Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(9): e1010808, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067252

RESUMO

Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white spot syndrome virus (WSSV) was decreased after knockdown of mTor (mechanistic target of rapamycin) or injection inhibitor of mTORC1, rapamycin, in Marsupenaeus japonicus, which suggests that mTORC1 is utilized by WSSV for its replication in shrimp. Mechanistically, WSSV infects shrimp by binding to its receptor, polymeric immunoglobulin receptor (pIgR), and induces the interaction of its intracellular domain with Calmodulin. Calmodulin then promotes the activation of protein kinase B (AKT) by interaction with the pleckstrin homology (PH) domain of AKT. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, ribosomal protein S6 kinase (S6Ks), for viral protein translation. Moreover, mTORC1 also phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which will result in the separation of 4EBP1 from eukaryotic translation initiation factor 4E (eIF4E) for the translation of viral proteins in shrimp. Our data revealed a novel pathway for WSSV proliferation in shrimp and indicated that mTORC1 may represent a potential clinical target for WSSV control in shrimp aquaculture.


Assuntos
Receptores de Imunoglobulina Polimérica , Vírus da Síndrome da Mancha Branca 1 , Antivirais/farmacologia , Calmodulina/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Imunoglobulina Polimérica/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases S6 Ribossômicas/farmacologia , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/metabolismo
2.
J Pineal Res ; 76(5): e12987, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38975671

RESUMO

Sleep deprivation (SD) has been associated with a plethora of severe pathophysiological syndromes, including gut damage, which recently has been elucidated as an outcome of the accumulation of reactive oxygen species (ROS). However, the spatiotemporal analysis conducted in this study has intriguingly shown that specific events cause harmful damage to the gut, particularly to goblet cells, before the accumulation of lethal ROS. Transcriptomic and metabolomic analyses have identified significant enrichment of metabolites related to ferroptosis in mice suffering from SD. Further analysis revealed that melatonin could rescue the ferroptotic damage in mice by suppressing lipid peroxidation associated with ALOX15 signaling. ALOX15 knockout protected the mice from the serious damage caused by SD-associated ferroptosis. These findings suggest that melatonin and ferroptosis could be targets to prevent devastating gut damage in animals exposed to SD. To sum up, this study is the first report that proposes a noncanonical modulation in SD-induced gut damage via ferroptosis with a clearly elucidated mechanism and highlights the active role of melatonin as a potential target to maximally sustain the state during SD.


Assuntos
Ferroptose , Melatonina , Camundongos Knockout , Privação do Sono , Animais , Camundongos , Melatonina/metabolismo , Melatonina/farmacologia , Privação do Sono/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Peroxidação de Lipídeos , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase
3.
Nano Lett ; 23(11): 5381-5390, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-36996288

RESUMO

Intranasal administration was previously proposed for delivering drugs for central nervous system (CNS) diseases. However, the delivery and elimination pathways, which are very imperative to know for exploring the therapeutic applications of any given CNS drugs, remain far from clear. Because lipophilicity has a high priority in the design of CNS drugs, the as-prepared CNS drugs tend to form aggregates. Therefore, a PEGylated Fe3O4 nanoparticle labeled with a fluorescent dye was prepared as a model drug and studied to elucidate the delivery pathways of intranasally administered nanodrugs. Through magnetic resonance imaging, the distribution of the nanoparticles was investigated in vivo. Through ex vivo fluorescence imaging and microscopy studies, more precise distribution of the nanoparticles across the entire brain was disclosed. Moreover, the elimination of the nanoparticles from cerebrospinal fluid was carefully studied. The temporal dose levels of intranasally delivered nanodrugs in different parts of the brain were also investigated.


Assuntos
Sistema Nervoso Central , Nanopartículas , Administração Intranasal , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo , Preparações Farmacêuticas/metabolismo , Sistemas de Liberação de Medicamentos/métodos
4.
PLoS Pathog ; 17(4): e1009479, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33798239

RESUMO

Invertebrates rely on innate immunity, including humoral and cellular immunity, to resist pathogenic infection. Previous studies showed that forkhead box transcription factor O (FOXO) participates in mucosal immune responses of mammals and the gut humoral immune regulation of invertebrates. However, whether FOXO is involved in systemic and cellular immunity regulation in invertebrates remains unknown. In the present study, we identified a FOXO from shrimp (Marsupenaeus japonicus) and found that it was expressed at relatively basal levels in normal shrimp, but was upregulated significantly in shrimp challenged by Vibrio anguillarum. FOXO played a critical role in maintaining hemolymph and intestinal microbiota homeostasis by promoting the expression of Relish, the transcription factor of the immune deficiency (IMD) pathway for expression of antimicrobial peptides (AMPs) in shrimp. We also found that pathogen infection activated FOXO and induced its nuclear translocation by reducing serine/threonine kinase AKT activity. In the nucleus, activated FOXO directly regulated the expression of its target Amp and Relish genes against bacterial infection. Furthermore, FOXO was identified as being involved in cellular immunity by promoting the phagocytosis of hemocytes through upregulating the expression of the phagocytotic receptor scavenger receptor C (Src), and two small GTPases, Rab5 and Rab7, which are related to phagosome trafficking to the lysosome in the cytoplasm. Taken together, our results indicated that FOXO exerts its effects on homeostasis of hemolymph and the enteric microbiota by activating the IMD pathway in normal shrimp, and directly or indirectly promoting AMP expression and enhancing phagocytosis of hemocytes against pathogens in bacteria-infected shrimp. This study revealed the different functions of FOXO in the mucosal (local) and systemic antibacterial immunity of invertebrates.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Microbiota , Penaeidae/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Vibrio/fisiologia , Animais , Fatores de Transcrição Forkhead/genética , Hemócitos/imunologia , Homeostase , Imunidade Inata , Penaeidae/imunologia , Penaeidae/microbiologia , Fagocitose/imunologia
5.
BMC Neurol ; 23(1): 444, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102573

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is a recurring inflammatory demyelinating disease that is commonly observed in Asian countries like China. Prior investigations have shown that mycophenolate mofetil (MMF) with better biocompatibility compared to azathioprine (AZA), and can prevent relapses of NMOSD, but the efficacy was controversially reported in different NMOSD cases. We aimed to explore the factors that weaken efficacy of MMF in NMOSD. METHODS: A total of 34 NMOSD patients treated with MMF were prospectively enrolled and grouped according to the therapeutic efficacy as effective group (EG, n = 23) versus less-effective group (LEG, n = 11). The purine metabolites were profiled in serum samples and gut microbiota was analyzed using 16S rRNA sequencing with stool samples from the same patients. RESULTS: Purine salvage pathway (PSP) metabolites (inosine, hypoxanthine, xanthine, guanine and uric acid) in the serum of NMOSD patients were elevated in the LEG compared to EG (p < 0.05). Additionally, the richness and microbial diversity of gut microbiota was found to be similar between EG and LEG patients. However, LEG patients had increased presence of Clostridium and Synergistes but decreased abundance of the Coprococcus genus. CONCLUSIONS: The PSP metabolites and composition of the gut microbiota were changed between patients with or without optimal clinical response after MMF treatment. This may help us to understand the pharmacodynamics of MMF in NMOSD.


Assuntos
Microbioma Gastrointestinal , Neuromielite Óptica , Humanos , Ácido Micofenólico/uso terapêutico , Neuromielite Óptica/tratamento farmacológico , RNA Ribossômico 16S , Resultado do Tratamento , Azatioprina/uso terapêutico , Recidiva
6.
J Immunol ; 206(9): 2075-2087, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33863791

RESUMO

White spot syndrome virus (WSSV) is a threatening pathogenic virus in shrimp culture, and at present, no effective strategy can prevent and control the disease. Intestinal flora and its metabolites are important for the resistance of shrimp to lethal pathogenic viruses. However, the changes of metabolites in the shrimp intestines after WSSV infection remain unclear. We established an artificial oral infection method to infect shrimp with WSSV and analyzed the metabolites in intestinal content of shrimp by HPLC and tandem mass spectrometry. A total of 78 different metabolites and five different metabolic pathways were identified. Among them, we found that the content of linoleic acid, an unsaturated fatty acid, increased significantly after WSSV infection, indicating that linoleic acid might be involved in antiviral immunity in shrimp. Further study showed that, after oral administration of linoleic acid, WSSV proliferation decreased evidently in the shrimp, and survival rate of the shrimp increased significantly. Mechanical analysis showed that linoleic acid directly bound to WSSV virions and inhibited the viral replication. Linoleic acid also promoted the expression of antimicrobial peptides and IFN-like gene Vago5 by activating the ERK-NF-κB signaling pathway. Our results indicated that WSSV infection caused metabolomic transformation of intestinal microbiota and that the metabolite linoleic acid participated in the immune response against WSSV in shrimp.


Assuntos
Antivirais/farmacologia , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Ácido Linoleico/farmacologia , Vírus da Síndrome da Mancha Branca 1/efeitos dos fármacos , Animais , Antivirais/metabolismo , Ácido Linoleico/metabolismo , Testes de Sensibilidade Microbiana , Penaeidae
7.
Mol Biol Rep ; 49(4): 2695-2709, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35040004

RESUMO

BACKGROUND: Artemisinin (ART) is an anti-malaria natural compound with a moderate anticancer action. As a metabolite of ART, dihydroartemisinin (DHA) may have stronger anti-colorectal cancer (CRC) bioactivities. However, the effects of DHA and ART on CRC chemoprevention, including adaptive immune regulation, have not been systematically evaluated and compared. METHODS: Coupled with a newly-established HPLC analytical method, enteric microbiome biotransformation was conducted to identify if the DHA is a gut microbial metabolite of ART. The anti-CRC potential of these compounds was compared using two different human CRC cell lines for cell cycle arrest, apoptotic induction, and anti-inflammation activities. Naive CD4+ T cells were also obtained for testing the compounds on the differentiation of Treg, Th1 and Th17. RESULTS: Using compound extraction and analytical methods, we observed for the first time that ART completely converted into its metabolites by gut microbiome within 24 h, but no DHA was detected. Although ART did not obviously influence cancer cell growth in the concentration tested, DHA very significantly inhibited the cancer cell growth at relatively low concentrations. DHA included G2/M cell cycle arrest via upregulation of cyclin A and apoptosis. Both ART and DHA downregulated the pro-inflammatory cytokine expression. The DHA significantly promoted Treg cell proliferation, while both ART and DHA inhibited Th1 and Th17 cell differentiation. CONCLUSIONS: As a metabolite of ART, DHA possessed stronger anti-CRC activities. The DHA significantly inhibited cell growth via cell cycle arrest, apoptosis induction and anti-inflammation actions. The adaptive immune regulation is a related mechanism of actions for the observed effects.


Assuntos
Artemisininas , Neoplasias do Colo , Apoptose , Artemisininas/farmacologia , Quimioprevenção , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/prevenção & controle , Humanos
8.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296522

RESUMO

Hypoxia is a common biological condition in many malignant solid tumors that plays an imperative role in regulating tumor growth and impacting the treatment's therapeutic effect. Therefore, the hypoxia assessment is of great significance in predicting tumor development and evaluating its prognosis. Among the plenty of existing tumor diagnosis techniques, magnetic resonance imaging (MRI) offers certain distinctive features, such as being free of ionizing radiation and providing images with a high spatial resolution. In this study, we develop a fluorescent traceable and hypoxia-sensitive T1-weighted MRI probe (Fe3O4-Met-Cy5.5) via conjugating notable hypoxia-sensitive metronidazole moiety and Cy5.5 dye with ultrasmall iron oxide (Fe3O4) nanoparticles. The results of in vitro and in vivo experiments show that Fe3O4-Met-Cy5.5 has excellent performance in relaxivity, biocompatibility, and hypoxia specificity. More importantly, the obvious signal enhancement in hypoxic areas indicates that the probe has great feasibility for sensing tumor hypoxia via T1-weighted MRI. These promising results may unlock the potential of Fe3O4 nanoparticles as T1-weighted contrast agents for the development of clinical hypoxia probes.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Meios de Contraste , Hipóxia Tumoral , Metronidazol , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Hipóxia/diagnóstico por imagem , Nanopartículas Magnéticas de Óxido de Ferro
9.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4849-4864, 2021 Sep.
Artigo em Zh | MEDLINE | ID: mdl-34581097

RESUMO

As a unicellular organism, Plasmodium displays a panoply of lipid metabolism pathways that are seldom found together in a unicellular organism. These pathways mostly involve the Plasmodium-encoded enzymatic machinery and meet the requirements of membrane synthesis during the rapid cell growth and division throughout the life cycle. Different lipids have varied synthesis and meta-bolism pathways. For example, the major phospholipids are synthesized via CDP-diacylglycerol-dependent pathway in prokaryotes and de novo pathway in eukaryotes, and fatty acids are synthesized mainly via type Ⅱ fatty acid synthesis pathway. The available studies have demonstrated the impacts of artemisinin and its derivatives, the front-line compounds against malaria, on the lipid metabolism of Plasmodium. Therefore, this article reviewed the known lipid metabolism pathways and the effects of artemisinin and its derivatives on these pathways, aiming to deepen the understanding of lipid synthesis and metabolism in Plasmodium and provide a theoretical basis for the research on the mechanisms and drug resistance of artemisinin and other anti-malarial drugs.


Assuntos
Antimaláricos , Artemisininas , Malária , Plasmodium , Antimaláricos/farmacologia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Humanos , Metabolismo dos Lipídeos , Malária/tratamento farmacológico
10.
Artigo em Inglês | MEDLINE | ID: mdl-32122894

RESUMO

Tigecycline serves as one of the antibiotics of last resort to treat multidrug-resistant (including carbapenem-resistant) pathogens. However, the recently emerged plasmid-mediated tigecycline resistance mechanism, Tet(X), challenges the clinical efficacy of this class of antibiotics. In this study, we detected 180 tet(X)-harboring Acinetobacter isolates (8.9%, n = 180) from 2,018 samples collected from avian farms and adjacent environments in China. Eighteen tet(X)-harboring isolates (10.0%) were found to cocarry the carbapenemase gene blaNDM-1, mostly from waterfowl samples (94.4%, 17/18). Interestingly, among six Acinetobacter strains, tet(X) and blaNDM-1 were found to colocalize on the same plasmids. Moreover, whole-genome sequencing (WGS) revealed a novel orthologue of tet(X) in the six isolates coharboring tet(X) and blaNDM-1 Inverse PCR suggested that the two tet(X) genes form a single transposable unit and may be cotransferred. Sequence comparison between six tet(X)- and blaNDM-1-coharboring plasmids showed that they shared a highly homologous plasmid backbone even though they were isolated from different Acinetobacter species (three from Acinetobacter indicus, two from Acinetobacter schindleri, and one from Acinetobacter lwoffii) from various sources and from different geological regions, suggesting the horizontal genetic transfer of a common tet(X)- and blaNDM-1-coharboring plasmid among Acinetobacter species in China. Emergence and spread of such plasmids and strains are of great clinical concern, and measures must be implemented to avoid their dissemination.


Assuntos
Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/veterinária , Acinetobacter/efeitos dos fármacos , Antibacterianos/farmacologia , Doenças das Aves/microbiologia , Aves/microbiologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana/genética , Resistência a Tetraciclina/genética , Tigeciclina/farmacologia , Infecções por Acinetobacter/epidemiologia , Animais , Doenças das Aves/epidemiologia , China , Transferência Genética Horizontal , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Plasmídeos , Sequenciamento Completo do Genoma
11.
Sheng Li Xue Bao ; 71(4): 527-536, 2019 Aug 25.
Artigo em Zh | MEDLINE | ID: mdl-31440749

RESUMO

The aim of this study was to investigate whether G protein-coupled estrogen receptor (GPER) could alleviate hippocampal neuron injury under cerebral ischemia-reperfusion injury (CIRI) by acting on endoplasmic reticulum stress (ERS). The CIRI animal model was established by middle cerebral artery occlusion (MCAO). Female ovariectomized (OVX) Sprague-Dawley (SD) female rats were randomly divided into 4 groups: control, ischemia-reperfusion injury (MCAO), vehicle (MCAO+DMSO), and GPER-specific agonist G1 (MCAO+G1) groups. The neurobehavioral score was assessed by the Longa score method, the morphological changes of the neurons were observed by the Nissl staining, the cerebral infarction was detected by the TTC staining, and the neural apoptosis in the hippocampal CA1 region was detected by TUNEL staining. The distribution and expression of GRP78 (78 kDa glucose-regulated protein 78) in the hippocampal CA1 region were observed by immunofluorescent staining. The protein expression levels of GRP78, Caspase-12, CHOP and Caspase-3 were detected by Western blot, and the mRNA expression levels of GRP78, Caspase-12, and CHOP were detected by the real-time PCR. The results showed that the neurobehavioral score, cerebral infarct volume, cellular apoptosis index, as well as GRP78, Caspase-12 and CHOP protein and mRNA expression levels in the MCAO group were significantly higher than those of control group. And G1 reversed the above-mentioned changes in the MCAO+G1 group. These results suggest that the activation of GPER can decrease the apoptosis of hippocampal neurons and relieve CIRI, and its mechanism may involve the inhibition of ERS.


Assuntos
Isquemia Encefálica , Estresse do Retículo Endoplasmático , Neurônios/citologia , Receptores de Estrogênio/fisiologia , Receptores Acoplados a Proteínas G/agonistas , Traumatismo por Reperfusão , Animais , Apoptose , Região CA1 Hipocampal/citologia , Caspase 12/metabolismo , Caspase 3/metabolismo , Feminino , Proteínas de Choque Térmico/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fator de Transcrição CHOP/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 43(18): 3771-3781, 2018 Sep.
Artigo em Zh | MEDLINE | ID: mdl-30384545

RESUMO

Heme is a key metabolic factor in all life. Malaria parasite has de novo heme-biosynthetic pathway, however the growth and development of parasite depend on the hemoglobin-derived heme metabolism process during the intraerythrocytic stages, such as the ingestion and degradation of hemoglobin in the food vacuole. The hemoglobin metabolism in the food vesicles mainly includes four aspects: hemoglobin transport and intake, hemoglobin enzymolysis to produce heme, heme polymerization into malarial pigment, and heme transport via the food vacuole. The potential mechanisms of antimalarial drugs,such as chloroquine, artemisinin and atovaquone may be related to this process. The main four aspects of this metabolic process, key metabolic enzymes, effects of antimalarial drugs on the process and their potential mechanism of action would be summarized in this paper, providing ideas for rational use and mechanism exploration of similar drugs.


Assuntos
Heme/metabolismo , Plasmodium/metabolismo , Antimaláricos/farmacologia , Artemisininas/farmacologia , Atovaquona/farmacologia , Cloroquina/farmacologia , Eritrócitos/parasitologia , Hemoglobinas/metabolismo , Humanos , Plasmodium/efeitos dos fármacos
13.
Zhongguo Zhong Yao Za Zhi ; 43(20): 4019-4026, 2018 Oct.
Artigo em Zh | MEDLINE | ID: mdl-30486525

RESUMO

Ferroptosis is a new form of regulated cell death which is different from apoptosis, necrosis and autophagy, and results from iron-dependent lipidperoxide accumulation. Now, it is found that ferroptosis is involved in multiple physiological and pathological processes, such as cancer, arteriosclerosis, neurodegenerative diseases, diabetes, antiviral immune response, acute renal failure, hepatic and heart ischemia/reperfusion injury. On the one hand, it could be found the appropriate drugs to promote ferroptosis to clear cancer cells and virus infected cells, etc. On the other hand, we could inhibit ferroptosis to protect healthy cells. China has a wealth of traditional Chinese medicine resources. Chinese medicine contains a variety of active ingredients that regulate ferroptosis. Here, this paper reported the research of ferroptosis pathway, targets of its inducers and inhibitors that have been discovered, and the regulatory effects of the discovered Chinese herbs and its active ingredients on ferroptosis to help clinical and scientific research.


Assuntos
Apoptose , Medicamentos de Ervas Chinesas/farmacologia , Ferro , Materia Medica/farmacologia , China , Humanos
14.
Zhongguo Zhong Yao Za Zhi ; 41(12): 2315-2320, 2016 Jun.
Artigo em Zh | MEDLINE | ID: mdl-28901079

RESUMO

The main objective of this research is to observe protective effects of three phenylallyl compounds(cinnamyl alcohol,cinnamaldehyde and cinnamic acid)from Guizhi decoction against ox-LDL-induced oxidative stress injury on human brain microvascular endothelial cells(HBMEC).In this study,the toxicity and optimal protective concentration of three phenylallyl compounds from Guizhi decoction were determined by MTT assay.The HBMEC were divided into control group(DMSO),model group(ox-LDL),tert-butylhydroquinone (t-BHQ) group,cinnamyl alcohol group, cinnamaldehyde group and cinnamic acid group.The model group were treated with ox-LDL (50 mg•L⁻¹)for 24 h,other groups were separately treated with t-BHQ, cinnamyl alcohol, cinnamaldehyde and cinnamic acid of 20 µmol•L⁻¹, and exposed to ox-LDL (50 mg•L⁻¹) for 24 h at the same time.The survival rate of HBMEC was detected by MTT assay,reactive oxygen species(ROS) production of injured cells were detected using laser scanning confocal microscope (LSCM),the content of SOD, MDA, eNOS and NO in HBMEC was determined by ELISA, and the expressions of Nrf2 mRNA were detected by quantitative Real-time PCR(qRT-PCR).The results shows that oxidative stress injury of HBMEC could be induced by ox-LDL, the three phenylallyl compounds from Guizhi decoction did not affect morphology and viability of normal HBMEC.Compared with model group, the three phenylallyl compounds from Guizhi decoction could improve the above oxidative stress status and up-regulate Nrf2 mRNA expressions in injured HBMEC(P<0.05, P<0.01) .These findings suggested that the three phenylallyl compounds from Guizhi decoction have certain protective effects against ox-LDL-induced oxidative stress injury on HBMEC(cinnamaldehyde> t-BHQ> cinnamic acid>cinnamyl alcohol),the protective mechanism maybe related to regulation of antioxidant enzymes gene expression in HBMEC by Nrf2.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais/efeitos dos fármacos , Lipoproteínas LDL/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Encéfalo/citologia , Células Cultivadas , Humanos
15.
Int J Biol Macromol ; 256(Pt 1): 128333, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007022

RESUMO

Viruses have developed superior strategies to escape host defenses or exploit host components and enable their infection. The forkhead box transcription factor O family proteins (FOXOs) are reportedly utilized by human cytomegalovirus during their reactivation in mammals, but if FOXOs are exploited by viruses during their infection remains unclear. In the present study, we found that the FOXO of kuruma shrimp (Marsupenaeus japonicus) was hijacked by white spot syndrome virus (WSSV) during infection. Mechanistically, the expression of leucine carboxyl methyl transferase 1 (LCMT1) was up-regulated during the early stages of WSSV infection, which activated the protein phosphatase 2A (PP2A) by methylation, leading to dephosphorylation of FOXO and translocation into the nucleus. The FOXO directly promoted transcription of the immediate early gene, wsv079 of WSSV, which functioned as a transcriptional activator to initiate the expression of viral early and late genes. Thus, WSSV utilized the host LCMT1-PP2A-FOXO axis to promote its replication during the early infection stage. We also found that, during the late stages of WSSV infection, the envelope protein of WSSV (VP26) promoted PP2A activity by directly binding to FOXO and the regulatory subunit of PP2A (B55), which further facilitated FOXO dephosphorylation and WSSV replication via the VP26-PP2A-FOXO axis in shrimp. Overall, this study reveals novel viral strategies by which WSSV hijacks host LCMT1-PP2A-FOXO or VP26-PP2A-FOXO axes to promote its propagation, and provides clinical targets for WSSV control in shrimp aquaculture.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Humanos , Vírus da Síndrome da Mancha Branca 1/genética , Proteína Fosfatase 2 , Fatores de Transcrição , Mamíferos
16.
Small Methods ; 8(3): e2301479, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009499

RESUMO

Nanomaterials are increasingly being employed for biomedical applications, necessitating a comprehensive understanding of their degradation behavior and potential toxicity in the biological environment. This study utilizes a continuous flow system to simulate the biologically relevant degradation conditions and investigate the effects of pH, protein, redox species, and chelation ligand on the degradation of iron oxide nanoparticles. The morphology, aggregation state, and relaxivity of iron oxide nanoparticles after degradation are systematically characterized. The results reveal that the iron oxide nanoparticles degrade at a significantly higher rate under the acidic environment. Moreover, incubation with bovine serum albumin enhances the stability and decreases the dissolution rate of iron oxide nanoparticles. In contrast, glutathione accelerates the degradation of iron oxide nanoparticles, while the presence of sodium citrate leads to the fastest degradation. This study reveals that iron oxide nanoparticles undergo degradation through various mechanisms in different biological microenvironments. Furthermore, the dissolution and aggregation of iron oxide nanoparticles during degradation significantly impact their relaxivity, which has implications for their efficacy as magnetic resonance imaging contrast agents in vivo. The results provide valuable insights for assessing biosafety and bridge the gap between fundamental research and clinical applications of iron oxide nanoparticles.


Assuntos
Meios de Contraste , Compostos Férricos , Compostos Férricos/química , Meios de Contraste/química , Citrato de Sódio , Nanopartículas Magnéticas de Óxido de Ferro
17.
Cancer Chemother Pharmacol ; 93(5): 411-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191768

RESUMO

BACKGROUND: Artemisinin (ART) and its derivatives are important antimalaria agents and have received increased attention due to their broad biomedical effects, such as anticancer and anti-inflammation activities. Recently, ruthenium-derived complexes have attracted considerable attention as their anticancer potentials were observed in preclinical and clinical studies. METHODS: To explore an innovative approach in colorectal cancer (CRC) management, we synthesized ruthenium-dihydroartemisinin complex (D-Ru), a novel metal-based artemisinin derivative molecule, and investigated its anticancer, anti-inflammation, and adaptive immune regulatory properties. RESULTS: Compared with its parent compound, ART, D-Ru showed stronger antiproliferative effects on the human CRC cell lines HCT-116 and HT-29. The cancer cell inhibition of D-Ru comprised G1 cell cycle arrest via the downregulation of cyclin A and the induction of apoptosis. ART and D-Ru downregulated the expressions of pro-inflammatory cytokines IL-1ß, IL-6, and IL-8. Although ART and D-Ru did not suppress Treg cell differentiation, they significantly inhibited Th1 and Th17 cell differentiation. CONCLUSIONS: Our results demonstrated that D-Ru, a novel ruthenium complexation of ART, remarkably enhanced its parent compound's anticancer action, while the anti-inflammatory potential was not compromised. The molecular mechanisms of action of D-Ru include inhibition of cancer cell growth via cell cycle arrest, induction of apoptosis, and anti-inflammation via regulation of adaptive immunity.


Assuntos
Apoptose , Artemisininas , Neoplasias do Colo , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Artemisininas/farmacologia , Artemisininas/química , Apoptose/efeitos dos fármacos , Neoplasias do Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacos , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HCT116 , Células HT29 , Animais , Citocinas/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Camundongos
18.
Nat Commun ; 15(1): 2163, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461299

RESUMO

Recent development of new immune checkpoint inhibitors has been particularly successfully in cancer treatment, but still the majority patients fail to benefit. Converting resistant tumors to immunotherapy sensitive will provide a significant improvement in patient outcome. Here we identify Mi-2ß as a key melanoma-intrinsic effector regulating the adaptive anti-tumor immune response. Studies in genetically engineered mouse melanoma models indicate that loss of Mi-2ß rescues the immune response to immunotherapy in vivo. Mechanistically, ATAC-seq analysis shows that Mi-2ß controls the accessibility of IFN-γ-stimulated genes (ISGs). Mi-2ß binds to EZH2 and promotes K510 methylation of EZH2, subsequently activating the trimethylation of H3K27 to inhibit the transcription of ISGs. Finally, we develop an Mi-2ß-targeted inhibitor, Z36-MP5, which reduces Mi-2ß ATPase activity and reactivates ISG transcription. Consequently, Z36-MP5 induces a response to immune checkpoint inhibitors in otherwise resistant melanoma models. Our work provides a potential therapeutic strategy to convert immunotherapy resistant melanomas to sensitive ones.


Assuntos
DNA Helicases , Proteína Potenciadora do Homólogo 2 de Zeste , Evasão da Resposta Imune , Melanoma , Animais , Humanos , Camundongos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Evasão da Resposta Imune/genética , Melanoma/tratamento farmacológico , Metilação , DNA Helicases/genética , DNA Helicases/metabolismo
19.
Zhonghua Gan Zang Bing Za Zhi ; 21(6): 425-8, 2013 Jun.
Artigo em Zh | MEDLINE | ID: mdl-24034842

RESUMO

OBJECTIVE: To investigate the association of single nucleotide polymorphisms (SNPs) in the interleukin 17 (IL-17) gene and serum protein levels in patients with chronic hepatitis C virus (HCV) infection. METHODS: A total of 228 patients with chronic HCV infection and 81 healthy controls were enrolled in the study. The frequencies of IL-17 rs8193036 and rs2275913 polymorphisms were detected by the TaqMan SNP genotyping assay. Serum levels of IL-17 protein were detected by ELISA. Pairwise comparisons were made by the Chi-square test, and the significance of between-group differences was assessed by the Student's t-test with P less than 0.05. RESULTS: The patients with chronic HCV infection and the healthy controls showed similar frequencies of the rs8193036 C/T allele (x2 = 1.428, P = 0.232) and the rs2275913 A/G allele (x2 = 0.106, P = 0.744). In addition, the two groups showed similar distribution of the rs8193036 CC (chronic HCV infection: 46.49% vs. healthy controls: 41.98%), CT (45.61% vs. 44.44%) and TT (7.89% vs. 13.58%) genotypes (x2 = 2.346, P = 0.309), and of the rs2275913 AA (16.23% vs. 13.58%), AG (48.25% vs. 50.62%) and GG (35.53% vs. 35.80%) genotypes (x2 = 0.340, P = 0.844). Subgroup analysis of chronic HCV infection patients stratified according to HCV genotypes 1 and 2 showed no differences in the distribution of rs8193036 and rs2275913 alleles (x2 = 1.127, P = 0.288; x2 = 1.088, P = 0.297) and genotypes (x2 = 2.825, P = 0.246; x2 = 0.970, P = 0.616). However, the chronic HCV infection group did show significantly higher levels of serum IL-17 than the controls (97.67+/-39.68 vs. 71.60+/-19.78 pg/ml, t = 2.414, P = 0.033). CONCLUSION: Chronic HCV infection is associated with increased serum IL-17; however, the IL-17 polymorphisms rs8193036 and rs2275913 were not associated with chronic HCV infection susceptibility in this study's Chinese cohort.


Assuntos
Hepatite C Crônica/genética , Interleucina-17/sangue , Interleucina-17/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Alelos , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Hepacivirus , Hepatite C Crônica/sangue , Hepatite C Crônica/virologia , Humanos , Pessoa de Meia-Idade , Adulto Jovem
20.
Medicine (Baltimore) ; 102(7): e32884, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800610

RESUMO

Transurethral enucleation and resection of prostate (TUERP), as one of the conventional surgical methods for patients with benign prostatic hyperplasia (BPH), usually resulted in pseudo urinary incontinence after surgery. The present study was thereby conducted to evaluate the feasibility of anterior lobe-preserving transurethral enucleation and resection of prostate (ALP-TUERP) on reducing the incidence rate of urinary incontinence after surgery in patients with BPH. Patients diagnosed with BPH underwent surgical treatment were enrolled in the present study within the inclusion criteria. Characteristics including age, prostate volume (before surgery), PSA level, maximum free flow rate, international prostate symptom score, and quality of life were reviewed and compared between the groups of ALP-TUERP and TUERP. Incidence rate of urinary incontinence on 24 hours, 3 days, 7 days, and 14 days after catheter drawing was deemed as main outcome, which was compared between the groups. In addition, secondary outcomes including surgery time, difference value of hemoglobin before and after surgery (∆Hemoglobin), catheter retaining time, catheter flushing time, and incidence rate of recurrent bleeding were also compared between the groups. There were 81 patients included in the present study within the inclusion criteria. There was no statistical difference on the baseline characteristics including age, prostate volume (before surgery), PSA level, maximum free flow rate (before surgery), international prostate symptom score, or quality of life between the 2 groups. Statistical superiority was observed on the incidence rate of urinary incontinence on day 1 (χ2 = 9.375, P = .002), and day 3 (χ2 = 4.046, P = .044) in the group ALP-TUERP, when comparing to group TUERP. However, the difference was not observed anymore after 7 days after catheter drawing (P = .241 for day 7, P = .494 for day 14) between them. In addition, no statistical differences were observed on surgery time, difference value of hemoglobin before and after surgery (∆Hemoglobin), catheter retaining time, or catheter flushing time between the group ALP-TUERP and TUERP (all P > .05). Results of the present study demonstrated a potentially statistical superiority of ALP-TUERP on the reduction of incidence rate of urinary incontinence comparing to conventionally TUERP.


Assuntos
Hiperplasia Prostática , Ressecção Transuretral da Próstata , Incontinência Urinária , Humanos , Masculino , Estudos de Viabilidade , Próstata/cirurgia , Antígeno Prostático Específico , Hiperplasia Prostática/complicações , Hiperplasia Prostática/cirurgia , Hiperplasia Prostática/diagnóstico , Qualidade de Vida , Estudos Retrospectivos , Ressecção Transuretral da Próstata/métodos , Resultado do Tratamento , Incontinência Urinária/epidemiologia , Incontinência Urinária/etiologia , Incontinência Urinária/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA