Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 248, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430229

RESUMO

Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV), is an acute and highly infectious disease, resulting in substantial economic losses in the pig industry. Given that PEDV primarily infects the mucosal surfaces of the intestinal tract, it is crucial to improve the mucosal immunity to prevent viral invasion. Lactic acid bacteria (LAB) oral vaccines offer unique advantages and potential applications in combatting mucosal infectious diseases, making them an ideal approach for controlling PED outbreaks. However, traditional LAB oral vaccines use plasmids for exogenous protein expression and antibiotic genes as selection markers. Antibiotic genes can be diffused through transposition, transfer, or homologous recombination, resulting in the generation of drug-resistant strains. To overcome these issues, genome-editing technology has been developed to achieve gene expression in LAB genomes. In this study, we used the CRISPR-NCas9 system to integrate the PEDV S1 gene into the genome of alanine racemase-deficient Lactobacillus paracasei △Alr HLJ-27 (L. paracasei △Alr HLJ-27) at the thymidylate synthase (thyA) site, generating a strain, S1/△Alr HLJ-27. We conducted immunization assays in mice and piglets to evaluate the level of immune response and evaluated its protective effect against PEDV through challenge tests in piglets. Oral administration of the strain S1/△Alr HLJ-27 in mice and piglets elicited mucosal, humoral, and cellular immune responses. The strain also exhibited a certain level of resistance against PEDV infection in piglets. These results demonstrate the potential of S1/△Alr HLJ-27 as an oral vaccine candidate for PEDV control. KEY POINTS: • A strain S1/△Alr HLJ-27 was constructed as the candidate for an oral vaccine. • Immunogenicity response and challenge test was carried out to analyze the ability of the strain. • The strain S1/△Alr HLJ-27 could provide protection for piglets to a certain extent.


Assuntos
Vírus da Diarreia Epidêmica Suína , Vacinas Virais , Animais , Suínos , Camundongos , Anticorpos Antivirais , Vírus da Diarreia Epidêmica Suína/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Antibacterianos
5.
Vaccines (Basel) ; 10(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36146587

RESUMO

Porcine rotavirus (PoRV) mainly causes acute diarrhea in piglets under eight weeks of age and has potentially high morbidity and mortality rates. As vaccine carriers for oral immunization, lactic acid bacteria (LAB) are an ideal strategy for blocking PoRV infections. However, the difficulty in knocking out specific genes, inserting foreign genes, and the residues of antibiotic selection markers are major challenges for the oral vaccination of LAB. In this study, the target gene, alanine racemase (alr), in the genome of Lactobacillus casei strain W56 (L. casei W56) was knocked out to construct an auxotrophic L. casei strain (L. casei Δalr W56) using the CRISPR-Cas9D10A gene editing system. A recombinant strain (pPG-alr-VP4/Δalr W56) was constructed using an electrotransformed complementary plasmid. Expression of the alr-VP4 fusion protein from pPG-alr-VP4/Δalr W56 was detected using Western blotting. Mice orally immunized with pPG-alr-VP4/Δalr W56 exhibited high levels of serum IgG and mucosal secretory immunoglobulin A (SIgA), which exhibited neutralizing effects against PoRV. Cytokines levels in serum detected using ELISA, indicated that the recombinant strain induced an immune response dominated by Th2 cells. Our data suggest that pPG-alr-VP4/Δalr W56, an antibiotic-resistance-free LAB, provides a safer vaccine strategy against PoRV infection.

6.
Virulence ; 13(1): 1315-1330, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35920261

RESUMO

Porcine rotavirus (PoRV) is an important pathogen, leading to the occurrence of viral diarrhoea . As the infection displays obvious enterotropism, intestinal mucosal immunity is the significant line of defence against pathogen invasion. Moreover, as lactic acid bacteria (LAB) show acid resistance, bile salt resistance and immune regulation, it is of great significance to develop an oral vaccine. Most traditional plasmid delivery vectors use antibiotic genes as selective markers, easily leading to antibiotic accumulation. Therefore, to select a food-grade marker in genetically engineering food-grade microorganisms is vital. Based on the CRISPR-Cas9D10A system, we constructed a stable auxotrophic Lactobacillus paracasei HLJ-27 (Lactobacillus △Alr HLJ-27) strain. In addition, as many plasmids replicate in the host bacteria, resulting in internal gene deletions. In this study,we used a temperature-sensitive gene editing plasmidto insert the VP4 gene into the genome, yielding the insertion mutant strains VP4/△Alr HLJ-27, VP4/△Alr W56, and VP4/W56. This recombinant bacterium efficiently induced secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses. These oral mucosal vaccines have the potential to act as an alternative to the application of antibiotics in the future and induce efficient immune responses against PEDV infection.


Assuntos
Proteínas do Capsídeo , Lactobacillus , Animais , Antibacterianos , Proteínas do Capsídeo/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Lactobacillus/genética , Rotavirus , Suínos
7.
Vaccines (Basel) ; 10(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35632454

RESUMO

Clostridium perfringens (C. perfringens) is a bacterium that commonly causes zoonotic disease. The pathogenicity of C. perfringens is a result of the combined action of α, ß, and ε exotoxins. In this study, Lactobacillus crispatus (pPG-T7g10/L. crispatus) expressing the main toxoids of C. perfringens, α, ε, ß1, and ß2, with EGFP-labeling, was constructed, and the protective effect was estimated in chickens. The α-ß2-ε-ß1 toxoid was constitutively expressed for confirmation by laser confocal microscopy and western blotting, and its immunogenicity was analyzed by enzyme-linked immunosorbent assay (ELISA) and immunohistochemical assays. After booster immunization, the probiotic vaccine group showed significantly higher levels (p < 0.05) of specific secretory IgA (sIgA) and IgY antibodies in the serum and intestinal mucus. Furthermore, the levels of cytokines, including interferon (IFN)-γ, interleukin (lL)-2, IL-4, IL-10, IL-12, and IL-17, and the proliferation of spleen lymphocytes in chickens orally immunized with pPG-E-α-ß2-ε-ß1/L. crispatus increased significantly. Histopathological observations showed that the intestinal pathological changes in chickens immunized with pPG-E-α-ß2ε-ß1/L. crispatus were significantly alleviated. These data reveal that the probiotic vaccine could stimulate mucosal, cellular, and humoral immunity and provide an active defense against the toxins of C. perfringens, suggesting a promising candidate for oral vaccines against C. perfringens.

8.
Viruses ; 14(5)2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35632632

RESUMO

Porcine epidemic diarrhea (PED), characterized by diarrhea, vomiting, and dehydration, is an acute enteric infectious disease of pigs. The disease is caused by porcine epidemic diarrhea virus (PEDV), which infects the intestinal mucosal surface. Therefore, mucosal immunization through the oral route is an effective method of immunization. Lactic acid bacteria, which are acid resistant and bile-salt resistant and improve mucosal immunity, are ideal carriers for oral vaccines. The S1 glycoprotein of PEDV mediates binding of the virus with cell receptors and induces neutralizing antibodies against the virus. Therefore, we reversely screened the recombinant strain pPG-SD-S1/Δupp ATCC 393 expressing PEDV S1 glycoprotein by Lactobacillus casei deficient in upp genotype (Δupp ATCC 393). Mice were orally immunized three times with the recombinant bacteria that had been identified for expression, and the changes of anti-PEDV IgG and secreted immunoglobulin A levels were observed over 70 days. The results indicated that the antibody levels notably increased after oral administration of recombinant bacteria. The detection of extracellular cytokines on the 42nd day after immunization indicated high levels of humoral and cellular immune responses in mice. The above results demonstrate that pPG-SD-S1/Δupp ATCC 393 has great potential as an oral vaccine against PEDV.


Assuntos
Infecções por Coronavirus , Lacticaseibacillus casei , Vírus da Diarreia Epidêmica Suína , Vacinas Virais , Animais , Anticorpos Antivirais , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Diarreia , Camundongos , Vírus da Diarreia Epidêmica Suína/genética , Suínos
9.
Vaccines (Basel) ; 9(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34696192

RESUMO

Porcine epidemic diarrhea (PED), which is caused by the porcine epidemic diarrhea virus (PEDV), has occurred worldwide and poses a serious threat to the pig industry. Intestine is the main function site of PEDV; therefore, it is important to develop an oral mucosal immunity vaccine against this virus infection. Most traditional plasmid delivery vectors use antibiotic genes as a selective marker, easily leading to antibiotic accumulation and gene contamination. In this study, to explore whether the alanine racemase gene (Alr) could be used as a screening marker and develop an efficient oral vaccine against PEDV infection, a recombinant strain was constructed using Lactobacillus casei with Alr deletion (L. casei ΔAlr W56) to deliver the Alr gene and a core-neutralizing epitope (COE) antigen. This recombinant bacterium efficiently induced secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in mice. Compared to the other strains, the recombinant bacteria were able to grow without the addition of D-alanine, revealing that Alr in the plasmid could function normally in defective bacteria. This oral mucosal vaccine would provide a useful strategy to substitute the application of antibiotics in the future and induce efficient immune responses against PEDV infection.

10.
Viruses ; 13(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34372508

RESUMO

Porcine circovirus type 2 (PCV2) causes many diseases in weaned piglets, leading to serious economic losses to the pig industry. This study investigated the immune response following oral administration of Lactobacillus casei ATCC393 (L. casei 393) expressing PCV2 capsid protein (Cap) fusion with the Escherichia coli heat-labile toxin B subunit (LTB) in mice. Recombinant L. casei strains were constructed using plasmids pPG611.1 and pPG612.1. The expression and localization of proteins from recombinant pPG611.1-Cap-LTB (pPG-1-Cap-LTB)/L. casei 393 and pPG612.1-Cap-LTB (pPG-2-Cap-LTB)/L. casei 393 were detected. All recombinant strains were found to be immunogenic by oral administration in mice and developed mucosal and systemic immune responses against PCV2. The titers of specific antibodies in mice administered pPG-2-Cap-LTB/L. casei 393 were higher than those in mice administered pPG-1-Cap-LTB/L. casei 393 in serum and the mucosal samples. The mucosal immune response was not only limited to the gastrointestinal tract but was also generated in other mucosal parts. Thus, the application of recombinant L. casei could aid in vaccine development for PCV2.


Assuntos
Anticorpos Antivirais/sangue , Proteínas do Capsídeo/genética , Circovirus/genética , Imunidade nas Mucosas , Imunização/métodos , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/imunologia , Administração Oral , Animais , Formação de Anticorpos , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes , Suínos , Desenvolvimento de Vacinas/métodos
11.
Virulence ; 11(1): 669-685, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32471322

RESUMO

Porcine epidemic diarrhea virus (PEDV) is the causative agent of porcine epidemic diarrhea, causing substantial economic losses to the swine industry worldwide. However, the development of PEDV vaccine is hampered by its low propagation titer in vitro, due to difficulty in adapting to the cells and complex culture conditions, even in the presence of trypsin. Furthermore, the frequent variation, recombination, and evolution of PEDV resulted in reemergence and vaccination failure. In this study, we established the Vero/TMPRSS2 and Vero/MSPL cell lines, constitutively expressing type II transmembrane serine protease TMPRSS2 and MSPL, in order to increase the stability and titer of PEDV culture and isolation in vitro. Our study revealed that the Vero/TMPRSS2, especially Vero/MSPL cell lines, can effectively facilitate the titer and multicycle replication of cell-adapted PEDV in the absence of exogenous trypsin, by cleaving and activating PEDV S protein. Furthermore, our results also highlighted that Vero/TMPRSS2 and Vero/MSPL cells can significantly enhance the isolation of PEDV from the clinical tissue samples as well as promote viral infection and replication by cell-cell fusion. The successful construction of the Vero/TMPRSS2 and Vero/MSPL cell lines provides a useful approach for the isolation and propagation of PEDV, simplification of virus culture, and large-scale production of industrial vaccine, and the cell lines are also an important system to research PEDV S protein cleaved by host protease.


Assuntos
Meios de Cultura/química , Proteínas de Membrana/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , Serina Endopeptidases/genética , Células Vero , Cultura de Vírus/métodos , Animais , Chlorocebus aethiops , Expressão Gênica , Células HEK293 , Humanos , Suínos , Tripsina
12.
Viruses ; 12(3)2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204464

RESUMO

Cats are becoming more popular as household companions and pets, forming close relationships with humans. Although feline viral diseases can pose serious health hazards to pet cats, commercialized preventative vaccines are lacking. Interferons (IFNs), especially type I IFNs (IFN-α, IFN-ß, and interferon omega (IFN-ω)), have been explored as effective therapeutic drugs against viral diseases in cats. Nevertheless, there is limited knowledge regarding feline IFN-ω (feIFN-ω), compared to IFN-α and IFN-ß. In this study, we cloned the genes encoding feIFN-ωa and feIFN-ωb from cat spleen lymphocytes. Homology and phylogenetic tree analysis revealed that these two genes belonged to new subtypes of feIFN-ω. The recombinant feIFN-ωa and feIFN-ωb proteins were expressed in their soluble forms in Escherichia coli, followed by purification. Both proteins exhibited effective anti-vesicular stomatitis virus (VSV) activity in Vero, F81 (feline kidney cell), Madin-Darby bovine kidney (MDBK), Madin-Darby canine kidney (MDCK), and porcine kidney (PK-15) cells, showing broader cross-species antiviral activity than the INTERCAT IFN antiviral drug. Furthermore, the recombinant feIFN-ωa and feIFN-ωb proteins demonstrated antiviral activity against VSV, feline coronavirus (FCoV), canine parvovirus (CPV), bovine viral diarrhea virus (BVDV), and porcine epidemic diarrhea virus (PEDV), indicating better broad-spectrum antiviral activity than the INTERCAT IFN. The two novel feIFN-ω proteins (feIFN-ωa and feIFN-ωb) described in this study show promising potential to serve as effective therapeutic agents for treating viral infections in pet cats.


Assuntos
Antivirais/farmacologia , Interferon Tipo I/genética , Interferon Tipo I/farmacologia , Sequência de Aminoácidos , Animais , Antivirais/isolamento & purificação , Sequência de Bases , Gatos , Bovinos , Linhagem Celular , Chlorocebus aethiops , Clonagem Molecular , Cães , Escherichia coli/genética , Escherichia coli/metabolismo , Interferon Tipo I/química , Interferon Tipo I/metabolismo , Filogenia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Suínos , Células Vero , Vírus/classificação , Vírus/efeitos dos fármacos
13.
Vaccines (Basel) ; 7(4)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835572

RESUMO

Canine distemper virus (CDV) elicits a severe contagious disease in a broad range of hosts. CDV mortality rates are 50% in domestic dogs and 100% in ferrets. Its primary infection sites are respiratory and intestinal mucosa. This study aimed to develop an effective mucosal CDV vaccine using a non-antibiotic marked probiotic pPGΔCm-T7g10-EGFP-H/L. casei 393 strain expressing the CDV H protein. Its immunogenicity in BALB/c mice was evaluated using intranasal and oral vaccinations, whereas in dogs the intranasal route was used for vaccination. Our results indicate that this probiotic vaccine can stimulate a high level of secretory immunoglobulin A (sIgA)-based mucosal and IgG-based humoral immune responses in mice. SIgA levels in the nasal lavage and lungs were significantly higher in intranasally vaccinated mice than those in orally vaccinated mice. Both antigen-specific IgG and sIgA antibodies were effectively elicited in dogs through the intranasal route and demonstrated superior immunogenicity. The immune protection efficacy of the probiotic vaccine was evaluated by challenging the immunized dogs with virulent CDV 42 days after primary immunization. Dogs of the pPGΔCm-T7g10-EGFP-H/L. casei 393 group were completely protected against CDV. The proposed probiotic vaccine could be promising for protection against CDV infection in dogs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA