Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 170(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38916949

RESUMO

Metagenome community analyses, driven by the continued development in sequencing technology, is rapidly providing insights in many aspects of microbiology and becoming a cornerstone tool. Illumina, Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) are the leading technologies, each with their own advantages and drawbacks. Illumina provides accurate reads at a low cost, but their length is too short to close bacterial genomes. Long reads overcome this limitation, but these technologies produce reads with lower accuracy (ONT) or with lower throughput (PacBio high-fidelity reads). In a critical first analysis step, reads are assembled to reconstruct genomes or individual genes within the community. However, to date, the performance of existing assemblers has never been challenged with a complex mock metagenome. Here, we evaluate the performance of current assemblers that use short, long or both read types on a complex mock metagenome consisting of 227 bacterial strains with varying degrees of relatedness. We show that many of the current assemblers are not suited to handle such a complex metagenome. In addition, hybrid assemblies do not fulfil their potential. We conclude that ONT reads assembled with CANU and Illumina reads assembled with SPAdes offer the best value for reconstructing genomes and individual genes of complex metagenomes, respectively.


Assuntos
Bactérias , Benchmarking , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Metagenômica , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Análise de Sequência de DNA/métodos , Genoma Bacteriano/genética , Microbiota/genética
2.
Environ Microbiol ; 23(3): 1670-1683, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33415825

RESUMO

Microbial communities are essential for a healthy soil ecosystem. Metals and radionuclides can exert a persistent pressure on the soil microbial community. However, little is known on the effect of long-term co-contamination of metals and radionuclides on the microbial community structure and functionality. We investigated the impact of historical discharges of the phosphate and nuclear industry on the microbial community in the Grote Nete river basin in Belgium. Eight locations were sampled along a transect to the river edge and one location further in the field. Chemical analysis demonstrated a metal and radionuclide contamination gradient and revealed a distinct clustering of the locations based on all metadata. Moreover, a relation between the chemical parameters and the bacterial community structure was demonstrated. Although no difference in biomass was observed between locations, cultivation-dependent experiments showed that communities from contaminated locations survived better on singular metals than communities from control locations. Furthermore, nitrification, a key soil ecosystem process seemed affected in contaminated locations when combining metadata with microbial profiling. These results indicate that long-term metal and radionuclide pollution impacts the microbial community structure and functionality and provides important fundamental insights into microbial community dynamics in co-metal-radionuclide contaminated sites.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Radioisótopos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
3.
Bioinformatics ; 36(8): 2337-2344, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31899493

RESUMO

MOTIVATION: One of the most widespread methods used in taxonomy studies to distinguish between strains or taxa is the calculation of average nucleotide identity. It requires a computationally expensive alignment step and is therefore not suitable for large-scale comparisons. Short oligonucleotide-based methods do offer a faster alternative but at the expense of accuracy. Here, we aim to address this shortcoming by providing a software that implements a novel method based on short-oligonucleotide frequencies to compute inter-genomic distances. RESULTS: Our tetranucleotide and hexanucleotide implementations, which were optimized based on a taxonomically well-defined set of over 200 newly sequenced bacterial genomes, are as accurate as the short oligonucleotide-based method TETRA and average nucleotide identity, for identifying bacterial species and strains, respectively. Moreover, the lightweight nature of this method makes it applicable for large-scale analyses. AVAILABILITY AND IMPLEMENTATION: The method introduced here was implemented, together with other existing methods, in a dependency-free software written in C, GenDisCal, available as source code from https://github.com/LM-UGent/GenDisCal. The software supports multithreading and has been tested on Windows and Linux (CentOS). In addition, a Java-based graphical user interface that acts as a wrapper for the software is also available. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Bactérias/genética , Genoma Bacteriano , Oligonucleotídeos
4.
BMC Microbiol ; 18(1): 122, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249184

RESUMO

BACKGROUND: Basalt is the most common igneous rock on the Earth's surface covering. Basalt-associated microorganisms drive the cycling and sequestration of different elements such as nitrogen, carbon and other nutrients, which facilitate subsequent pioneer and plant development, impacting long-term regulation of the Earth's temperature and biosphere. The initial processes of colonization and subsequent rock weathering by microbial communities are still poorly understood and relatively few data are available on the diversity and richness of the communities inhabiting successive and chronological lava flows. In this study, the bacterial communities present on lava deposits from different eruptions of the 1975-84 Krafla Fires (32-, 35- and 39-year old, respectively) at the Krafla, Iceland, were determined. RESULTS: Three sites were sampled for each deposit (32-, 35- and 39-year old), two proximal sites (at 10 m distance) and one more distant site (at 100 m from the two other sites). The determined chemical composition and metal concentrations were similar for the three basalt deposits. No significant differences were observed in the total number of cells in each flow. 16S rRNA gene amplicon sequencing showed that the most abundant classified phylum across the 3 flows was Proteobacteria, although predominance of Acidobacteria, Actinobacteria and Firmicutes was observed for some sampling sites. In addition, a considerable fraction of the operational taxonomic units remained unclassified. Alpha diversity (Shannon, inverse Simpson and Chao), HOMOVA and AMOVA only showed a significant difference for Shannon between the 32- and 39-year old flow (p < 0.05). Nonmetric multidimensional scaling (NMDS) analysis showed that age significantly (p = 0.026) influenced the leftward movement along NMDS axis 1. CONCLUSIONS: Although NMDS indicated that the (relatively small) age difference of the deposits appeared to impact the bacterial community, this analysis was not consistent with AMOVA and HOMOVA, indicating no significant difference in community structure. The combined results drive us to conclude that the (relatively small) age differences of the deposits do not appear to be the main factor shaping the microbial communities. Probably other factors such as spatial heterogeneity, associated carbon content, exogenous rain precipitations and wind also affect the diversity and dynamics.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodiversidade , Carbono/análise , Carbono/metabolismo , DNA Bacteriano/genética , Islândia , Nitrogênio/análise , Nitrogênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Erupções Vulcânicas/análise
5.
J Environ Sci (China) ; 69: 227-238, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29941258

RESUMO

This study aimed to evaluate the suitability of two bioaerosol generation systems (dry and wet generation) for the aerosolization of microorganisms isolated from the International Space Station, and to calibrate the produced bioaerosols to fulfill the requirements of computational fluid dynamics model (CFD) validation. Concentration, stability, size distribution, agglomeration of generated bioaerosol and deposition of bioaerosols were analyzed. In addition, the dispersion of non-viable particles in the air was studied. Experiments proved that wet generation from microbial suspensions could be used for the production of well-calibrated and stabile bioaerosols for model validation. For the simulation of the natural release of fungal spores, a dry generation method should be used. This study showed that the used CFD model simulated the spread of non-viable particles fairly well. The mathematical deposition model by Lai and Nazaroff could be used to estimate the deposition velocities of bioaerosols on surfaces, although it somewhat underestimated the measured deposition velocities.


Assuntos
Aerossóis/análise , Microbiologia do Ar , Monitoramento Ambiental , Modelos Teóricos , Astronave , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Bactérias/isolamento & purificação , Fungos/isolamento & purificação
6.
BMC Bioinformatics ; 17(1): 192, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27130479

RESUMO

BACKGROUND: The development of high-throughput sequencing technologies has revolutionized the field of microbial ecology via the sequencing of phylogenetic marker genes (e.g. 16S rRNA gene amplicon sequencing). Denoising, the removal of sequencing errors, is an important step in preprocessing amplicon sequencing data. The increasing popularity of the Illumina MiSeq platform for these applications requires the development of appropriate denoising methods. RESULTS: The newly proposed denoising algorithm IPED includes a machine learning method which predicts potentially erroneous positions in sequencing reads based on a combination of quality metrics. Subsequently, this information is used to group those error-containing reads with correct reads, resulting in error-free consensus reads. This is achieved by masking potentially erroneous positions during this clustering step. Compared to the second best algorithm available, IPED detects double the amount of errors. Reducing the error rate had a positive effect on the clustering of reads in operational taxonomic units, with an almost perfect correspondence between the number of clusters and the theoretical number of species present in the mock communities. CONCLUSION: Our algorithm IPED is a powerful denoising tool for correcting sequencing errors in Illumina MiSeq 16S rRNA gene amplicon sequencing data. Apart from significantly reducing the error rate of the sequencing reads, it has also a beneficial effect on their clustering into operational taxonomic units. IPED is freely available at http://science.sckcen.be/en/Institutes/EHS/MCB/MIC/Bioinformatics/ .


Assuntos
Genes de RNAr , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , RNA Ribossômico 16S/genética , Algoritmos , Animais , Aprendizado de Máquina , Camundongos
7.
Environ Microbiol ; 18(4): 1110-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26470852

RESUMO

Interactions between microorganisms and rocks play an important role in Earth system processes. However, little is known about the molecular capabilities microorganisms require to live in rocky environments. Using a quantitative label-free proteomics approach, we show that a model bacterium (Cupriavidus metallidurans CH34) can use volcanic rock to satisfy some elemental requirements, resulting in increased rates of cell division in both magnesium- and iron-limited media. However, the rocks also introduced multiple new stresses via chemical changes associated with pH, elemental leaching and surface adsorption of nutrients that were reflected in the proteome. For example, the loss of bioavailable phosphorus was observed and resulted in the upregulation of diverse phosphate limitation proteins, which facilitate increase phosphate uptake and scavenging within the cell. Our results revealed that despite the provision of essential elements, rock chemistry drives complex metabolic reorganization within rock-dwelling organisms, requiring tight regulation of cellular processes at the protein level. This study advances our ability to identify key microbial responses that enable life to persist in rock environments.


Assuntos
Cupriavidus/metabolismo , Microbiologia do Solo , Solo/química , Erupções Vulcânicas , Ferro/metabolismo , Fósforo/metabolismo , Proteoma/metabolismo
8.
Appl Microbiol Biotechnol ; 100(21): 9037-9051, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27687990

RESUMO

Flow cytometry is a rapid and quantitative method to determine bacterial viability. Although different stains can be used to establish viability, staining protocols are inconsistent and lack a general optimization approach. Very few "true" multicolor protocols, where dyes are combined in one sample, have been developed for microbiological applications. In this mini-review, the discrepancy between protocols for cell-permeant nucleic acid and functional stains are discussed as well as their use as viability dyes. Furthermore, optimization of staining protocols for a specific setup are described. Original data using the red-excitable SYTO dyes SYTO 59 to 64 and SYTO 17, combined with functional stains, for double and triple staining applications is also included. As each dye and dye combination behaves differently within a certain combination of medium matrix, microorganism, and instrument, protocols need to be tuned to obtain reproducible results. Therefore, single, double, and triple stains are reviewed, including the different parameters that influence staining such as stain kinetics, optimal stain concentration, and the effect of the chelator EDTA as membrane permeabilizer. In the last section, we highlight the need to investigate the stability of multicolor assays to ensure correct results as multiwell autoloaders are now commonly used.


Assuntos
Técnicas Bacteriológicas/métodos , Citometria de Fluxo/métodos , Viabilidade Microbiana , Coloração e Rotulagem/métodos , Cor
9.
BMC Bioinformatics ; 16: 88, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25888405

RESUMO

BACKGROUND: The popularity of new sequencing technologies has led to an explosion of possible applications, including new approaches in biodiversity studies. However each of these sequencing technologies suffers from sequencing errors originating from different factors. For 16S rRNA metagenomics studies, the 454 pyrosequencing technology is one of the most frequently used platforms, but sequencing errors still lead to important data analysis issues (e.g. in clustering in taxonomic units and biodiversity estimation). Moreover, retaining a higher portion of the sequencing data by preserving as much of the read length as possible while maintaining the error rate within an acceptable range, will have important consequences at the level of taxonomic precision. RESULTS: The new error correction algorithm proposed in this work - NoDe (Noise Detector) - is trained to identify those positions in 454 sequencing reads that are likely to have an error, and subsequently clusters those error-prone reads with correct reads resulting in error-free representative read. A benchmarking study with other denoising algorithms shows that NoDe can detect up to 75% more errors in a large scale mock community dataset, and this with a low computational cost compared to the second best algorithm considered in this study. The positive effect of NoDe in 16S rRNA studies was confirmed by the beneficial effect on the precision of the clustering of pyrosequencing reads in operational taxonomic units. CONCLUSIONS: NoDe was shown to be a computational efficient denoising algorithm for pyrosequencing reads, producing the lowest error rates in an extensive benchmarking study with other denoising algorithms.


Assuntos
Algoritmos , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , RNA Ribossômico 16S/genética
10.
Appl Environ Microbiol ; 81(5): 1573-84, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25527546

RESUMO

In ecological studies, microbial diversity is nowadays mostly assessed via the detection of phylogenetic marker genes, such as 16S rRNA. However, PCR amplification of these marker genes produces a significant amount of artificial sequences, often referred to as chimeras. Different algorithms have been developed to remove these chimeras, but efforts to combine different methodologies are limited. Therefore, two machine learning classifiers (reference-based and de novo CATCh) were developed by integrating the output of existing chimera detection tools into a new, more powerful method. When comparing our classifiers with existing tools in either the reference-based or de novo mode, a higher performance of our ensemble method was observed on a wide range of sequencing data, including simulated, 454 pyrosequencing, and Illumina MiSeq data sets. Since our algorithm combines the advantages of different individual chimera detection tools, our approach produces more robust results when challenged with chimeric sequences having a low parent divergence, short length of the chimeric range, and various numbers of parents. Additionally, it could be shown that integrating CATCh in the preprocessing pipeline has a beneficial effect on the quality of the clustering in operational taxonomic units.


Assuntos
Análise por Conglomerados , Biologia Computacional/métodos , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Recombinação Genética , DNA Ribossômico/química , Dados de Sequência Molecular , Análise de Sequência de DNA
11.
Biodegradation ; 25(4): 493-504, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25025097

RESUMO

This study aimed at monitoring the dynamics of phylogenetic and catabolic genes of a dechlorinating enrichment culture before, during, and after complete dechlorination of chlorinated compounds. More specifically, the effect of 40 µM trichloroethene (TCE) and 5.6 mM lactate on the gene abundance and activity of an enrichment culture was investigated for 40 days. Although tceA and vcrA gene copy numbers were relatively stable in DNA extracts over time, tceA and vcrA mRNA abundances were upregulated from undetectable levels to 2.96 × and 6.33 × 104 transcripts/mL, respectively, only after exposure to TCE and lactate. While tceA gene transcripts decreased over time with TCE dechlorination, the vcrA gene was expressed steadily even when the concentration of vinyl chloride was at undetectable levels. In addition, ratios between catabolic and phylogenetic genes indicated that tceA and vcrA gene carrying organisms dechlorinated TCE and its produced daughter products, while vcrA gene was mainly responsible for the dechlorination of the lower VC concentrations in a later stage of degradation.


Assuntos
Chloroflexi/efeitos dos fármacos , Chloroflexi/genética , Genes Bacterianos/efeitos dos fármacos , Tricloroetileno/farmacologia , Trifosfato de Adenosina/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Etilenos/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Halogenação , Metano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/genética
12.
iScience ; 27(5): 109596, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638570

RESUMO

The advancement of regenerative life support systems (RLSS) is crucial to allow long-distance space travel. Within the Micro-Ecological Life Support System Alternative (MELiSSA), efficient nitrogen recovery from urine and other waste streams is vital to produce liquid fertilizer to feed food and oxygen production in subsequent photoautotrophic processes. This study explores the effects of ionizing radiation on nitrogen cycle bacteria that transform urea to nitrate. In particular, we assess the radiotolerance of Comamonas testosteroni, Nitrosomonas europaea, and Nitrobacter winogradskyi after exposure to acute γ-irradiation. Moreover, a comprehensive whole transcriptome analysis elucidates the effects of spaceflight-analogue low-dose ionizing radiation on the individual axenic strains and on their synthetic community o. This research sheds light on how the spaceflight environment could affect ureolysis and nitrification processes from a transcriptomic perspective.

13.
NPJ Microgravity ; 10(1): 3, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200027

RESUMO

Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.

14.
Microbiology (Reading) ; 159(Pt 12): 2456-2466, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24025602

RESUMO

The photosynthetic alphaproteobacterium Rhodospirillum rubrum S1H is part of the Micro-Ecological Life Support System Alternative (MELiSSA) project that is aiming to develop a closed life support system for oxygen, water and food production to support human life in space in forthcoming long-term space exploration missions. In the present study, R. rubrum S1H was cultured in a rotating wall vessel (RWV), simulating partial microgravity conditions on Earth. The bacterium showed a significant response to cultivation in simulated microgravity at the transcriptomic, proteomic and metabolic levels. In simulated microgravity conditions three N-acyl-l-homoserine lactones (C10-HSL, C12-HSL and 3-OH-C14-HSL) were detected in concentrations that were twice those detected under normal gravity, while no differences in cell density was detected. In addition, R. rubrum cultivated in modelled microgravity showed higher pigmentation than the normal gravity control, without change in culture oxygenation. When compared to randomized microgravity cultivation using a random positioning machine, significant overlap for the top differentially expressed genes and proteins was observed. Cultivation in this new artificial environment of simulated microgravity showed new properties of this well-known bacterium, including its first, to our knowledge, complete quorum-sensing-related N-acylhomoserine lactone profile.


Assuntos
Acil-Butirolactonas/metabolismo , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum , Rhodospirillum rubrum/fisiologia , Ausência de Peso , Perfilação da Expressão Gênica , Metabolômica , Pigmentos Biológicos/metabolismo , Proteoma/análise , Rhodospirillum rubrum/citologia
15.
Extremophiles ; 17(4): 565-73, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23588647

RESUMO

Culturable psychrotolerant bacteria were isolated from the top snow on the high Antarctic Plateau surrounding the research station Concordia. A total of 80 isolates were recovered, by enrichment cultures, from two different isolation sites (a distant pristine site [75° S 123° E] and a site near the secondary runway of Concordia). All isolates were classified to the genus Paenibacillus by 16S rRNA gene phylogenetic analysis and belonged to two different species (based on threshold of 97 % similarity in 16S rRNA gene sequence). ERIC-PCR fingerprinting indicated that the isolates from the two different sites were not all clonal. All isolates grew well from 4 to 37 °C and were resistant to ampicillin and streptomycin. In addition, the isolates from the secondary runway were resistant to chromate and sensitive to chloramphenicol, contrary to those from the pristine site. The isolates were compared to 29 Paenibacillus isolates, which were previously recovered from inside the Concordia research station. One of these inside isolates showed ERIC- and REP-PCR fingerprinting profiles identical to those of the runway isolates and was the only inside isolate that was resistant to chromate and sensitive to chloramphenicol. The latter suggested that dissemination of culturable Paenibacillus strains between the harsh Antarctic environment and the inside of the Concordia research station occurred. In addition, inducible prophages, which are potentially involved in horizontal dissemination of genes, were detected in Paenibacillus isolates recovered from outside and inside the station. The highest lysogeny was observed in strains harvested from the hostile environment outside the station.


Assuntos
Ecossistema , Paenibacillus/isolamento & purificação , Neve/microbiologia , Regiões Antárticas , Genes Bacterianos/genética , Myoviridae/isolamento & purificação , Myoviridae/ultraestrutura , Paenibacillus/classificação , Paenibacillus/genética , Paenibacillus/virologia , Filogenia , RNA Ribossômico 16S/genética
16.
Biometals ; 26(4): 609-21, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23771576

RESUMO

This review gives a comprehensive overview of the widespread use and toxicity of silver compounds in many biological applications. Moreover, the bacterial silver resistance mechanisms and their spread in the environment are discussed. This study shows that it is important to understand in detail how silver and silver nanoparticles exert their toxicity and to understand how bacteria acquire silver resistance. Silver ions have shown to possess strong antimicrobial properties but cause no immediate and serious risk for human health, which led to an extensive use of silver-based products in many applications. However, the risk of silver nanoparticles is not yet clarified and their widespread use could increase silver release in the environment, which can have negative impacts on ecosystems. Moreover, it is shown that silver resistance determinants are widely spread among environmental and clinically relevant bacteria. These resistance determinants are often located on mobile genetic elements, facilitating their spread. Therefore, detailed knowledge of the silver toxicity and resistance mechanisms can improve its applications and lead to a better understanding of the impact on human health and ecosystems.


Assuntos
Anti-Infecciosos/farmacologia , Prata/farmacologia , Anti-Infecciosos/efeitos adversos , Farmacorresistência Bacteriana , Prata/efeitos adversos , Compostos de Prata/efeitos adversos , Compostos de Prata/farmacologia
17.
Front Microbiol ; 14: 1134760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520359

RESUMO

Microbes are the Earth life forms that have the highest degree of adaptability to survive, live, or even proliferate in very hostile environments. It is even stated that microbes can cope with any extreme physico-chemical condition and are, therefore, omnipresent all over the Earth: on all the continents, inside its crust and in all its waterbodies. However, our study suggests that there exists areas and even water rich environments on Earth where no life is possible. To support the fact that water rich environments can be lifeless, we performed an extensive survey of 10 different hyper extreme waterbodies of the halo-volcanic Dallol complex (Danakil depression, Ethiopia, Horn of Africa). In our study, we combined physico-chemical analyses, mineralogical investigations, XRD and SEM-EDX analyses, ATP measurements, 16S rDNA microbial community determinations, and microbial culturing techniques. According to our findings, we suggest that the individual physico-chemical parameters, water activity, and kosmo-chaotropicity, are the two most important factors that determine whether an environment is lifeless or capable of hosting specific extreme lifeforms. Besides, waterbodies that contained saturated levels of sodium chloride but at the same time possessed extreme low pH values, appeared to be poly-extreme environments in which no life could be detected. However, we clearly discovered a low diversity microbial community in waterbodies that were fully saturated with sodium chloride and only mildly acidic. Our results can be beneficial to more precisely classify whole or certain areas of planetary bodies, including water rich environments, as either potentially habitable or factual uninhabitable environments.

18.
STAR Protoc ; 4(3): 102358, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37347668

RESUMO

RNA-sequencing for whole transcriptome analysis requires high-quality RNA in adequate amounts, which can be difficult to generate with low-biomass-producing bacteria where sample volume is limited. We present an RNA extraction protocol for low-biomass-producing autotrophic bacteria Nitrosomonas europaea and Nitrobacter winogradskyi cultures. We describe steps for sample collection, lysozyme-based enzymatic lysis, and a commercial silica-column-based RNA extraction. We then detail evaluation of RNA yield and quality for downstream applications such as RNA-Seq. For complete details on the use and execution of this protocol, please refer to Verbeelen et al.1.


Assuntos
Nitrobacter , Nitrosomonas europaea , Nitrosomonas europaea/genética , Nitrosomonas/genética , Transcriptoma/genética , Biomassa , Bactérias/genética , RNA
19.
Cancers (Basel) ; 15(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136404

RESUMO

Radiotherapy is a commonly employed treatment for colorectal cancer, yet its radiotoxicity-related impact on healthy tissues raises significant health concerns. This highlights the need to use radioprotective agents to mitigate these side effects. This review presents the current landscape of human translational radiobiology, outlining the limitations of existing models and proposing engineering solutions. We delve into radiotherapy principles, encompassing mechanisms of radiation-induced cell death and its influence on normal and cancerous colorectal cells. Furthermore, we explore the engineering aspects of microphysiological systems to represent radiotherapy-induced gastrointestinal toxicity and how to include the gut microbiota to study its role in treatment failure and success. This review ultimately highlights the main challenges and future pathways in translational research for pelvic radiotherapy-induced toxicity. This is achieved by developing a humanized in vitro model that mimics radiotherapy treatment conditions. An in vitro model should provide in-depth analyses of host-gut microbiota interactions and a deeper understanding of the underlying biological mechanisms of radioprotective food supplements. Additionally, it would be of great value if these models could produce high-throughput data using patient-derived samples to address the lack of human representability to complete clinical trials and improve patients' quality of life.

20.
Antioxidants (Basel) ; 12(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36978820

RESUMO

Pelvic irradiation-induced mucositis secondarily leads to dysbiosis, which seriously affects patients' quality of life after treatment. No safe and effective radioprotector or mitigator has yet been approved for clinical therapy. Here, we investigated the potential protective effects of fresh biomass of Limnospira indica PCC 8005 against ionizing irradiation-induced mucositis and dysbiosis in respect to benchmark probiotic Lacticaseibacillus rhamnosus GG ATCC 53103. For this, mice were supplemented daily before and after 12 Gy X-irradiation of the pelvis. Upon sacrifice, food supplements' efficacy was assessed for intestinal barrier protection, immunomodulation and changes in the microbiota composition. While both could not confer barrier protection or significant immunomodulatory effects, 16S microbial profiling revealed that L. indica PCC 8005 and L. rhamnosus GG could prevent pelvic irradiation-induced dysbiosis. Altogether, our data show that-besides benchmarked L. rhamnosus GG-L. indica PCC 8005 is an interesting candidate to further explore as a radiomitigator counteracting pelvic irradiation-induced dysbiosis in the presented in vivo irradiation-gut-microbiota platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA