RESUMO
Ordered layered structures serve as essential components in lithium (Li)-ion cathodes1-3. However, on charging, the inherently delicate Li-deficient frameworks become vulnerable to lattice strain and structural and/or chemo-mechanical degradation, resulting in rapid capacity deterioration and thus short battery life2,4. Here we report an approach that addresses these issues using the integration of chemical short-range disorder (CSRD) into oxide cathodes, which involves the localized distribution of elements in a crystalline lattice over spatial dimensions, spanning a few nearest-neighbour spacings. This is guided by fundamental principles of structural chemistry and achieved through an improved ceramic synthesis process. To demonstrate its viability, we showcase how the introduction of CSRD substantially affects the crystal structure of layered Li cobalt oxide cathodes. This is manifested in the transition metal environment and its interactions with oxygen, effectively preventing detrimental sliding of crystal slabs and structural deterioration during Li removal. Meanwhile, it affects the electronic structure, leading to improved electronic conductivity. These attributes are highly beneficial for Li-ion storage capabilities, markedly improving cycle life and rate capability. Moreover, we find that CSRD can be introduced in additional layered oxide materials through improved chemical co-doping, further illustrating its potential to enhance structural and electrochemical stability. These findings open up new avenues for the design of oxide cathodes, offering insights into the effects of CSRD on the crystal and electronic structure of advanced functional materials.
RESUMO
The renewable energy industry demands rechargeable batteries that can be manufactured at low cost using abundant resources while offering high energy density, good safety, wide operating temperature windows, and long lifespans. Utilizing fluorine chemistry to redesign battery configurations/components is considered a critical strategy to fulfill these requirements due to the natural abundance, robust bond strength, and extraordinary electronegativity of fluorine and the high free energy of fluoride formation, which enables the fluorinated components with cost effectiveness, nonflammability, and intrinsic stability. In particular, fluorinated materials and electrode|electrolyte interphases have been demonstrated to significantly affect reaction reversibility/kinetics, safety, and temperature tolerance of rechargeable batteries. However, the underlining principles governing material design and the mechanistic insights of interphases at the atomic level have been largely overlooked. This review covers a wide range of topics from the exploration of fluorine-containing electrodes, fluorinated electrolyte constituents, and other fluorinated battery components for metal-ion shuttle batteries to constructing fluoride-ion batteries, dual-ion batteries, and other new chemistries. In doing so, this review aims to provide a comprehensive understanding of the structure-property interactions, the features of fluorinated interphases, and cutting-edge techniques for elucidating the role of fluorine chemistry in rechargeable batteries. Further, we present current challenges and promising strategies for employing fluorine chemistry, aiming to advance the electrochemical performance, wide temperature operation, and safety attributes of rechargeable batteries.
RESUMO
The analysis of genomic variations in offspring after implantation has been infrequently studied. In this study, we aim to investigate the extent of de novo mutations in humans from developing fetus to birth. Using high-depth whole-genome sequencing, 443 parent-offspring trios were studied to compare the results of de novo mutations (DNMs) between different groups. The focus was on fetuses and newborns, with DNA samples obtained from the families' blood and the aspirated embryonic tissues subjected to deep sequencing. It was observed that the average number of total DNMs in the newborns group was 56.26 (54.17-58.35), which appeared to be lower than that the multifetal reduction group, which was 76.05 (69.70-82.40) (F = 2.42, P = 0.12). However, after adjusting for parental age and maternal pre-pregnancy body mass index (BMI), significant differences were found between the two groups. The analysis was further divided into single nucleotide variants (SNVs) and insertion/deletion of a small number of bases (indels), and it was discovered that the average number of de novo SNVs associated with the multifetal reduction group and the newborn group was 49.89 (45.59-54.20) and 51.09 (49.22-52.96), respectively. No significant differences were noted between the groups (F = 1.01, P = 0.32). However, a significant difference was observed for de novo indels, with a higher average number found in the multifetal reduction group compared to the newborn group (F = 194.17, P < 0.001). The average number of de novo indels among the multifetal reduction group and the newborn group was 26.26 (23.27-29.05) and 5.17 (4.82-5.52), respectively. To conclude, it has been observed that the quantity of de novo indels in the newborns experiences a significant decrease when compared to that in the aspirated embryonic tissues (7-9 weeks). This phenomenon is evident across all genomic regions, highlighting the adverse effects of de novo indels on the fetus and emphasizing the significance of embryonic implantation and intrauterine growth in human genetic selection mechanisms.
Assuntos
Feto , Humanos , Feminino , Gravidez , Recém-Nascido , Masculino , Adulto , Polimorfismo de Nucleotídeo Único/genética , Implantação do Embrião/genética , Genoma Humano/genética , Mutação INDEL/genética , Genômica , Sequenciamento Completo do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Mutação/genética , Desenvolvimento Fetal/genéticaRESUMO
Aliphatic glucosinolates are a large group of plant secondary metabolites characteristic of Brassicaceae, including the model plant Arabidopsis. The diverse and complex degradation products of aliphatic glucosinolates contribute to plant responses to herbivory, pathogen attack, and environmental stresses. Most of the biosynthesis genes in the aliphatic glucosinolate pathway have been cloned in Arabidopsis, and the research focus has recently shifted to the regulatory mechanisms controlling aliphatic glucosinolate accumulation. Up till now, more than 40 transcriptional regulators have been identified as regulating the aliphatic glucosinolate pathway, but many more novel regulators likely remain to be discovered based on research evidence over the past decade. In the current study, we took a systemic approach to functionally test 155 candidate transcription factors in Arabidopsis identified by yeast one-hybrid assay, and successfully validated at least 30 novel regulators that could significantly influence the accumulation of aliphatic glucosinolates in our experimental set-up. We also showed that the regulators of the aliphatic glucosinolate pathway have balanced positive and negative effects, and glucosinolate metabolism and plant development can be coordinated. Our work is the largest scale effort so far to validate transcriptional regulators of a plant secondary metabolism pathway, and provides new insights into how the highly diverse plant secondary metabolism is regulated at the transcriptional level.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosinolatos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
This study is the first to measure global burden of hip fracture in patients aged 55 years and older across 204 countries and territories from 1990 to 2019. Our study further proved that the global burden of hip fracture is still large. Hip fractures among males are perhaps underestimated, and older adults should be given more attention. PURPOSE: Hip fracture is a tremendous universal public health challenge, but no updated comprehensive and comparable assessment of hip fracture incidence and burden exists for most of the world in older adults. METHODS: Using data from the Global Burden of Diseases (GBD) 2019, we estimated the number and rates of the incidence, prevalence, and years lived with disability (YLD) of hip fracture across 204 countries and territories in patients aged 55 years and older from 1990 to 2019. RESULTS: In 2019, the incidence, prevalence, and YLDs rates of hip fracture in patients aged 55 years and older were 681.35 (95% UI 508.36-892.27) per 100000 population, 1191.39 (95% UI 1083.80-1301.52) per 100000 population, and 130.78 (95% UI 92.26-175.30) per 100000 population. During the three decades, the incidence among people aged below 60 years showed a downward trend, whereas it showed a rapid upward trend among older adults. All the numbers and rates of hip fractures among females were higher than those among males and increased with age, with the highest number and rate in the highest age group. Notably, the male to female ratio of the incidence for people aged over 55 years increased from 0.577 in 1990 to 0.612 in 2019. Falls were the leading cause among both sexes and in all age groups. CONCLUSIONS: The incidence and the number of hip fractures among patients aged 55 years and older increased over the past three decades, indicating that the global burden of hip fracture is still large. Hip fractures among males are perhaps underestimated, and older adults should be given more attention.
Assuntos
Pessoas com Deficiência , Fraturas do Quadril , Humanos , Masculino , Feminino , Idoso , Carga Global da Doença , Incidência , Prevalência , Fraturas do Quadril/epidemiologia , Saúde Global , Anos de Vida Ajustados por Qualidade de VidaRESUMO
BACKGROUND: The fetal neurodevelopmental microstructural alterations of intrauterine exposure to preeclampsia (PE) or gestational hypertension (GH) remain unknown. PURPOSE: To evaluate the differences in diffusion-weighted imaging (DWI) of the fetal brain between normotensive pregnancies and PE/GH pregnancies, with a focus on PE/GH pregnancies with fetal growth restriction (FGR). STUDY TYPE: Retrospective matched case-control study. POPULATION: 40 singleton pregnancies with PE/GH complicated by FGR, and 3 paired control groups (PE/GH without FGR, normotensive FGR, normotensive pregnancies) (28-38 gestational weeks). FIELD STRENGTH/SEQUENCE: DWI with single-shot echo-planar imaging at 1.5 Tesla. ASSESSMENT: The apparent diffusion coefficient (ADC) values were calculated in the centrum semi-ovale (CSO), parietal white matter (PWM), frontal white matter (FWM), occipital white matter (OWM), temporal white matter (TWM), basal ganglia, thalamus (THAL), pons, and cerebellar hemisphere. STATISTICAL TESTS: Student t test or Wilcoxon matched test was used to reveal the difference of ADC values among the investigated brain regions. A correlation between gestational age (GA) and ADC values was determined by linear regression analysis. RESULTS: Compared with fetuses in PE/GH without FGR and those with normotensive pregnancies, fetuses in the PE/GH with FGR group had significantly lower average ADC measurements of supratentorial regions (1.65 ± 0.09 vs. 1.71 ± 0.10 10-3 mm2 /sec; vs. 1.73 ± 0.11 10-3 mm2 /sec, respectively). Regions of significantly decreased ADC values in the fetal brain included CSO, FWM, PWM, OWM, TWM and THAL in cases of PE/GH with FGR. ADC values from supratentorial regions in PE/GH pregnancies were not significantly correlated with GA (P = 0.12, 0.26); however, this trend was statistically significant in the normotensive groups. DATA CONCLUSION: ADC values may indicate fetal brain developmental alterations in PE/GH with FGR fetuses but more microscopic and morphological studies are necessary to provide additional evidence to offer a different interpretation of this trend in fetal brain. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.
Assuntos
Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Estudos de Casos e Controles , Pré-Eclâmpsia/diagnóstico por imagem , Hipertensão Induzida pela Gravidez/diagnóstico por imagem , Retardo do Crescimento Fetal/diagnóstico por imagem , Encéfalo/anatomia & histologia , Idade Gestacional , Imagem de Difusão por Ressonância Magnética/métodosRESUMO
BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is gradually becoming a huge threat to public health. With complex working characteristics, female nurses had been found with high risk of NAFLD. To develop and validate a prediction model to predict the prevalence of NAFLD based on demographic characteristics, work situation, daily lifestyle and laboratory tests in female nurses. METHODS: This study was a part of the Chinese Nurse Cohort Study (The National Nurse Health Study, NNHS), and data were extracted from the first-year follow data collected from 1st June to 1st September 2021 by questionnaires and physical examination records in a comprehensive tertiary hospital. The questionnaires included demographic characteristics, work situation and daily lifestyle. Logistic regression and a nomogram were used to develop and validate the prediction model. RESULTS: A total of 824 female nurses were included in this study. Living situation, smoking history, monthly night shift, daily sleep time, ALT/AST, FBG, TG, HDL-C, UA, BMI, TBil and Ca were independent risk factors for NAFLD occurance. A prediction model for predicting the prevalence of NAFLD among female nurses was developed and verified in this study. CONCLUSION: Living situation, smoking history, monthly night shift, daily sleep time, ALT/AST, FBG, TG, UA, BMI and Ca were independent predictors, while HDL-C and Tbil were independent protective indicators of NAFLD occurance. The prediction model and nomogram could be applied to predict the prevalence of NAFLD among female nurses, which could be used in health improvement. TRIAL REGISTRATION: This study was a part of the Chinese Nurse Cohort Study (The National Nurse Health Study, NNHS), which was a ambispective cohort study contained past data and registered at Clinicaltrials.gov ( https://clinicaltrials.gov/ct2/show/NCT04572347 ) and the China Cohort Consortium ( http://chinacohort.bjmu.edu.cn/project/102/ ).
Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Feminino , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Estudos de Coortes , Prevalência , Fatores de Risco , Internet , China/epidemiologiaRESUMO
Nitrogen is an essential macronutrient for plant growth and basic metabolic processes. The application of nitrogen-containing fertilizer increases yield, which has been a substantial factor in the green revolution1. Ecologically, however, excessive application of fertilizer has disastrous effects such as eutrophication2. A better understanding of how plants regulate nitrogen metabolism is critical to increase plant yield and reduce fertilizer overuse. Here we present a transcriptional regulatory network and twenty-one transcription factors that regulate the architecture of root and shoot systems in response to changes in nitrogen availability. Genetic perturbation of a subset of these transcription factors revealed coordinate transcriptional regulation of enzymes involved in nitrogen metabolism. Transcriptional regulators in the network are transcriptionally modified by feedback via genetic perturbation of nitrogen metabolism. The network, genes and gene-regulatory modules identified here will prove critical to increasing agricultural productivity.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Transcrição Gênica , Agricultura/métodos , Agricultura/tendências , Alelos , Arabidopsis/metabolismo , Retroalimentação Fisiológica , Genótipo , Mutação , Nitratos/metabolismo , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-HíbridoRESUMO
The high-osmolarity glycerol mitogen-activated protein kinase (HOG-MAPK) pathway plays a central role in environmental stress adaptation in eukaryotes. However, the biological function of the HOG-MAPK pathway varies in different fungi. In this study, we investigated the HOG-MAPK pathway by inactivation of the core element Hog1 in Botryosphaeria dothidea, the causal agent of Botryosphaeria canker and apple ring rot. Targeted deletion of BdHOG1 resulted in the loss of conidiation ability and significant reduction of virulence. In addition, the ΔBdHog1 mutant exhibited hypersensitivity to osmotic stress but resistance to phenylpyrrole and dicarboximide fungicides. Comparative transcriptome analysis revealed that inactivation of BdHog1 influenced multiple metabolic pathways in B. dothidea. Taken together, our results suggest that BdHog1 plays a crucial role in development, virulence, and stress tolerance in B. dothidea, which provides a theoretical basis for the development of target-based fungicides.
RESUMO
BACKGROUND: A short cervix in mid-trimester pregnancy is a risk factor for spontaneous preterm birth. However, there is currently a lack of predictive models and classification systems for predicting spontaneous preterm birth in these patients, especially those without additional risk factors for spontaneous preterm birth. METHODS: A retrospective observational cohort study of low-risk singleton pregnant women with a short cervix (≤ 25 mm) measured by transvaginal ultrasonography between 22 and 24 weeks was conducted. A multivariate logistic regression model for spontaneous preterm birth < 32 weeks in low-risk pregnant women with a short cervix was constructed. Moreover, we developed a nomogram to visualize the prediction model and stratified patients into three risk groups (low-, intermediate-, and high-risk groups) based on the total score obtained from the nomogram model. RESULTS: Between 2020 and 2022, 213 low-risk women with a short cervix in mid-trimester pregnancy were enrolled in the study. Univariate logistic analysis revealed that a high body mass index, a history of three or more miscarriages, multiparity, a short cervical length, leukocytosis, and an elevated C-reactive protein level were associated with spontaneous preterm birth < 32 weeks, but multivariate analysis revealed that multiparity (OR, 3.31; 95% CI, 1.13-9.68), leukocytosis (OR, 3.96; 95% CI, 1.24-12.61) and a short cervical length (OR, 0.88; 95% CI, 0.82-0.94) were independent predictors of sPTB < 32 weeks. The model incorporating these three predictors displayed good discrimination and calibration, and the area under the ROC curve of this model was as high as 0.815 (95% CI, 0.700-0.931). Patients were stratified into low- (195 patients), intermediate- (14 patients) and high-risk (4 patients) groups according to the model, corresponding to patients with scores ≤ 120, 121-146, and > 146, respectively. The predicted probabilities of spontaneous preterm birth < 32 weeks for these groups were 6.38, 40.62, and 71.88%, respectively. CONCLUSIONS: A noninvasive and efficient model to predict the occurrence of spontaneous preterm birth < 32 weeks in low-risk singleton pregnant women with a short cervix and a classification system were constructed in this study and can provide insight into the optimal management strategy for patients with different risk stratifications according to the score chart.
Assuntos
Medida do Comprimento Cervical , Colo do Útero , Nomogramas , Segundo Trimestre da Gravidez , Nascimento Prematuro , Humanos , Feminino , Gravidez , Estudos Retrospectivos , Nascimento Prematuro/epidemiologia , Adulto , Colo do Útero/diagnóstico por imagem , Colo do Útero/patologia , Fatores de Risco , Medição de Risco/métodos , Modelos Logísticos , Idade GestacionalRESUMO
Selenium (Se) is an essential micronutrient for humans and animals and is a powerful antioxidant that can promote reproductive and immune functions. The purpose of this study was to evaluate the effects of supplemental dietary selenium-enriched yeast (SeY) on egg quality, gut morphology and microflora in laying hens. In total, 100 HY-Line Brown laying hens (45-week old) were randomly allocated to two groups with 10 replicates and fed either a basal diet (without Se supplementation) or a basal diet containing 0.2 mg/kg Se in the form of SeY for 8 weeks. The Se supplementation did not have a significant effect on egg quality and intestinal morphology of laying hens. Based on the 16S rRNA sequencing, SeY dietary supplementation effectively modulated the cecal microbiota structure. An alpha diversity analysis demonstrated that birds fed 100 mg/kg SeY had a higher cecal bacterial diversity. SeY dietary addition elevated Erysipelotrichia (class), Lachnospiraceae (family), Erysipelotrichaceae (family) and Ruminococcus_torques_group (genus; p < .05). Analysis of microbial community-level phenotypes revealed that SeY supplementation decreased the microorganism abundance of facultatively anaerobic and potentially pathogenic phenotypes. Overall, SeY supplementation cannot significantly improve intestinal morphology; however, it modulated the composition of cecal microbiota toward a healthier gut.
Assuntos
Ração Animal , Microbioma Gastrointestinal , Selênio , Animais , Feminino , Ração Animal/análise , Galinhas/microbiologia , Dieta/veterinária , Suplementos Nutricionais , RNA Ribossômico 16S/genética , Saccharomyces cerevisiae , Selênio/farmacologia , Selênio/análise , Distribuição AleatóriaRESUMO
Gray mold, caused by the fungus Botrytis cinerea, is one of the most important plant diseases worldwide that is prone to developing resistance to fungicides. Currently, the phenylpyrrole fungicide fludioxonil exhibits excellent efficacy in the control of gray mold in China. In this study, we detected the fludioxonil resistance of gray mold disease in Shouguang City of Shandong Province, where we first found fludioxonil-resistant isolates of B. cinerea in 2014. A total of 87 single spore isolates of B. cinerea were obtained from cucumbers in greenhouse, and 3 of which could grow on PDA plates amended with 50 µg/mL fludioxonil that was defined as high-level resistance, with a resistance frequency of 3.4%. Furthermore, the 3 fludioxonil-resistant isolates also showed high-level resistance to the dicarboximide fungicides iprodione and procymidone. Sequencing comparison revealed that all the 3 fludioxonil-resistant isolates had a point mutation at codon 1158, GAC (Asp) â AAC (Asn) in the histidine kinase Bos1, which was proved to be the reason for fludioxonil resistance. In addition, the fludioxonil-resistant isolates possessed an impaired biological fitness compared to the sensitive isolates based on the results of mycelial growth, conidiation, virulence, and osmotic stress tolerance determination. Taken together, our results indicate that the high-level resistance to fludioxonil caused by the Bos1 point mutation (D1158N) has emerged in the field gray mold disease, and the resistance risk is relatively high, and fludioxonil should be used sparingly.
Assuntos
Síndrome Brânquio-Otorrenal , Dioxóis , Fungicidas Industriais , Pirróis , Fungicidas Industriais/farmacologia , Histidina Quinase/genética , Mutação Puntual , Farmacorresistência Fúngica/genética , Fungos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , BotrytisRESUMO
Histidine kinases (HKs) allow fungal cells to sense and respond to environmental stimuli. However, the biological role of HKs in Botryosphaeria dothidea, the causal agent of Botryosphaeria canker and apple ring rot, remains unknown. In this study, we identified and characterized the two-component histidine kinase BdHk1 in B. dothidea. Targeted knockout of BdHK1 gene resulted in severe conidiation and pathogenicity defects. In addition, the ΔBdHk1 mutant showed hypersensitivity to osmotic stress, but resistance to phenylpyrrole and dicarboximide fungicides. Moreover, the ΔBdHk1 mutant exhibited significantly increased sensitivity to the cell membrane-damaging agent SDS and high temperature. Comparative transcriptome analysis revealed that inactivation of BdHk1 influenced multiple metabolic pathways in B. dothidea. Taken together, our results suggest that BdHk1 plays an important role in development, virulence and stress tolerance in B. dothidea.
Assuntos
Ascomicetos , Fungicidas Industriais , Histidina Quinase , Histidina Quinase/genética , Histidina Quinase/metabolismo , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologiaRESUMO
Glomerella cingulata is a pathogenic fungus that can cause apple Glomerella leaf spot (GLS), a new and destructive apple disease in China. Phytotoxins are important factors closely related to the disease process, but there is still no report on the phytotoxins of G. cingulata. The aim of this study was to rapidly identify the phytotoxins of this pathogen using a strategy of HRMS-based preliminary qualification, followed by targeted structure confirmation and also investigation of phytotoxicity characteristics. First, the crude toxin sample was directly analyzed by the UPLC-HRMS and GC-MS, and the data were processed to screen for possible phytotoxic compounds using MS library and the phytotoxicity-related literature. The reference standards of credible phytotoxic compounds were then subjected to targeted structure validation (signal comparison between standards and compounds in crude toxin via HPLC-DAD, UPLC-MS/MS, and GC-MS), and also the phytotoxicity assay. The results confirmed six phytotoxins produced by G. cingulata, namely 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), 2,5-bis(hydroxymethyl)furan (BHMF), 2-furoic acid (FA), 2,3-butanediol, trans-aconitic acid (TAA), and cis-aconitic acid (CAA). Of these, HMFCA and TAA exhibited greater phytotoxicity. Main characteristics: All of them were non-host-selective toxins, and toxins were synergistically phytotoxic to the host when mixed. BHMF, HMFCA, FA, TAA, and CAA could be commonly produced by all tested strains, and their phytotoxicity can be significantly inhibited or even eliminated at high temperatures or high pH. The elucidation of the phytotoxins of G. cingulata in this work could provide information on the pathogenesis and control of apple GLS.
RESUMO
PURPOSE: This study aimed to explore the real experiences and needs of neonatal intensive care unit (NICU) preterm intergenerational caregivers for discharge preparation and provide a basis for nursing staff to formulate systemic and personalized health education plans and continuous nursing plans for preterm discharge. DESIGN AND METHODS: This was a descriptive qualitative study. An objective sampling method was used to select 16 intergenerational caregivers of preterm infants admitted to the NICU of tertiary obstetrics and gynecology hospitals in Zhejiang and Jilin provinces from December 2023 to February 2024. Semi-structured interviews were conducted on the day of discharge of the preterm infants and six weeks after discharge. Colaizzi's seven-step analysis method was used to analyze the interview data. RESULTS: Based on the existence, relatedness, and growth (ERG) theory, the discharge preparation experiences and needs of neonatal intergenerational caregivers in the NICU were summarized into three themes: psychological condition, care capacity condition, and multi-party support needs. CONCLUSIONS: In the process of hospital discharge preparation, intergenerational caregivers of premature infants in NICU have multiple needs, including enhancing nursing ability and obtaining psychological and multi-party support. It is helpful to take effective interventions to improve their readiness for discharge. PRACTICE IMPLICATIONS: The nursing staff should develop personalized discharge health education plans and continuous nursing plans to improve the level of discharge preparation. PATIENT OR PUBLIC CONTRIBUTIONS: There were no patient or public contributions.
Assuntos
Cuidadores , Recém-Nascido Prematuro , Unidades de Terapia Intensiva Neonatal , Alta do Paciente , Pesquisa Qualitativa , Humanos , Recém-Nascido , Feminino , Masculino , Cuidadores/educação , Cuidadores/psicologia , Adulto , Avaliação das Necessidades , China , Relação entre GeraçõesRESUMO
Aliphatic glucosinolates are an abundant group of plant secondary metabolites in Brassica vegetables, with some of their degradation products demonstrating significant anti-cancer effects. The transcription factors MYB28 and MYB29 play key roles in the transcriptional regulation of aliphatic glucosinolates biosynthesis, but little is known about whether BoMYB28 and BoMYB29 are also modulated by upstream regulators or how, nor their gene regulatory networks. In this study, we first explored the hierarchical transcriptional regulatory networks of MYB28 and MYB29 in a model plant, then systemically screened the regulators of the three BoMYB28 homologs in cabbage using a yeast one-hybrid. Furthermore, we selected a novel RNA binding protein, BoRHON1, to functionally validate its roles in modulating aliphatic glucosinolates biosynthesis. Importantly, BoRHON1 induced the accumulation of all detectable aliphatic and indolic glucosinolates, and the net photosynthetic rates of BoRHON1 overexpression lines were significantly increased. Interestingly, the growth and biomass of these overexpression lines of BoRHON1 remained the same as those of the control plants. BoRHON1 was shown to be a novel, potent, positive regulator of glucosinolates biosynthesis, as well as a novel regulator of normal plant growth and development, while significantly increasing plants' defense costs.
Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Glucosinolatos , Proteínas de Plantas , Proteínas de Ligação a RNA , Fatores de Transcrição , Glucosinolatos/metabolismo , Brassica/metabolismo , Brassica/genética , Brassica/crescimento & desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Redes Reguladoras de Genes , Plantas Geneticamente ModificadasRESUMO
High-voltage initial anode-free lithium metal batteries (AFLMBs) promise the maximized energy densities of rechargeable lithium batteries. However, the reversibility of the high-voltage cathode and lithium metal anode is unsatisfactory in sustaining their long lifespan. In this research, a concentrated electrolyte comprising dual salts of LiTFSI and LiDFOB dissolved in mixing solvents of dimethyl carbonate (DMC) and fluoroethylene carbonate (FEC) with a LiNO3 additive was formulated to address this challenge. FEC and LiNO3 regulate the anion-rich solvation structure and help form a LiF, Li3N-rich solid electrolyte interphase (SEI) with a high lithium plating/stripping Coulombic efficiency of 98.3%. LiDFOB preferentially decomposes to effectively suppress the side reaction at the high-voltage operation of the Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode. Moreover, the large irreversible capacity during the initial charge/discharge cycle of the cathode provides supplementary lithium sources for cycle life extension. Owing to these merits, the as-fabricated AFLMBs can operate stably for 80 cycles even at an ultrahigh voltage of 4.6 V. This study sheds new insights on the formulation of advanced electrolytes for highly reversible high-voltage cathodes and lithium metal anodes and could facilitate the practical application of AFLMBs.
RESUMO
Triamcinolone acetonide (TA), a medium-potency synthetic glucocorticoid, is primarily employed to treat posterior ocular diseases using vitreous injection. This study aimed to design novel ocular nanoformulation drug delivery systems using PLGA carriers to overcome the ocular drug delivery barrier and facilitate effective delivery into the ocular tissues after topical administration. The surface of the PLGA nanodelivery system was made hydrophilic (2-HP-ß-CD) through an emulsified solvent volatilization method, followed by system characterization. The mechanism of cellular uptake across the corneal epithelial cell barrier used rhodamine B (Rh-B) to prepare fluorescent probes for delivery systems. The triamcinolone acetonide (TA)-loaded nanodelivery system was validated by in vitro release behavior, isolated corneal permeability, and in vivo atrial hydrodynamics. The results indicated that the fluorescent probes, viz., the Rh-B-(2-HP-ß-CD)/PLGA NPs and the drug-loaded TA-(2-HP-ß-CD)/PLGA NPs, were within 200 nm in size. Moreover, the system was homogeneous and stable. The in vitro transport mechanism across the epithelial barrier showed that the uptake of nanoparticles was time-dependent and that NPs were actively transported across the epithelial barrier. The in vitro release behavior of the TA-loaded nanodelivery systems revealed that (2-HP-ß-CD)/PLGA nanoparticles could prolong the drug release time to up to three times longer than the suspensions. The isolated corneal permeability demonstrated that TA-(2-HP-ß-CD)/PLGA NPs could extend the precorneal retention time and boost corneal permeability. Thus, they increased the cumulative release per unit area 7.99-fold at 8 h compared to the suspension. The pharmacokinetics within the aqueous humor showed that (2-HP-ß-CD)/PLGA nanoparticles could elevate the bioavailability of the drug, and its Cmax was 51.91 times higher than that of the triamcinolone acetonide aqueous solution. Therefore, (2-HP-ß-CD)/PLGA NPs can potentially elevate transmembrane uptake, promote corneal permeability, and improve the bioavailability of drugs inside the aqueous humor. This study provides a foundation for future research on transocular barrier nanoformulations for non-invasive drug delivery.
Assuntos
Dieldrin/análogos & derivados , Nanopartículas , beta-Ciclodextrinas , Polímeros/farmacologia , Portadores de Fármacos/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Triancinolona Acetonida , Corantes Fluorescentes/farmacologia , Córnea , beta-Ciclodextrinas/farmacologiaRESUMO
PURPOSE: Anesthesia nurses play an important postsurgical role during the anesthesia recovery period, which is characterized by a high incidence of complications related to anesthesia and surgery. Strengthening staff allocation and skill management in the postanesthesia care unit (PACU) is therefore particularly important in managing length of stay. We aimed to investigate the effect of two schedule modes for anesthesia nurses on PACU efficiency. DESIGN: A retrospective observational cohort study. METHODS: We conducted a retrospective study in a large tertiary academic medical center. In 2018, the PACU operated with traditional scheduling and the nurse-to-patient ratio was 1.2:1. The PACU implemented intensive scheduling and this ratio was adjusted to 1:1 in 2019 by adjusting the anesthesia nurse allocation scheme. We compared the number of admitted patients, length of PACU stay, the incidence of anesthesia-related complications, and nurse satisfaction with the two modes. FINDINGS: The total number of admitted patients was 10,531 in 2018 and 10,914 in 2019. PACU admitted 401 more patients in 2019 than in 2018, even with two fewer nurses per day. Nevertheless, the median length of PACU stay in 2019 was statistically significantly shorter than in 2018 (29 [22-40] vs 28 [21-39], P < .001], while the incidence of anesthesia-related complications including postoperative pain, nausea and vomiting, hypertension, and shivering were comparable in the 2 years (P > .091). The intensive scheduling implemented in 2019 received more satisfaction from nurses than the traditional scheduling applied in 2018 (P < .01). CONCLUSIONS: The scheduling of anesthesia nurses affects PACU efficiency. The intensive scheduling mode implemented in 2019 resulted in a comparable number of admitted patients, a better quality of care, and higher nurse satisfaction than those under the traditional scheduling mode.
Assuntos
Enfermagem em Pós-Anestésico , Humanos , Estudos Retrospectivos , China , Feminino , Enfermagem em Pós-Anestésico/métodos , Masculino , Pessoa de Meia-Idade , Tempo de Internação/estatística & dados numéricos , Adulto , Admissão e Escalonamento de Pessoal/estatística & dados numéricos , Sala de Recuperação , Enfermeiros Anestesistas/estatística & dados numéricos , Estudos de CoortesRESUMO
Polyethylene oxide (PEO)-based all-solid-state lithium metal batteries (ASSLMBs) are strongly hindered by the fast dendrite growth at the Li metal/electrolyte interface, especially under large rates. The above issue stems from the suboptimal interfacial chemistry and poor Li+ transport kinetics during cycling. Herein, a SnF2-catalyzed lithiophilic-lithiophobic gradient solid electrolyte interphase (SCG-SEI) of LixSny/LiF-Li2O is in situ formed. The superior ionic LiF-Li2O rich upper layer (17.1â nm) possesses high interfacial energy and fast Li+ diffusion channels, wherein lithiophilic LixSny alloy layer (8.4â nm) could highly reduce the nucleation overpotential with lower diffusion barrier and promote rapid electron transportation for reversible Li+ plating/stripping. Simultaneously, the insoluble SnF2-coordinated PEO promotes the rapid Li+ ion transport in the bulk phase. As a result, an over 46.7 and 3.5â times improvements for lifespan and critical current density of symmetrical cells are achieved, respectively. Furthermore, LiFePO4-based ASSLMBs deliver a recorded cycling performance at 5â C (over 1000 cycles with a capacity retention of 80.0 %). More importantly, impressive electrochemical performances and safety tests with LiNi0.8Mn0.1Co0.1O2 and pouch cell with LiFePO4, even under extreme conditions (i.e., 100 °C), are also demonstrated, reconfirmed the importance of lithiophilic-lithiophobic gradient interfacial chemistry in the design of high-rate ASSLMBs for safety applications.