Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 263: 115390, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619398

RESUMO

The existing data regarding the effects of polyethylene (PE) microplastics (MPs) smaller than 5 mm in size on earthworms are insufficient to fully comprehend their toxicity. In this study, earthworms Eisenia fetida were exposed to artificially added PE at a concentration ranging from 0.05 to 20 g/kg soil (0.005%-2%) for 60 days to determine the concentration range causing negative effects on earthworms and to uncover the potential toxic mechanisms. The individual growth, reproduction, and metabolic enzyme activities, including phase I enzymes (cytochrome P450 [CYP] 1A2, 2B6, 2C9, and 3A4), and phase II metabolic enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione sulfotransferase (GST)), and metabolomics were measured. The observed variations in responses of multiple cross-scale endpoints indicated that individual indices are less responsive to PE MPs than metabolic enzymes or metabolomics. Despite the absence of significant alterations in growth inhibition based on body weight, PE MPs at concentrations equal to or exceeding 2.5 g/kg were found to exert a toxic effect on earthworms, which was evidenced by significant changes in metabolic enzyme activities (CYP1A2, 2B6, 2C9, and 3A4, SOD, CAT, and GST) and important small molecule metabolites screened based on metabolomics, likely due to the bioaccumulation of PE. The toxicity of PE MPs to earthworms is inferred to be associated with neurotoxicity, oxidative damage, decreased detoxification capacity, energy metabolism imbalance, and impaired amino acid and purine metabolism due to bioaccumulation. The findings of this study will enhance our understanding of the molecular toxicity mechanisms of PE MPs and contribute to a more accurate assessment of the ecological risks posed by PE MPs in soil.


Assuntos
Oligoquetos , Polietileno , Animais , Polietileno/toxicidade , Microplásticos , Plásticos , Metabolômica , Superóxido Dismutase , Reprodução
2.
J Control Release ; 370: 302-309, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663752

RESUMO

Displaying antibodies on carrier surfaces facilitates precise targeting and delivery of drugs to diseased cells. Here, we report the synthesis of antibody-lipid conjugates (ALCs) through site-selective acetylation of Lys 248 in human Immunoglobulin G (IgG) and the development of antibody-functionalized red blood cells (immunoRBC) for targeted drug delivery. ImmunoRBC with the HER2-selective antibody trastuzumab displayed on the surface (called Tras-RBC) was constructed following a three-step procedure. First, a peptide-guided, proximity-induced reaction transferred an azidoacetyl group to the ε-amino group of Lys 248 in the Fc domain. Second, the azide-modified IgG was subsequently conjugated with dibenzocyclooctyne (DBCO)-functionalized lipids via strain-promoted azide-alkyne cycloaddition (SPAAC) to result in ALCs. Third, the lipid portion of ALCs was then inserted into the cell membranes, and IgGs were displayed on red blood cells (RBCs) to construct immunoRBCs. We then loaded Tras-RBC with a photosensitizer (PS), Zinc phthalocyanine (ZnPc), to selectively target HER2-overexpressing cells, release ZnPc into cancer cells following photolysis, and induce photodynamic cytotoxicity in the cancer cells. This work showcases assembling immunoRBCs following site-selective lipid conjugation on therapeutic antibodies and the targeted introduction of PS into cancer cells. This method could apply to the surface functionalization of other membrane-bound vesicles or lipid nanoparticles for antibody-directed drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Eritrócitos , Indóis , Isoindóis , Lipídeos , Trastuzumab , Humanos , Eritrócitos/efeitos dos fármacos , Trastuzumab/química , Trastuzumab/administração & dosagem , Lipídeos/química , Indóis/química , Indóis/administração & dosagem , Compostos de Zinco , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Compostos Organometálicos/química , Compostos Organometálicos/administração & dosagem , Receptor ErbB-2/imunologia , Imunoconjugados/química , Imunoconjugados/administração & dosagem , Imunoglobulina G/química , Linhagem Celular Tumoral , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/química , Azidas/química
3.
Adv Sci (Weinh) ; 11(5): e2305012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044303

RESUMO

Targeted immunotherapies capitalize on the exceptional binding capabilities of antibodies to stimulate a host response that effectuates long-lived tumor destruction. One example is the conjugation of immunoglobulins (IgGs) to immune effector cells, which equips the cells with the ability to recognize and accurately kill malignant cells through a process called antibody-dependent cellular cytotoxicity (ADCC). In this study, a chemoenzymatic reaction is developed that specifically functionalizes a single tyrosine (Tyr, Y) residue, Y296, in the Fc domain of therapeutic IgGs. A one-pot reaction that combines the tyrosinase-catalyzed oxidation of tyrosine to o-quinone with a subsequent [3+2] photoaddition with vinyl ether is employed. This reaction installs fluorescent molecules or bioorthogonal groups at Y296 of IgGs or the C-terminal Y-tag of an engineered nanobody. The Tyr-specific reaction is utilized in constructing monofunctionalized antibody-drug conjugates (ADCs) and antibody/nanobody-conjugated effector cells, such as natural killer cells or macrophages. These results demonstrate the potential of site-selective antibody reactions for enhancing targeted cancer immunotherapy.


Assuntos
Anticorpos , Tirosina , Imunoterapia/métodos , Citotoxicidade Celular Dependente de Anticorpos , Células Matadoras Naturais
4.
Mitochondrial DNA B Resour ; 6(3): 1028-1031, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33796727

RESUMO

The complete mitochondrial genome of Callista chinensis was sequenced via next-generation sequencing. The circular genome was 19,704 bp in length, containing 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a putative control region. The gene order of nad2 and nad4l was reversed when compared with that of other Veneridae species. The phylogenetic analysis indicated that the C. chinensis was clustered with Saxidomus purpurata. Comparing nucleotide sequences of the partial cox1 gene from 40 C. chinensis individuals displayed high levels of genetic diversity in the analyzed populations. Additionally, demographic history analysis based on neutrality tests and mismatch distributions suggested a recent population expansion in the C. chinensis.

5.
Biomaterials ; 269: 120539, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33243424

RESUMO

Transplantation of synovial fluid-derived mesenchymal stem cells (SF-MSCs) is a viable therapy for cartilage degeneration of osteoarthritis (OA). But controlling chondrogenic differentiation of the transplanted SF-MSCs in the joints remains a challenge. Kartogenin (KGN) is a small molecule that has been discovered to induce differentiation of SF-MSCs to chondrocytes both in vitro and in vivo. The clinical application of KGN however is limited by its low water solubility. KGN forms precipitates in the cell, resulting in low effective concentration and thus limiting its chondrogesis-promoting activity. Here we report that targeted delivery of KGN to SF-MSCs by engineered exosomes leads to even dispersion of KGN in the cytosol, increases its effective concentration in the cell, and strongly promotes the chondrogenesis of SF-MSCs in vitro and in vivo. Fusing an MSC-binding peptide E7 with the exosomal membrane protein Lamp 2b yields exosomes with E7 peptide displayed on the surface (E7-Exo) that has SF-MSC targeting capability. KGN delivered by E7-Exo efficiently enters SF-MSCs and induces higher degree of cartilage differentiation than KGN alone or KGN delivered by exosomes without E7. Co-administration of SF-MSCs with E7-Exo/KGN in the knee joints via intra-articular injection also shows more pronounced therapeutic effects in a rat OA model than KGN alone or KGN delivered by exosomes without E7. Altogether, transplantation of SF-MSCs with in situ chondrogenesis enabled by E7-Exo delivered KGN holds promise towards as an advanced stem cell therapy for OA.


Assuntos
Cartilagem Articular , Exossomos , Células-Tronco Mesenquimais , Anilidas , Animais , Cartilagem , Diferenciação Celular , Células Cultivadas , Condrogênese , Ácidos Ftálicos , Ratos , Regeneração , Líquido Sinovial
6.
ACS Appl Mater Interfaces ; 12(33): 36938-36947, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814390

RESUMO

Targeted delivery to the diseased cell or tissue is the key to the successful clinical use of nucleic acid drugs. In particular, delivery of microRNA-140 (miRNA-140, miR-140) into chondrocytes across the dense, nonvascular extracellular matrix of cartilage remains a major challenge. Here, we report the chondrocyte-targeting exosomes as vehicles for the delivery of miR-140 into chondrocytes as a new treatment for osteoarthritis (OA). By fusing a chondrocyte-affinity peptide (CAP) with the lysosome-associated membrane glycoprotein 2b protein on the surface of exosomes, we acquire CAP-exosomes that can efficiently encapsulate miR-140, specifically enter, and deliver the cargo into chondrocytes in vitro. CAP-exosomes, in contrast to nontagged exosome vesicles, are retained in the joints after intra-articular injection with minimal diffusion in vivo. CAP-exosomes also deliver miR-140 to deep cartilage regions through the dense mesochondrium, inhibit cartilage-degrading proteases, and alleviate OA progression in a rat model, pointing toward a potential organelle-based, cell-free therapy of OA.


Assuntos
Condrócitos/metabolismo , Exossomos/química , Matriz Extracelular/metabolismo , MicroRNAs/química , Osteoartrite/terapia , Animais , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/citologia , Exossomos/metabolismo , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Terapia de Alvo Molecular , Imagem Óptica , Osteoartrite/genética , Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA