Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34433671

RESUMO

The control of messenger RNA (mRNA) translation has been increasingly recognized as a key regulatory step for gene control, but clear examples in eukaryotes are still scarce. Nucleo-cytoplasmic male sterilities (CMS) represent ideal genetic models to dissect genetic interactions between the mitochondria and the nucleus in plants. This trait is determined by specific mitochondrial genes and is associated with a pollen sterility phenotype that can be suppressed by nuclear genes known as restorer-of-fertility (Rf). In this study, we focused on the Ogura CMS system in rapeseed and showed that reversion to male sterility by the PPR-B fertility restorer (also called Rfo) occurs through a specific translation inhibition of the mitochondria-encoded CMS-causing mRNA orf138 We also demonstrate that PPR-B binds within the coding sequence of orf138 and acts as a ribosome blocker to specifically impede translation elongation along the orf138 mRNA. Rfo is the first recognized fertility restorer shown to act this way. These observations will certainly facilitate the development of synthetic fertility restorers for CMS systems in which efficient natural Rfs are lacking.


Assuntos
Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal/métodos , Infertilidade das Plantas , Proteínas de Plantas/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Raphanus/fisiologia , Citoplasma/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo
2.
Plant Physiol ; 179(4): 1739-1753, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30538167

RESUMO

Photosystem II (PSII) is a supramolecular complex containing over 30 protein subunits and a large set of cofactors, including various pigments and quinones as well as Mn, Ca, Cl, and Fe ions. Eukaryotic PSII complexes contain many subunits not found in their bacterial counterparts, including the proteins PsbP (PSII), PsbQ, PsbS, and PsbW, as well as the highly homologous, low-molecular-mass subunits PsbTn1 and PsbTn2 whose function is currently unknown. To determine the function of PsbTn1 and PsbTn2, we generated single and double psbTn1 and psbTn2 knockout mutants in Arabidopsis (Arabidopsis thaliana). Cross linking and reciprocal coimmunoprecipitation experiments revealed that PsbTn is a lumenal PSII protein situated next to the cytochrome b 559 subunit PsbE. The removal of the PsbTn proteins decreased the oxygen evolution rate and PSII core phosphorylation level but increased the susceptibility of PSII to photoinhibition and the production of reactive oxygen species. The assembly and stability of PSII were unaffected, indicating that the deficiencies of the psbTn1 psbTn2 double mutants are due to structural changes. Double mutants exhibited a higher rate of nonphotochemical quenching of excited states than the wild type and single mutants, as well as slower state transition kinetics and a lower quantum yield of PSII when grown in the field. Based on these results, we propose that the main function of the PsbTn proteins is to enable PSII to acclimate to light shifts or intense illumination.


Assuntos
Aclimatação , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Aclimatação/genética , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Luz , Estresse Oxidativo , Fosforilação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Espécies Reativas de Oxigênio/metabolismo
3.
Physiol Plant ; 165(4): 673-689, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29808599

RESUMO

Wood formation in higher plants is a complex and costly developmental process regulated by a complex network of transcription factors, short peptide signals and hormones. Correct spatiotemporal initiation of differentiation and downstream developmental stages is vital for proper wood formation. Members of the NAC (NAM, ATAF1/2 and CUC) family of transcription factors are described as top level regulators of xylem cell fate and secondary cell wall (SCW) deposition, but the signals initiating their transcription have yet to be elucidated. We found that treatment of Populus stems with auxin repressed transcription of NAC transcription factors associated with fiber and SCW formation and induced vessel-specific NACs, whereas gibberellic acid (GA) induced the expression of both classes of NAC domain transcription factors involved in wood formation. These transcriptional changes were reflected in alterations of stem anatomy, i.e. auxin treatment reduced cell wall thickness, whereas GA had a promotive effect on SCW deposition and on the rate of wood formation. Similar changes were observed on treatment of Arabidopsis thaliana stems with GA or the synthetic auxin NAA. We also observed corresponding changes in PIN5 overexpressing lines, where interference with auxin transport leads to premature SCW deposition and formation of additional fiber bundles. Together, this suggests wood formation is regulated by an integrated readout of both auxin and GA, which, in turn, controls expression of fiber and vessel specific NACs.


Assuntos
Ácidos Indolacéticos/farmacologia , Madeira/metabolismo , Xilema/efeitos dos fármacos , Xilema/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
4.
Plant Cell ; 27(9): 2600-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26307378

RESUMO

The seedling-lethal Arabidopsis thaliana high chlorophyll fluorescence145 (hcf145) mutation leads to reduced stability of the plastid tricistronic psaA-psaB-rps14 mRNA and photosystem I (PSI) deficiency. Here, we genetically mapped the HCF145 gene, which encodes a plant-specific, chloroplast-localized, modular protein containing two homologous domains related to the polyketide cyclase family comprising 37 annotated Arabidopsis proteins of unknown function. Two further highly conserved and previously uncharacterized tandem repeat motifs at the C terminus, herein designated the transcript binding motif repeat (TMR) domains, confer sequence-specific RNA binding capability to HCF145. Homologous TMR motifs are often found as multiple repeats in quite diverse proteins of green and red algae and in the cyanobacterium Microcoleus sp PCC 7113 with unknown function. HCF145 represents the only TMR protein found in vascular plants. Detailed analysis of hcf145 mutants in Arabidopsis and Physcomitrella patens as well as in vivo and in vitro RNA binding assays indicate that HCF145 has been recruited in embryophyta for the stabilization of the psaA-psaB-rps14 mRNA via specific binding to its 5' untranslated region. The polyketide cyclase-related motifs support association of the TMRs to the psaA RNA, presumably pointing to a regulatory role in adjusting PSI levels according to the requirements of the plant cell.


Assuntos
Regiões 5' não Traduzidas , Motivos de Aminoácidos , Proteínas de Arabidopsis/genética , Embriófitas/genética , Proteínas Nucleares/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Briófitas/genética , Cloroplastos/metabolismo , Teste de Complementação Genética , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Complexo de Proteína do Fotossistema I/genética , Plantas Geneticamente Modificadas , Biossíntese de Proteínas , Sequências Repetitivas de Aminoácidos , Proteínas Ribossômicas/genética
5.
Plant J ; 80(2): 230-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25065551

RESUMO

Nitrogen is a key mineral nutrient playing a crucial role in plant growth and development. Understanding the mechanisms of nitrate uptake from the soil and distribution through the plant in response to nitrogen starvation is an important step on the way to improve nitrogen uptake and utilization efficiency for better growth and productivity of plants, and to prevent negative effects of nitrogen fertilizers on the environment and human health. In this study, we show that Arabidopsis NITRATE TRANSPORTER 2.5 (NRT2.5) is a plasma membrane-localized high-affinity nitrate transporter playing an essential role in adult plants under severe nitrogen starvation. NRT2.5 expression is induced under nitrogen starvation and NRT2.5 becomes the most abundant transcript amongst the seven NRT2 family members in shoots and roots of adult plants after long-term starvation. GUS reporter analyses showed that NRT2.5 is expressed in the epidermis and the cortex of roots at the root hair zone and in minor veins of mature leaves. Reduction of NRT2.5 expression resulted in a decrease in high-affinity nitrate uptake without impacting low-affinity uptake. In the background of the high-affinity nitrate transporter mutant nrt2.4, an nrt2.5 mutation reduced nitrate levels in the phloem of N-starved plants further than in the single nrt2.4 mutants. Growth analyses of multiple mutants between NRT2.1, NRT2.2, NRT2.4, and NRT2.5 revealed that NRT2.5 is required to support growth of nitrogen-starved adult plants by ensuring the efficient uptake of nitrate collectively with NRT2.1, NRT2.2 and NRT2.4 and by taking part in nitrate loading into the phloem during nitrate remobilization.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo
6.
Plant Cell ; 24(1): 245-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22227893

RESUMO

Plants have evolved a variety of mechanisms to adapt to N starvation. NITRATE TRANSPORTER2.4 (NRT2.4) is one of seven NRT2 family genes in Arabidopsis thaliana, and NRT2.4 expression is induced under N starvation. Green fluorescent protein and ß-glucuronidase reporter analyses revealed that NRT2.4 is a plasma membrane transporter expressed in the epidermis of lateral roots and in or close to the shoot phloem. The spatiotemporal expression pattern of NRT2.4 in roots is complementary with that of the major high-affinity nitrate transporter NTR2.1. Functional analysis in Xenopus laevis oocytes and in planta showed that NRT2.4 is a nitrate transporter functioning in the high-affinity range. In N-starved nrt2.4 mutants, nitrate uptake under low external supply and nitrate content in shoot phloem exudates was decreased. In the absence of NRT2.1 and NRT2.2, loss of function of NRT2.4 (triple mutants) has an impact on biomass production under low nitrate supply. Together, our results demonstrate that NRT2.4 is a nitrate transporter that has a role in both roots and shoots under N starvation.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitrogênio/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Microscopia Confocal , Transportadores de Nitrato , Nitrogênio/deficiência
7.
Plant Cell ; 23(7): 2680-95, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21771930

RESUMO

Land plant genomes encode four functional ribosomal peptide chain release factors (Prf) of eubacterial origin, two (PrfA and PrfB homologs) for each endosymbiotic organelle. Formerly, we have shown that the Arabidopsis thaliana chloroplast-localized PrfB homolog, PrfB1, is required not only for termination of translation but also for stabilization of UGA stop codon-containing chloroplast transcripts. A previously undiscovered PrfB-like protein, PrfB3, is localized to the chloroplast stroma in a petB RNA-containing complex and found only in vascular plants. Highly conserved positions of introns unequivocally indicate that PrfB3 arose from a duplication of PrfB1. Notably, PrfB3 is lacking the two most important tripeptide motifs characteristic for all eubacterial and organellar PrfB homologs described so far: the stop codon recognition motif SPF and the catalytic center GGQ for peptidyl-tRNA hydrolysis. Complementation studies, as well as functional and molecular analyses of two allelic mutations in Arabidopsis, both of which lead to a specific deficiency of the cytochrome b6f complex, revealed that PrfB3 is essentially required for photoautotrophic growth. Plastid transcript, polysome, and translation analyses indicate that PrfB3 has been recruited in vascular plants for light- and stress-dependent regulation of stability of 3' processed petB transcripts to adjust cytochrome b6 levels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/ultraestrutura , Códon de Terminação/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Luz , Dados de Sequência Molecular , Família Multigênica , Mutação , Filogenia , Proteínas de Plantas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/classificação , Proteínas Ribossômicas/genética , Alinhamento de Sequência , Estresse Fisiológico
8.
J Biol Chem ; 283(36): 24608-16, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18593701

RESUMO

We recently characterized a novel heme biogenesis pathway required for heme c(i)' covalent binding to cytochrome b6 in Chlamydomonas named system IV or CCB (cofactor assembly, complex C (b6f), subunit B (PetB)). To find out whether this CCB pathway also operates in higher plants and extend the knowledge of the c-type cytochrome biogenesis, we studied Arabidopsis insertion mutants in the orthologs of the CCB genes. The ccb1, ccb2, and ccb4 mutants show a phenotype characterized by a deficiency in the accumulation of the subunits of the cytochrome b6f complex and lack covalent heme binding to cytochrome b6. These mutants were functionally complemented with the corresponding wild type cDNAs. Using fluorescent protein reporters, we demonstrated that the CCB1, CCB2, CCB3, and CCB4 proteins are targeted to the chloroplast compartment of Arabidopsis. We have extended our study to the YGGT family, to which CCB3 belongs, by studying insertion mutants of two additional members of this family for which no mutants were previously characterized, and we showed that they are not functionally involved in the CCB system. Thus, we demonstrate the ubiquity of the CCB proteins in chloroplast heme c(i)' binding.


Assuntos
Proteínas de Algas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cloroplastos/enzimologia , Complexo Citocromos b6f/metabolismo , Citocromos c/genética , Proteínas de Algas/genética , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Chlamydomonas/enzimologia , Chlamydomonas/genética , Cloroplastos/genética , Complexo Citocromos b6f/genética , Citocromos c/metabolismo , Heme/genética , Heme/metabolismo , Mutagênese Insercional , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Proteico/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
9.
J Biol Chem ; 281(25): 17189-17196, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16617180

RESUMO

Phylloquinone is a compound present in all photosynthetic plants serving as cofactor for Photosystem I-mediated electron transport. Newly identified seedling-lethal Arabidopsis thaliana mutants impaired in the biosynthesis of phylloquinone possess reduced Photosystem I activity. The affected gene, called PHYLLO, consists of a fusion of four previously individual eubacterial genes, menF, menD, menC, and menH, required for the biosynthesis of phylloquinone in photosynthetic cyanobacteria and the respiratory menaquinone in eubacteria. The fact that homologous men genes reside as polycistronic units in eubacterial chromosomes and in plastomes of red algae strongly suggests that PHYLLO derived from a plastid operon during endosymbiosis. The principle architecture of the fused PHYLLO locus is conserved in the nuclear genomes of plants, green algae, and the diatom alga Thalassiosira pseudonana. The latter arose from secondary endosymbiosis of a red algae and a eukaryotic host indicating selective driving forces for maintenance and/or independent generation of the composite gene cluster within the nuclear genomes. Besides, individual menF genes, encoding active isochorismate synthases (ICS), have been established followed by splitting of the essential 3' region of the menF module of PHYLLO only in genomes of higher plants. This resulted in inactivation of the ICS activity encoded by PHYLLO and enabled a metabolic branch from the phylloquinone biosynthetic route to independently regulate the synthesis of salicylic acid required for plant defense. Therefore, gene fusion, duplication, and fission events adapted a eubacterial multienzymatic system to the metabolic requirements of plants.


Assuntos
Proteínas de Plantas/química , Vitamina K 1/metabolismo , Vitamina K 1/farmacologia , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Arabidopsis/genética , Sequência de Bases , Núcleo Celular/metabolismo , Clorófitas/metabolismo , Evolução Molecular , Modelos Químicos , Modelos Genéticos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Simbiose , Vitamina K 1/química
10.
Plant J ; 38(5): 740-53, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15144376

RESUMO

The high chlorophyll fluorescence (hcf)145 mutant of Arabidopsis thaliana is specifically affected in photosystem (PS)I function as judged from spectroscopic analysis of PSII and PSI activity. The defect is because of a severe deficiency of PSI core subunits, whereas levels of the four outer antenna subunits of PSI were less reduced in hcf145. Pulse labelling of chloroplast proteins indicated that synthesis of the two largest PSI reaction-centre polypeptides, Psa (photosystem I subunit) A and PsaB, is significantly affected by the mutation. A comparison of stationary transcript levels with rates of transcription demonstrates that hcf145 induces a decreased stability and, probably, transcription of the tricistronic psaA-psaB-rps (small-subunit ribosomal protein)14 mRNA, which is generated by the plastid-encoded RNA polymerase. Translation inhibition experiments excluded translational defects as primary cause of impaired mRNA stability. Larger primary transcripts, which also contain sequences of the ycf3 (hypothetical chloroplast reading frame) gene located upstream of the psaA-psaB-rps14 operon and generated by the action of the nuclear-encoded RNA polymerase, are not targeted by the mutation. Real-time reverse transcription (RT)-PCR analysis has successfully been applied to quantify defined intervals of the tricistronic transcript and it was established that the psaA region is less stable than the rps14 region in hcf145. The hcf145 gene has been mapped on the upper part of chromosome 5.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Bactérias/genética , Cloroplastos/genética , Proteínas Nucleares/genética , Complexo de Proteína do Fotossistema I/genética , Transcrição Gênica/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Cloranfenicol/farmacologia , Primers do DNA , Hipocótilo/efeitos dos fármacos , Hipocótilo/genética , Proteínas Nucleares/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/genética , RNA de Plantas/genética , RNA Ribossômico/genética
11.
Plant J ; 37(2): 174-85, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14690502

RESUMO

The seedling-lethal nuclear Arabidopsis hcf101 (high chlorophyll fluorescence) mutant is impaired in photosynthesis and complemented by the wild-type HCF101 cDNA. Photosystem I (PSI) activity is abolished, and PSI core complexes fail to accumulate in hcf101, whereas levels of other thylakoid membrane proteins are unaffected. Northern and in vivo labelling analyses as well as studies on polysome loading show that PSI transcript levels and translation rates of proteins, which belong to PSI, are normal in hcf101. PSI-specific fluorescence at 77 K is shifted from 735 to 728 nm in hcf101, indicating that exitons cannot efficiently be transferred to the PSI reaction centre, whereby the PSI antenna is almost unaffected. Mutant plants not only fail to accumulate mature PSI, which contains three [4Fe-4S]clusters (FSCs), but also are characterized by reduced levels of the soluble FSC-containing complex ferredoxin-thioredoxin reductase (FTR) in the stroma. Inhibited FTR maturation is not a secondary effect stemming from lack of PSI because the mutant hcf145, which also lacks PSI, accumulates FTR at normal levels. Levels of the [2Fe-2S] cluster-containing soluble and membrane proteins, ferredoxin and PetC, respectively, were unchanged in hcf101 plants. These data suggest a specific role of HCF101 in FSC biogenesis. HCF101 is plastid localized and belongs to an ancient and universally conserved family of P-loop ATPases previously designated as the 'MRP' (metGrelated protein) family. The function identified for HCF101 suggests a new designation, FSC, for this family.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas Ferro-Enxofre/genética , Animais , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sequência Conservada , Primers do DNA , DNA Complementar/genética , Éxons/genética , Teste de Complementação Genética , Humanos , Íntrons/genética , Proteínas Ferro-Enxofre/metabolismo , Dados de Sequência Molecular , Mutagênese , Reação em Cadeia da Polimerase/métodos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
12.
Plant Cell ; 16(11): 3084-97, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15494558

RESUMO

To investigate the nuclear-controlled mechanisms of [4Fe-4S] cluster assembly in chloroplasts, we selected Arabidopsis thaliana mutants with a decreased content of photosystem I (PSI) containing three [4Fe-4S] clusters. One identified gene, ACCUMULATION OF PHOTOSYSTEM ONE1 (APO1), belongs to a previously unknown gene family with four defined groups (APO1 to APO4) only found in nuclear genomes of vascular plants. All homologs contain two related motifs of approximately 100 amino acid residues that could potentially provide ligands for [4Fe-4S] clusters. APO1 is essentially required for photoautotrophic growth, and levels of PSI core subunits are below the limit of detection in the apo1 mutant. Unlike other Arabidopsis PSI mutants, apo1 fails to accumulate significant amounts of the outer antenna subunits of PSI and PSII and to form grana stacks. In particular, APO1 is essentially required for stable accumulation of other plastid-encoded and nuclear-encoded [4Fe-4S] cluster complexes within the chloroplast, whereas [2Fe-2S] cluster-containing complexes appear to be unaffected. In vivo labeling experiments and analyses of polysome association suggest that translational elongation of the PSI transcripts psaA and psaB is specifically arrested in the mutant. Taken together, our findings suggest that APO1 is involved in the stable assembly of several [4Fe-4S] cluster-containing complexes of chloroplasts and interferes with translational events probably in association with plastid nucleoids.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Família Multigênica/genética , Fotossíntese/fisiologia , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Clorofila/genética , Clorofila/metabolismo , Cloroplastos/ultraestrutura , Sequência Conservada , DNA Bacteriano/genética , Fluorescência , Regulação da Expressão Gênica de Plantas/fisiologia , Substâncias Macromoleculares/metabolismo , Microscopia Eletrônica , Dados de Sequência Molecular , Mutação/fisiologia , Fenótipo , Folhas de Planta/fisiologia , Plastídeos/metabolismo , Polirribossomos/fisiologia , Sequências Repetitivas de Ácido Nucleico , Temperatura , Transcrição Gênica/fisiologia
13.
Plant Cell ; 14(12): 3255-69, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12468741

RESUMO

Positional cloning of the hcf109 (high chlorophyll fluorescence) mutation in Arabidopsis has identified a nucleus-encoded, plastid-localized release factor 2-like protein, AtprfB, indicating that the processes of translational termination in chloroplasts resemble those of eubacteria. Control of atprfB expression by light and tissues is connected to chloroplast development. A point mutation at the last nucleotide of the second intron causes a new splice site farther downstream, resulting in a deletion of seven amino acid residues in the N-terminal region of the Hcf109 protein. The mutation causes decreased stability of UGA-containing mRNAs. Our data suggest that transcripts with UGA stop codons are terminated exclusively by AtprfB in chloroplasts and that AtprfB is involved in the regulation of both mRNA stability and protein synthesis. Furthermore, sequence data reveal a +1 frameshift at an internal in-frame TGA stop codon in the progenitor prfB gene of cyanobacteria. The expression pattern and functions of atprfB could reflect evolutionary driving forces toward the conservation of TGA stop codons exclusively in plastid genomes of land plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Códon de Terminação/genética , Fatores de Terminação de Peptídeos/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bactérias/genética , Bactérias/metabolismo , Sequência de Bases , Cloroplastos/genética , Cloroplastos/metabolismo , Mapeamento Cromossômico , Códon de Terminação/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Mutação da Fase de Leitura , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Dados de Sequência Molecular , Mutação , Terminação Traducional da Cadeia Peptídica/genética , Fatores de Terminação de Peptídeos/metabolismo , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA de Cloroplastos/genética , RNA de Cloroplastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Transcrição Gênica/genética
14.
J Biol Chem ; 279(2): 1060-9, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14576160

RESUMO

The nuclear atpC1 gene encoding the gamma subunit of the plastid ATP synthase has been inactivated by T-DNA insertion mutagenesis in Arabidopsis thaliana. In the seedling-lethal dpa1 (deficiency of plastid ATP synthase 1) mutant, the absence of detectable amounts of the gamma subunit destabilizes the entire ATP synthase complex. The expression of a second gene copy, atpC2, is unaltered in dpa1 and is not sufficient to compensate for the lack of atpC1 expression. However, in vivo protein labeling analysis suggests that assembly of the ATP synthase alpha and beta subunits into the thylakoid membrane still occurs in dpa1. As a consequence of the destabilized ATP synthase complex, photophosphorylation is abolished even under reducing conditions. Further effects of the mutation include an increased light sensitivity of the plant and an altered photosystem II activity. At low light intensity, chlorophyll fluorescence induction kinetics is close to those found in wild type, but non-photochemical quenching strongly increases with increasing actinic light intensity resulting in steady state fluorescence levels of about 60% of the minimal dark fluorescence. Most fluorescence quenching relaxed within 3 min after dark incubation. Spectroscopic and biochemical studies have shown that a high proton gradient is responsible for most quenching. Thylakoids of illuminated dpa1 plants were swollen due to an increased proton accumulation in the lumen. Expression profiling of 3292 nuclear genes encoding mainly chloroplast proteins demonstrates that most organelle functions are down-regulated. On the contrary, the mRNA expression of some photosynthesis genes is significantly up-regulated, probably to compensate for the defect in dpa1.


Assuntos
Arabidopsis/enzimologia , ATPases de Cloroplastos Translocadoras de Prótons/química , Actinas/química , Northern Blotting , Southern Blotting , Núcleo Celular/metabolismo , Clorofila/química , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Regulação para Baixo , Citometria de Fluxo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Immunoblotting , Cinética , Luz , Microscopia Eletrônica , Mutação , Oxirredução , Fenótipo , Fosforilação , Plastídeos/metabolismo , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Prótons , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Fluorescência , Tilacoides/química , Tilacoides/metabolismo , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA