RESUMO
To comprehensively evaluate the quality of commercial Ginseng Radix et Rhizoma Rubra, 43 batches of commercial Ginseng Radix et Rhizoma Rubra were collected to determine the content of nine ginsenosides Rg_1, Re, Rb_1, Rk_3, Rh_4, 20(S)-Rg_3, 20(R)-Rg_3, Rk_1, and Rg_5 by high performance liquid chromatography(HPLC). The quality of the commercial Ginseng Radix et Rhizoma Rubra was evaluated by correlation analysis, principal component analysis, factor analysis, analysis of variance(ANOVA), and cluster heatmap analysis. The content determination indicated that the content of common ginsenosides in commercial Ginseng Radix et Rhizoma Rubra were higher while that of rare ginsenosides were lower. Multivariate statistical analysis revealed that ginsenosides Rg_1 and Rb_1 were significantly positively correlated with rare ginsenosides, and Rg_1, Rb_1 and rare ginsenosides played an important role in evaluating the quality of commercial Ginseng Radix et Rhizoma Rubra. In combination with the processing principle and current quality situation of Ginseng Radix et Rhizoma Rubra, it is recommended to improve the content limit of Rb_1 in the existing quality standards.
Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Panax , Ginsenosídeos/análise , Rizoma/química , Raízes de Plantas/química , Cromatografia Líquida de Alta PressãoRESUMO
Background: Alzheimer's Disease (AD) and Type 2 Diabetes Mellitus (DM) have an increased incidence in modern society. Although more and more evidence has supported that DM is prone to AD, the interrelational mechanisms remain fully elucidated. Purpose: The primary purpose of this study is to explore the shared pathophysiological mechanisms of AD and DM. Methods: Download the expression matrix of AD and DM from the Gene Expression Omnibus (GEO) database with sequence numbers GSE97760 and GSE95849, respectively. The common differentially expressed genes (DEGs) were identified by limma package analysis. Then we analyzed the six kinds of module analysis: gene functional annotation, protein-protein interaction (PPI) network, potential drug screening, immune cell infiltration, hub genes identification and validation, and prediction of transcription factors (TFs). Results: The subsequent analyses included 339 common DEGs, and the importance of immunity, hormone, cytokines, neurotransmitters, and insulin in these diseases was underscored by functional analysis. In addition, serotonergic synapse, ovarian steroidogenesis, estrogen signaling pathway, and regulation of lipolysis are closely related to both. DEGs were input into the CMap database to screen small molecule compounds with the potential to reverse AD and DM pathological functions. L-690488, exemestane, and BMS-345541 ranked top three among the screened small molecule compounds. Finally, 10 essential hub genes were identified using cytoHubba, including PTGS2, RAB10, LRRK2, SOS1, EEA1, NF1, RAB14, ADCY5, RAPGEF3, and PRKACG. For the characteristic Aß and Tau pathology of AD, RAPGEF3 was associated significantly positively with AD and NF1 significantly negatively with AD. In addition, we also found ADCY5 and NF1 significant correlations with DM phenotypes. Other datasets verified that NF1, RAB14, ADCY5, and RAPGEF3 could be used as key markers of DM complicated with AD. Meanwhile, the immune cell infiltration score reflects the different cellular immune microenvironments of the two diseases. Conclusion: The common pathogenesis of AD and DM was revealed in our research. These common pathways and hub genes directions for further exploration of the pathogenesis or treatment of these two diseases.
RESUMO
The primary processed product of Panax ginseng C.A. Meyer (P. ginseng) is red ginseng. As technology advances, new products of red ginseng have arisen. Red ginseng products, e.g., traditional red ginseng, sun ginseng, black ginseng, fermented red ginseng, and puffed red ginseng, are commonly used in herbal medicine. Ginsenosides are the major secondary metabolites of P. ginseng. The constituents of P. ginseng are significantly changed during processing, and several pharmacological activities of red ginseng products are dramatically increased compared to white ginseng. In this paper, we aimed to review the ginsenosides and pharmacological activities of various red ginseng products, the transformation law of ginsenosides in processing, and some clinical trials of red ginseng products. This article will help to highlight the diverse pharmacological properties of red ginseng products and aid in the future development of red ginseng industrialization.