Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Biol Chem ; 287(47): 39613-25, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23033485

RESUMO

The human Ether-à-go-go-related gene (hERG)-encoded K(+) current, I(Kr) is essential for cardiac repolarization but is also a source of cardiotoxicity because unintended hERG inhibition by diverse pharmaceuticals can cause arrhythmias and sudden cardiac death. We hypothesized that a small molecule that diminishes I(Kr) block by a known hERG antagonist would constitute a first step toward preventing hERG-related arrhythmias and facilitating drug discovery. Using a high-throughput assay, we screened a library of compounds for agents that increase the IC(70) of dofetilide, a well characterized hERG blocker. One compound, VU0405601, with the desired activity was further characterized. In isolated, Langendorff-perfused rabbit hearts, optical mapping revealed that dofetilide-induced arrhythmias were reduced after pretreatment with VU0405601. Patch clamp analysis in stable hERG-HEK cells showed effects on current amplitude, inactivation, and deactivation. VU0405601 increased the IC(50) of dofetilide from 38.7 to 76.3 nM. VU0405601 mitigates the effects of hERG blockers from the extracellular aspect primarily by reducing inactivation, whereas most clinically relevant hERG inhibitors act at an inner pore site. Structure-activity relationships surrounding VU0405601 identified a 3-pyridiyl and a naphthyridine ring system as key structural components important for preventing hERG inhibition by multiple inhibitors. These findings indicate that small molecules can be designed to reduce the sensitivity of hERG to inhibitors.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/tratamento farmacológico , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/metabolismo , Naftiridinas/química , Naftiridinas/farmacologia , Fenetilaminas/efeitos adversos , Bloqueadores dos Canais de Potássio/efeitos adversos , Piridinas/química , Piridinas/farmacologia , Sulfonamidas/efeitos adversos , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Relação Dose-Resposta a Droga , Descoberta de Drogas , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Proteínas Musculares/genética , Miocárdio/metabolismo , Miocárdio/patologia , Fenetilaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Coelhos , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
2.
Proc Natl Acad Sci U S A ; 106(13): 5383-8, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19279215

RESUMO

KCC2, a neuronal-specific K-Cl cotransporter, plays a major role in maintaining intracellular Cl(-) concentration in neurons below its electrochemical equilibrium potential, thus favoring robust GABA hyperpolarizing or inhibitory responses. The pharmacology of the K-Cl cotransporter is dominated by loop diuretics such as furosemide and bumetanide, molecules used in clinical medicine because they inhibit the loop of Henle Na-K-2Cl cotransporter with much higher affinity. To identify molecules that affect KCC2 activity, we developed a fluorescence-based assay suitable for high-throughput screening (HTS) and used the assay to screen a library of 234,000 small molecules. We identified a large number of molecules that either decrease or increase the activity of the cotransporter. Here, we report the characterization of a small number of inhibitors, some of which inhibit KCC2 activity in the submicomolar range without substantially affecting NKCC1 activity. Using medicinal chemistry, we synthesized a number of variants, tested their effect on KCC2 function, and provide an analysis of structure/activity relationships. We also used one of the compounds to demonstrate competitive inhibition in regard to external [K(+)] versus noncompetitive inhibition in respect to external [Cl(-)].


Assuntos
Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas , Simportadores/antagonistas & inibidores , Ligação Competitiva , Linhagem Celular , Humanos , Neurônios , Relação Estrutura-Atividade , Cotransportadores de K e Cl-
3.
Mol Pharmacol ; 79(1): 42-50, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20926757

RESUMO

The renal outer medullary potassium (K+) channel, ROMK (Kir1.1), is a putative drug target for a novel class of loop diuretic that would lower blood volume and pressure without causing hypokalemia. However, the lack of selective ROMK inhibitors has hindered efforts to assess its therapeutic potential. In a high-throughput screen for small-molecule modulators of ROMK, we previously identified a potent and moderately selective ROMK antagonist, 7,13-bis(4-nitrobenzyl)-1,4,10-trioxa-7,13-diazacyclopentadecane (VU590), that also inhibits Kir7.1. Because ROMK and Kir7.1 are coexpressed in the nephron, VU590 is not a good probe of ROMK function in the kidney. Here we describe the development of the structurally related inhibitor 2,2'-oxybis(methylene)bis(5-nitro-1H-benzo[d]imidazole) (VU591), which is as potent as VU590 but is selective for ROMK over Kir7.1 and more than 65 other potential off-targets. VU591 seems to block the intracellular pore of the channel. The development of VU591 may enable studies to explore the viability of ROMK as a diuretic target.


Assuntos
Benzimidazóis/síntese química , Benzimidazóis/metabolismo , Medula Renal/metabolismo , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Cricetinae , Feminino , Células HEK293 , Humanos , Camundongos , Canais de Potássio/química , Canais de Potássio/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Xenopus laevis
4.
Bioorg Med Chem Lett ; 21(9): 2697-701, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21194936

RESUMO

This Letter describes a chemical lead optimization campaign directed at VU0108370, a weak M(1) PAM hit with a novel chemical scaffold from a functional HTS screen within the MLPCN. An iterative parallel synthesis approach rapidly established SAR for this series and afforded VU0405652 (ML169), a potent, selective and brain penetrant M(1) PAM with an in vitro profile comparable to the prototypical M(1) PAM, BQCA, but with an improved brain to plasma ratio.


Assuntos
Encéfalo/efeitos dos fármacos , Descoberta de Drogas , Indóis/síntese química , Indóis/farmacologia , Sondas Moleculares/síntese química , Sondas Moleculares/farmacologia , Receptor Muscarínico M1/metabolismo , Sulfonas/síntese química , Sulfonas/farmacologia , Regulação Alostérica , Células Cultivadas , Indóis/química , Concentração Inibidora 50 , Sondas Moleculares/química , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonas/química
5.
Mol Pharmacol ; 76(5): 1094-103, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19706730

RESUMO

The renal outer medullary potassium channel (ROMK) is expressed in the kidney tubule and critically regulates sodium and potassium balance. The physiological functions of other inward rectifying K(+) (Kir) channels expressed in the nephron, such as Kir7.1, are less well understood in part due to the lack of selective pharmacological probes targeting inward rectifiers. In an effort to identify Kir channel probes, we performed a fluorescence-based, high-throughput screen (HTS) of 126,009 small molecules for modulators of ROMK function. Several antagonists were identified in the screen. One compound, termed VU590, inhibits ROMK with submicromolar affinity, but has no effect on Kir2.1 or Kir4.1. Low micromolar concentrations inhibit Kir7.1, making VU590 the first small-molecule inhibitor of Kir7.1. Structure-activity relationships of VU590 were defined using small-scale parallel synthesis. Electrophysiological analysis indicates that VU590 is an intracellular pore blocker. VU590 and other compounds identified by HTS will be instrumental in defining Kir channel structure, physiology, and therapeutic potential.


Assuntos
Testes Genéticos/métodos , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/farmacologia , Medula Renal/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular , Humanos , Medula Renal/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/química , Ratos , Bibliotecas de Moléculas Pequenas/química
6.
Mol Pharmacol ; 76(2): 356-68, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19407080

RESUMO

Previous studies suggest that selective antagonists of specific subtypes of muscarinic acetylcholine receptors (mAChRs) may provide a novel approach for the treatment of certain central nervous system (CNS) disorders, including epileptic disorders, Parkinson's disease, and dystonia. Unfortunately, previously reported antagonists are not highly selective for specific mAChR subtypes, making it difficult to definitively establish the functional roles and therapeutic potential for individual subtypes of this receptor subfamily. The M(1) mAChR is of particular interest as a potential target for treatment of CNS disorders. We now report the discovery of a novel selective antagonist of M(1) mAChRs, termed VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)-benzo[c][1,2,5]thiadiazole-4 sulfonamide]. Equilibrium radioligand binding and functional studies demonstrate a greater than 75-fold selectivity of VU0255035 for M(1) mAChRs relative to M(2)-M(5). Molecular pharmacology and mutagenesis studies indicate that VU0255035 is a competitive orthosteric antagonist of M(1) mAChRs, a surprising finding given the high level of M(1) mAChR selectivity relative to other orthosteric antagonists. Whole-cell patch-clamp recordings demonstrate that VU0255035 inhibits potentiation of N-methyl-D-aspartate receptor currents by the muscarinic agonist carbachol in hippocampal pyramidal cells. VU0255035 has excellent brain penetration in vivo and is efficacious in reducing pilocarpine-induced seizures in mice. We were surprised to find that doses of VU0255035 that reduce pilocarpine-induced seizures do not induce deficits in contextual freezing, a measure of hippocampus-dependent learning that is disrupted by nonselective mAChR antagonists. Taken together, these data suggest that selective antagonists of M(1) mAChRs do not induce the severe cognitive deficits seen with nonselective mAChR antagonists and could provide a novel approach for the treatment certain of CNS disorders.


Assuntos
Hipocampo/metabolismo , Aprendizagem/fisiologia , Antagonistas Muscarínicos/metabolismo , Receptor Muscarínico M1/metabolismo , Convulsões/metabolismo , Animais , Ligação Competitiva/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Eletrofisiologia , Concentração Inibidora 50 , Masculino , Camundongos , Estrutura Molecular , Antagonistas Muscarínicos/química , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Sulfonamidas/antagonistas & inibidores , Sulfonamidas/farmacocinética , Tiadiazóis/antagonistas & inibidores , Tiadiazóis/farmacocinética
7.
Tetrahedron Lett ; 50(2): 212-215, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22090663

RESUMO

General, high-yielding MAOS protocols for the expedient synthesis of functionalized 3,6-disubstituted-[1,2,4]triazolo[4,3-b]pyridazines are described amenable to an iterative analog library synthesis strategy for the lead optimization of an M1 antagonist screening hit. Optimized compounds proved to be highly selective M1 antagonists.

8.
Bioorg Med Chem Lett ; 18(3): 885-90, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18178088

RESUMO

This Letter describes the synthesis and SAR, developed through an iterative analogue library approach, of a novel series of selective M1 mAChR antagonists for the potential treatment of Parkinson's disease, dystonia and other movement disorders. Compounds in this series possess M1 antagonist IC(50)s in the 441nM-19microM range with 8- to >340-fold functional selectivity versus rM2-rM5.


Assuntos
Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/farmacologia , Antagonistas Muscarínicos/síntese química , Antagonistas Muscarínicos/farmacologia , Receptor Muscarínico M1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Muscarínicos/metabolismo , Técnicas de Química Combinatória , Relação Dose-Resposta a Droga , Distonia/tratamento farmacológico , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacocinética , Humanos , Estrutura Molecular , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/farmacocinética , Doença de Parkinson/tratamento farmacológico , Relação Estrutura-Atividade
9.
Elife ; 72018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29313490

RESUMO

As part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Blum et al., 2015), that described how we intended to replicate selected experiments from the paper 'Transcriptional amplification in tumor cells with elevated c-Myc' (Lin et al., 2012). Here we report the results. We found overexpression of c-Myc increased total levels of RNA in P493-6 Burkitt's lymphoma cells; however, while the effect was in the same direction as the original study (Figure 3E; Lin et al., 2012), statistical significance and the size of the effect varied between the original study and the two different lots of serum tested in this replication. Digital gene expression analysis for a set of genes was also performed on P493-6 cells before and after c-Myc overexpression. Transcripts from genes that were active before c-Myc induction increased in expression following c-Myc overexpression, similar to the original study (Figure 3F; Lin et al., 2012). Transcripts from genes that were silent before c-Myc induction also increased in expression following c-Myc overexpression, while the original study concluded elevated c-Myc had no effect on silent genes (Figure 3F; Lin et al., 2012). Treating the data as paired, we found a statistically significant increase in gene expression for both active and silent genes upon c-Myc induction, with the change in gene expression greater for active genes compared to silent genes. Finally, we report meta-analyses for each result.


Assuntos
Linfoma de Burkitt/patologia , Proteínas Proto-Oncogênicas c-myc/análise , Transcrição Gênica , Humanos , Regulação para Cima
10.
J Biomol Screen ; 9(4): 303-8, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15191647

RESUMO

The increasing number of multiantibiotic-resistant organisms, including methicillin-resistant Staphylococcus aureus (MRSA), requires the development of novel chemotherapies that are structurally distinct and exempt from current resistance mechanisms. Bioinformatics data mining of microbial genomes has revealed numerous previously unexploited essential open reading frames (ORFs) of unknown biochemical function. The potential of these proteins as screening targets is not readily apparent because most screening technologies rely on knowledge of biological function. To address this problem, the authors employed affinity capillary electrophoresis (ACE) to identify antimicrobial compounds that bound the novel target YihA. Screening a small-molecule library of 44,000 compounds initially identified 115 binders, of which 76% were confirmed. Furthermore, the ACE assay distinguished diverse compounds that possessed drug-like properties and antimicrobial activity against drug-resistant clinical isolates. These data validate ACE as a valuable tool for the fast, efficient detection of specific binding molecules that possess biological activity.


Assuntos
Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Eletroforese Capilar/métodos , Sequência de Bases , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/efeitos dos fármacos , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Resistência a Meticilina/genética , Ligação Proteica , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
11.
ACS Chem Neurosci ; 5(12): 1221-37, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25225882

RESUMO

Metabotropic glutamate receptor 7 (mGlu7) is a member of the group III mGlu receptors (mGlus), encompassed by mGlu4, mGlu6, mGlu7, and mGlu8. mGlu7 is highly expressed in the presynaptic active zones of both excitatory and inhibitory synapses, and activation of the receptor regulates the release of both glutamate and GABA. mGlu7 is thought to be a relevant therapeutic target for a number of neurological and psychiatric disorders, and polymorphisms in the GRM7 gene have been linked to autism, depression, ADHD, and schizophrenia. Here we report two new pan-group III mGlu positive allosteric modulators, VU0155094 and VU0422288, which show differential activity at the various group III mGlus. Additionally, both compounds show probe dependence when assessed in the presence of distinct orthosteric agonists. By pairing studies of these nonselective compounds with a synapse in the hippocampus that expresses only mGlu7, we have validated activity of these compounds in a native tissue setting. These studies provide proof-of-concept evidence that mGlu7 activity can be modulated by positive allosteric modulation, paving the way for future therapeutics development.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/química , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Acetanilidas/química , Acetanilidas/farmacologia , Animais , Benzoatos/farmacologia , Células CHO , Cálcio/metabolismo , Cricetulus , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Ácido Glutâmico/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Propionatos/farmacologia , Pirróis/química , Pirróis/farmacologia , Ratos , Receptores de Glutamato Metabotrópico/genética , Relação Estrutura-Atividade , Tálio/metabolismo , Transfecção
12.
Front Pharmacol ; 2: 75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22275899

RESUMO

The inward rectifier family of potassium (Kir) channels is comprised of at least 16 family members exhibiting broad and often overlapping cellular, tissue, or organ distributions. The discovery of disease-causing mutations in humans and experiments on knockout mice has underscored the importance of Kir channels in physiology and in some cases raised questions about their potential as drug targets. However, the paucity of potent and selective small-molecule modulators targeting specific family members has with few exceptions mired efforts to understand their physiology and assess their therapeutic potential. A growing body of evidence suggests that G protein-coupled inward rectifier K (GIRK) channels of the Kir3.X subfamily may represent novel targets for the treatment of atrial fibrillation. In an effort to expand the molecular pharmacology of GIRK, we performed a thallium (Tl(+)) flux-based high-throughput screen of a Kir1.1 inhibitor library for modulators of GIRK. One compound, termed VU573, exhibited 10-fold selectivity for GIRK over Kir1.1 (IC(50) = 1.9 and 19 µM, respectively) and was therefore selected for further study. In electrophysiological experiments performed on Xenopus laevis oocytes and mammalian cells, VU573 inhibited Kir3.1/3.2 (neuronal GIRK) and Kir3.1/3.4 (cardiac GIRK) channels with equal potency and preferentially inhibited GIRK, Kir2.3, and Kir7.1 over Kir1.1 and Kir2.1.Tl(+) flux assays were established for Kir2.3 and the M125R pore mutant of Kir7.1 to support medicinal chemistry efforts to develop more potent and selective analogs for these channels. The structure-activity relationships of VU573 revealed few analogs with improved potency, however two compounds retained most of their activity toward GIRK and Kir2.3 and lost activity toward Kir7.1. We anticipate that the VU573 series will be useful for exploring the physiology and structure-function relationships of these Kir channels.

13.
ACS Chem Neurosci ; 2(12): 730-742, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22368764

RESUMO

T-type Ca(2+) channel inhibitors hold tremendous therapeutic potential for the treatment of pain, epilepsy, sleep disorders, essential tremor and other neurological disorders; however, a lack of truly selective tools has hindered basic research, and selective tools from the pharmaceutical industry are potentially burdened with intellectual property (IP) constraints. Thus, an MLPCN high-throughput screen (HTS) was conducted to identify novel T-type Ca(2+) channel inhibitors free from IP constraints, and freely available through the MLPCN, for use by the biomedical community to study T-type Ca(2+) channels. While the HTS provided numerous hits, these compounds could not be optimized to the required level of potency to be appropriate tool compounds. Therefore, a scaffold hopping approach, guided by SurflexSim, ultimately afforded ML218 (CID 45115620) a selective T-Type Ca(2+) (Ca(v)3.1, Ca(v)3.2, Ca(v)3.3) inhibitor (Ca(v)3.2, IC(50) = 150 nM in Ca(2+) flux; Ca(v)3.2 IC(50) = 310 nM and Ca(v)3.3 IC(50) = 270 nM, respectively in patch clamp electrophysiology) with good DMPK properties, acceptable in vivo rat PK and excellent brain levels. Electrophysiology studies in subthalamic nucleus (STN) neurons demonstrated robust effects of ML218 on the inhibition of T-Type calcium current, inhibition of low threshold spike and rebound burst activity. Based on the basal ganglia circuitry in Parkinson's disease (PD), the effects of ML218 in STN neurons suggest a therapeutic role for T-type Ca(2+) channel inhibitors, and ML218 was found to be orally efficacious in haloperidol-induced catalepsy, a preclinical PD model, with comparable efficacy to an A(2A) antagonist, a clinically validated PD target. ML218 proves to be a powerful new probe to study T-Type Ca(2+) function in vitro and in vivo, and freely available.

14.
ACS Chem Neurosci ; 1(2): 104-121, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21961051

RESUMO

Cholinergic transmission in the forebrain is mediated primarily by five subtypes of muscarinic acetylcholine receptors (mAChRs), termed M(1)-M(5). Of the mAChR subtypes, M(1) is among the most heavily expressed in regions that are critical for learning and memory, and has been viewed as the most critical mAChR subtype for memory and attention mechanisms. Unfortunately, it has been difficult to develop selective activators of M(1) and other individual mAChR subtypes, which has prevented detailed studies of the functional roles of selective activation of M(1). Using a functional HTS screen and subsequent diversity-oriented synthesis approach we have discovered a novel series of highly selective M(1) allosteric agonists. These compounds activate M(1) with EC(50) values in the 150 nM to 500 nM range and have unprecedented, clean ancillary pharmacology (no substantial activity at 10µM across a large panel of targets). Targeted mutagenesis revealed a potentially novel allosteric binding site in the third extracellular loop of the M(1) receptor for these allosteric agonists. Optimized compounds, such as VU0357017, provide excellent brain exposure after systemic dosing and have robust in vivo efficacy in reversing scopolamine-induced deficits in a rodent model of contextual fear conditioning. This series of selective M(1) allosteric agonists provides critical research tools to allow dissection of M(1)-mediated effects in the CNS and potential leads for novel treatments for Alzheimer's disease and schizophrenia.

15.
Channels (Austin) ; 3(1): 57-68, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19221509

RESUMO

The renal inward rectifying potassium channel Kir1.1 plays key roles in regulating electrolyte homeostasis and blood pressure. Loss-of-function mutations in the channel cause a life-threatening salt and water balance disorder in infants called antenatal Bartter syndrome (ABS). Of more than 30 ABS mutations identified, approximately half are located in the intracellular domain of the channel. The mechanisms underlying channel dysfunction for most of these mutations are unknown. By mapping intracellular mutations onto an atomic model of Kir1.1, we found that several of these are localized to a phylogenetically ancient immunoglobulin (Ig)-like domain (IgLD) that has not been characterized previously, prompting us to examine this structure in detail. The IgLD is assembled from two beta-pleated sheets packed face-to-face, creating a beta-sheet interface or core, populated by highly conserved side chains. Thermodynamic calculations on computationally mutated channels suggest that IgLD core residues are among the most important residues for determining cytoplasmic domain stability. Consistent with this notion, we show that two ABS mutations (A198T and Y314C) located within the IgLD core impair channel biosynthesis and trafficking in mammalian cells. A fraction of core mutant channels reach the cell surface, but are electrically silent due to closure of the helix-bundle gate. Compensatory mutation-induced rescue of channel function revealed that IgLD core mutants fail to rectify. Our study sheds new light on the pathogenesis of ABS and establishes the IgLD as an essential structure within the Kir channel family.


Assuntos
Temperatura Alta , Imunoglobulinas/química , Ativação do Canal Iônico , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Simulação por Computador , Humanos , Interações Hidrofóbicas e Hidrofílicas , Potenciais da Membrana , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Relação Estrutura-Atividade , Transfecção
16.
Curr Top Med Chem ; 9(13): 1217-26, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19807667

RESUMO

This article describes the discovery and development of the first highly selective, small molecule antagonist of the muscarinic acetylcholine receptor subtype I (mAChR1 or M(1)). An M(1) functional, cell-based calcium-mobilization assay identified three distinct chemical series with initial selectivity for M(1) versus M(4). An iterative parallel synthesis approach was employed to optimize all three series in parallel, which led to the development of novel microwave-assisted chemistry and provided important take home lessons for probe development projects. Ultimately, this effort produced VU0255035, a potent (IC(50) = 130 nM) and selective (>75-fold vs. M(2)-M(5) and > 10 microM vs. a panel of 75 GPCRs, ion channels and transporters) small molecule M(1) antagonist. Further profiling demonstrated that VU0255035 was centrally penetrant (Brain(AUC)/Plasma(AUC) of 0.48) and active in vivo, rendering it acceptable as both an in vitro and in vivo MLSCN/ MLPCN probe molecule for studying and dissecting M(1) function.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Receptor Muscarínico M1/antagonistas & inibidores , Sulfonamidas/química , Sulfonamidas/farmacologia , Tiadiazóis/química , Tiadiazóis/farmacologia , Especificidade por Substrato , Sulfonamidas/síntese química , Tiadiazóis/síntese química
17.
J Biol Chem ; 279(4): 2825-31, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14597623

RESUMO

Transcription initiation in all three domains of life requires the assembly of large multiprotein complexes at DNA promoters before RNA polymerase (RNAP)-catalyzed transcript synthesis. Core RNAP subunits show homology among the three domains of life, and recent structural information supports this homology. General transcription factors are required for productive transcription initiation complex formation. The archaeal general transcription factors TATA-element-binding protein (TBP), which mediates promoter recognition, and transcription factor B (TFB), which mediates recruitment of RNAP, show extensive homology to eukaryal TBP and TFIIB. Crystallographic information is becoming available for fragments of transcription initiation complexes (e.g. RNAP, TBP-TFB-DNA, TBP-TFIIB-DNA), but understanding the molecular topography of complete initiation complexes still requires biochemical and biophysical characterization of protein-protein and protein-DNA interactions. In published work, systematic site-specific protein-DNA photocrosslinking has been used to define positions of RNAP subunits and general transcription factors in bacterial and eukaryal initiation complexes. In this work, we have used systematic site-specific protein-DNA photocrosslinking to define positions of RNAP subunits and general transcription factors in an archaeal initiation complex. Employing a set of 41 derivatized DNA fragments, each having a phenyl azide photoactivable crosslinking agent incorporated at a single, defined site within positions -40 to +1 of the gdh promoter of the hyperthermophilic marine archaea, Pyrococcus furiosus (Pf), we have determined the locations of PfRNAP subunits PfTBP and PfTFB relative to promoter DNA. The resulting topographical information supports the striking homology with the eukaryal initiation complex and permits one major new conclusion, which is that PfTFB interacts with promoter DNA not only in the TATA-element region but also in the transcription-bubble region, near the transcription start site. Comparison with crystallographic information implicates the PfTFB N-terminal domain in the interaction with the transcription-bubble region. The results are discussed in relation to the known effects of substitutions in the TFB and TFIIB N-terminal domains on transcription initiation and transcription start-site selection.


Assuntos
Proteínas Arqueais/genética , DNA Arqueal/genética , Fator de Transcrição TFIIB/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , DNA Arqueal/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica em Archaea , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA