way junction systems by a combination of femtosecond transient absorption spectroscopy and molecular dynamics simulations. Hole transport across the junction is proposed to be gated by conformational fluctuations in the ground state which bring the transiently populated hole carrier nucleobases into better aligned geometries on the nanosecond time scale, thus modulating the π-π electronic coupling along the base pair sequence.


Assuntos
DNA/química , Pareamento de Bases , Transporte de Elétrons , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Análise Espectral
13.
Faraday Discuss ; 185: 105-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442603

RESUMO

The effects of an artificial cyclohexyl base pair on the quantum yields of fluorescence and dynamics of charge separation and charge recombination have been investigated for several synthetic DNA hairpins. The hairpins possess stilbenedicarboxamide, perylenediimide, or naphthalenediimide linkers and base-paired stems. In the absence of the artificial base pair hole injection into both adenine and guanine purine bases is exergonic and irreversible, except in the case of stilbene with adenine for which it is slightly endergonic and reversible. Insertion of the artificial base pair renders hole injection endergonic or isoergonic except in the case of the powerful naphthalene acceptor for which it remains exergonic. Both hole injection and charge recombination are slower for the naphthalene acceptor in the presence of the artificial base pair than in its absence. The effect of an artificial base pair on charge separation and charge recombination in hairpins possessing stilbene and naphthalene acceptor linkers and a stilbenediether donor capping group has also been investigated. In the case of the stilbene acceptor-stilbene donor capped hairpins photoinduced charge separation across six base pairs is efficient in the absence of the artificial base pair but does not occur in its presence. In the case of the naphthalene acceptor-stilbene donor capped hairpins the artificial base pair slows but does not stop charge separation and charge recombination, leading to the formation of long-lived charge separated states.


Assuntos
Cicloexanos/química , DNA/química , Fotoquímica , Pareamento de Bases , Imidas/química , Perileno/análogos & derivados , Perileno/química
14.
J Am Chem Soc ; 136(44): 15792-7, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25299823

RESUMO

The dynamics of charge separation and charge recombination have been determined for lipid complexes of DNA capped hairpins possessing stilbene electron-acceptor and -donor chromophores separated by base-pair domains that vary in length and base sequence in chloroform solution by means of femtosecond time-resolved transient absorption spectroscopy. The results obtained for the DNA-lipid complexes are compared with those previously obtained in our laboratories for the same hairpins in aqueous buffer. The charge separation and charge recombination times for the lipid complexes are consistently much shorter than those determined in aqueous solution and are only weakly dependent on the number of base pairs separating the acceptor and donor. The enhanced rate constants for forward and return charge transport in DNA-lipid complexes support proposals that solvent gating is responsible, to a significant extent, for the relatively low rates of charge transport for DNA in water. Moreover, they suggest that DNA-lipid complexes may prove useful in the development of DNA-based molecular electronic devices.


Assuntos
Clorofórmio/química , DNA/química , Lipídeos/química , Dicroísmo Circular , Espectrofotometria Ultravioleta
15.
Photochem Photobiol Sci ; 13(2): 266-71, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24212351

RESUMO

The photochemical reactions of eleven synthetic DNA hairpins possessing a single TT step either in a base-paired stem or in a hexanucleotide linker have been investigated. The major reaction products have been identified as the cis-syn (2 + 2) adduct and the (6 - 4) adduct on the basis of their spectroscopic properties including 1D and 2D NMR spectra, UV spectra and stability or instability to photochemical cleavage. Product quantum yields and ratios determined by HPLC analysis allow the behaviour of the eleven hairpins to be placed into three groups: Group I in which the (2 + 2) adduct is the major product, as is usually the case for DNA, Group II in which comparable amounts of (2 + 2) and (6 - 4) adducts are formed, and Group III in which the major product is the (6 - 4) adduct. The latter behaviour is without precedent in natural or synthetic DNA and appears to be related to the highly fluxional structures of the hairpin reactants. Molecular dynamics simulation of ground state conformations provides quantum yields and product ratios calculated using a single parameter model that are in reasonable agreement with most of the experimental results. Factors which may influence the observed product ratios are discussed.


Assuntos
Adutos de DNA/química , Adutos de DNA/genética , Dimerização , Sequências Repetidas Invertidas , Processos Fotoquímicos , Timina/química , Pareamento de Bases , Modelos Moleculares , Teoria Quântica
16.
J Phys Chem A ; 118(45): 10359-63, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24912084

RESUMO

The effect of Mg(2+) cations on the electronic spectra and dynamics and efficiency of hole transport has been determined by means of femtosecond time-resolved transient absorption spectroscopy for DNA hairpins possessing stilbene electron acceptor and donor chromophores. The results are compared with those obtained previously for the same hairpins in the presence of Na(+) cations and for one hairpin with no added salt. Quantum yields and rate constants for charge separation are smaller in the presence of Mg(2+) than Na(+), the largest differences being observed for the hairpins with the largest number of base pairs. Slower charge separation is attributed to minor groove binding by Mg(2+), which results in a stiffer duplex structure rather than a change in ground state geometry. Reduction in the Na(+) concentration has little effect on either the dynamics or efficiency of hole transport.


Assuntos
Cátions/química , DNA/química , Magnésio/química , Dicroísmo Circular , Sequências Repetidas Invertidas , Cloreto de Magnésio/química , Conformação de Ácido Nucleico , Processos Fotoquímicos , Sódio/química , Cloreto de Sódio/química , Análise Espectral , Estilbenos/química , Raios Ultravioleta
17.
Ground Water ; 62(2): 260-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37254685

RESUMO

Dual-porosity models are often used to describe solute transport in heterogeneous media, but the parameters within these models (e.g., immobile porosity and mobile/immobile exchange rate coefficients) are difficult to identify experimentally or relate to measurable quantities. Here, we performed synthetic, pore-scale millifluidics simulations that coupled fluid flow, solute transport, and electrical resistivity (ER). A conductive-tracer test and the associated geoelectrical signatures were simulated for four flow rates in two distinct pore-scale model scenarios: one with intergranular porosity, and a second with an intragranular porosity also defined. With these models, we explore how the effective characteristic-length scale estimated from a best-fit dual-domain mass transfer (DDMT) model compares to geometric aspects of the flow field. In both model scenarios we find that: (1) mobile domains and immobile domains develop even in a system that is explicitly defined with one domain; (2) the ratio of immobile to mobile porosity is larger at faster flow rates as is the mass-transfer rate; and (3) a comparison of length scales associated with the mass-transfer rate (Lα ) and those associated with calculation of the Peclet number (LPe ) show LPe is commonly larger than Lα . These results suggest that estimated immobile porosities from a DDMT model are not only a function of physically mobile or immobile pore space, but also are a function of the average linear pore-water velocity and physical obstructions to flow, which can drive the development of immobile porosity even in single-porosity domains.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Modelos Teóricos , Porosidade , Movimentos da Água , Soluções
18.
J Am Chem Soc ; 135(10): 3953-63, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23402652

RESUMO

We developed a model for hole migration along relatively short DNA hairpins with fewer that seven adenine (A):thymine (T) base pairs. The model was used to simulate hole migration along poly(A)-poly(T) sequences with a particular emphasis on the impact of partial hole localization on the different rate processes. The simulations, performed within the framework of the stochastic surrogate Hamiltonian approach, give values for the arrival rate in good agreement with experimental data. Theoretical results obtained for hairpins with fewer than three A:T base pairs suggest that hole transfer along short hairpins occurs via superexchange. This mechanism is characterized by the exponential distance dependence of the arrival rate on the donor/acceptor distance, k(a) ≃ e(-ßR), with ß = 0.9 Å(-1). For longer systems, up to six A:T pairs, the distance dependence follows a power law k(a) ≃ R(-η) with η = 2. Despite this seemingly clear signature of unbiased hopping, our simulations show the complete delocalization of the hole density along the entire hairpin. According to our analysis, the hole transfer along relatively long sequences may proceed through a mechanism which is distinct from both coherent single-step superexchange and incoherent multistep hopping. The criterion for the validity of this mechanism intermediate between superexchange and hopping is proposed. The impact of partial localization on the rate of hole transfer between neighboring A bases was also investigated.


Assuntos
DNA/química , Poli A/química , Poli T/química , Teoria Quântica , Modelos Moleculares , Fatores de Tempo
19.
J Am Chem Soc ; 135(28): 10290-3, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23837540

RESUMO

Double-stranded DNA conjugates with the sequence (dA)10·(dT)10 and hexaethylene glycol linkers at one end (hairpin) or both ends (dumbbell) were studied in buffer solution by deep UV femtosecond transient absorption spectroscopy. These covalently constrained duplexes have greatly enhanced thermal stability compared to A·T duplex oligonucleotides that lack linkers. The conjugates eliminate the slipped-strand and end-frayed structures that form readily in unlinked (dA)n·(dT)n sequences, allowing the excited-state dynamics of stacked A·T base pairs to be observed without interference from structures with stacking or pairing defects. Transient absorption signals show that subpicosecond internal conversion to the electronic ground state takes place in addition to the formation of long-lived excited states having lifetimes of approximately 70 ps. Watson-Crick base-pairing slows the rate of vibrational cooling compared to monomeric bases or single-stranded DNA, possibly by reducing the total number of solute-solvent hydrogen bonds. Long-lived excited states in intact A·T base pairs decay several times more quickly than long-lived excited states observed in single-stranded (dA)n sequences. These results show that base-pairing can measurably affect nonradiative decay pathways in A·T duplexes.


Assuntos
Adenina/química , DNA/química , Etilenoglicóis/química , Teoria Quântica , Timina/química , Pareamento de Bases , Conformação de Ácido Nucleico
20.
J Am Chem Soc ; 135(30): 10970-3, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23855976

RESUMO

DNA hairpins having both a tethered anthraquinone (Aq) end-capping group and a perylenediimide (PDI) base surrogate were synthesized, wherein Aq and PDI are each separated from a G-C base pair hole trap by A-T and I-C base pairs (G = guanine, A = adenine, T= thymine, C = cytosine, I = inosine). Selective photoexcitation of PDI at 532 nm generates a singlet radical ion pair (RP), (1)(G(+•)-PDI(-•)), while selective photoexcitation of Aq at 355 nm generates the corresponding triplet RP, (3)(G(+•)-Aq(-•)). Subsequent radical pair intersystem crossing within these spin-correlated RPs leads to mixed spin states that exhibit spin-polarized, time-resolved EPR spectra in which the singlet- and triplet-initiated RPs have opposite phases. These results demonstrate that a carefully designed DNA hairpin can serve as a photodriven molecular spin switch based on wavelength-selective formation of the singlet or triplet RP without significant competition from undesired energy transfer processes.


Assuntos
DNA/química , Sequências Repetidas Invertidas/efeitos da radiação , Luz , Sequência de Bases , DNA/genética , Lasers , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA