Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(4): 460-470, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33767425

RESUMO

Targeting the p53-MDM2 pathway to reactivate tumor p53 is a chemotherapeutic approach. However, the involvement of this pathway in CD8+ T cell-mediated antitumor immunity is unknown. Here, we report that mice with MDM2 deficiency in T cells exhibit accelerated tumor progression and a decrease in tumor-infiltrating CD8+ T cell survival and function. Mechanistically, MDM2 competes with c-Cbl for STAT5 binding, reduces c-Cbl-mediated STAT5 degradation and enhances STAT5 stability in tumor-infiltrating CD8+ T cells. Targeting the p53-MDM2 interaction with a pharmacological agent, APG-115, augmented MDM2 in T cells, thereby stabilizing STAT5, boosting T cell immunity and synergizing with cancer immunotherapy. Unexpectedly, these effects of APG-115 were dependent on p53 and MDM2 in T cells. Clinically, MDM2 abundance correlated with T cell function and interferon-γ signature in patients with cancer. Thus, the p53-MDM2 pathway controls T cell immunity, and targeting this pathway may treat patients with cancer regardless of tumor p53 status.


Assuntos
Linfócitos T CD8-Positivos/enzimologia , Linfócitos do Interstício Tumoral/enzimologia , Neoplasias/enzimologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Imunoterapia Adotiva , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/transplante , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/genética , Fator de Transcrição STAT5/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Nature ; 569(7755): 270-274, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043744

RESUMO

Cancer immunotherapy restores or enhances the effector function of CD8+ T cells in the tumour microenvironment1,2. CD8+ T cells activated by cancer immunotherapy clear tumours mainly by inducing cell death through perforin-granzyme and Fas-Fas ligand pathways3,4. Ferroptosis is a form of cell death that differs from apoptosis and results from iron-dependent accumulation of lipid peroxide5,6. Although it has been investigated in vitro7,8, there is emerging evidence that ferroptosis might be implicated in a variety of pathological scenarios9,10. It is unclear whether, and how, ferroptosis is involved in T cell immunity and cancer immunotherapy. Here we show that immunotherapy-activated CD8+ T cells enhance ferroptosis-specific lipid peroxidation in tumour cells, and that increased ferroptosis contributes to the anti-tumour efficacy of immunotherapy. Mechanistically, interferon gamma (IFNγ) released from CD8+ T cells downregulates the expression of SLC3A2 and SLC7A11, two subunits of the glutamate-cystine antiporter system xc-, impairs the uptake of cystine by tumour cells, and as a consequence, promotes tumour cell lipid peroxidation and ferroptosis. In mouse models, depletion of cystine or cysteine by cyst(e)inase (an engineered enzyme that degrades both cystine and cysteine) in combination with checkpoint blockade synergistically enhanced T cell-mediated anti-tumour immunity and induced ferroptosis in tumour cells. Expression of system xc- was negatively associated, in cancer patients, with CD8+ T cell signature, IFNγ expression, and patient outcome. Analyses of human transcriptomes before and during nivolumab therapy revealed that clinical benefits correlate with reduced expression of SLC3A2 and increased IFNγ and CD8. Thus, T cell-promoted tumour ferroptosis is an anti-tumour mechanism, and targeting this pathway in combination with checkpoint blockade is a potential therapeutic approach.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ferroptose , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Cisteína/metabolismo , Feminino , Ferroptose/efeitos dos fármacos , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Humanos , Interferon gama/imunologia , Peroxidação de Lipídeos , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/terapia , Camundongos , Neoplasias/metabolismo , Nivolumabe/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento
3.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602822

RESUMO

Meiosis is a specialized cell division that creates haploid germ cells from diploid progenitors. Through differential RNA expression analyses, we previously identified a number of mouse genes that were dramatically elevated in spermatocytes, relative to their very low expression in spermatogonia and somatic organs. Here, we investigated in detail 1700102P08Rik, one of these genes, and independently conclude that it encodes a male germline-specific protein, in agreement with a recent report. We demonstrated that it is essential for pachynema progression in spermatocytes and named it male pachynema-specific (MAPS) protein. Mice lacking Maps (Maps-/- ) suffered from pachytene arrest and spermatocyte death, leading to male infertility, whereas female fertility was not affected. Interestingly, pubertal Maps-/- spermatocytes were arrested at early pachytene stage, accompanied by defects in DNA double-strand break (DSB) repair, crossover formation, and XY body formation. In contrast, adult Maps-/- spermatocytes only exhibited partially defective crossover but nonetheless were delayed or failed in progression from early to mid- and late pachytene stage, resulting in cell death. Furthermore, we report a significant transcriptional dysregulation in autosomes and XY chromosomes in both pubertal and adult Maps-/- pachytene spermatocytes, including failed meiotic sex chromosome inactivation (MSCI). Further experiments revealed that MAPS overexpression in vitro dramatically decreased the ubiquitination levels of cellular proteins. Conversely, in Maps-/- pachytene cells, protein ubiquitination was dramatically increased, likely contributing to the large-scale disruption in gene expression in pachytene cells. Thus, MAPS is a protein essential for pachynema progression in male mice, possibly in mammals in general.


Assuntos
Infertilidade Masculina/patologia , Meiose , Proteínas Nucleares/fisiologia , Estágio Paquíteno , Espermatócitos/patologia , Espermatogênese , Animais , Pareamento Cromossômico , Reparo do DNA , Feminino , Infertilidade Masculina/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cromossomos Sexuais , Espermatócitos/metabolismo
4.
Anal Chem ; 95(51): 18709-18718, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38018128

RESUMO

Amino acids (AAs), which are low-molecular-weight (low-MW) metabolites, serve as essential building blocks not only for protein synthesis but also for maintaining the nitrogen balance in living systems. In situ detection and imaging of AAs are crucial for understanding more complex biological processes. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a label-free mass spectrometric imaging technique that enables the simultaneous detection and imaging of the spatial distribution and relative abundance of different endogenous/exogenous compounds in biological samples. The excellent efficiency of MALDI-MSI is attributed to the choice of the MALDI matrix. However, to the best of our knowledge, no matrix has been specifically developed for AAs. Herein, we report a MALDI matrix, 2,5-dihydroxyterephthalic acid (DHT), which can improve the detection and imaging of AAs in biological samples by MALDI-MS. Our results indicated that DHT exhibited strong ultraviolet-visible (UV-vis) absorption, uniform matrix deposition, and high vacuum stability. Moreover, the matrix-related ion signals produced from DHT were reduced by 50 and 71.8% at m/z < 500 compared to the commonly used matrices of 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA), respectively, in their respective organic solvents. In terms of quantitative performance, arginine, glutamic acid, glutamine, and proline can be detected with limits of detection of 6, 4, 6, and 4 ng/mL, respectively, using the DHT as the matrix. Using DHT as the matrix, all 20 protein AAs were successfully detected in human serum by MALDI-MS, whereas only 7 and 10 AAs were detected when DHB and CHCA matrices were used, respectively. Furthermore, 20 protein AAs and taurine were successfully detected and imaged in a section of edible Crassostrea gigas (oyster) tissue for the first time. Our study demonstrates that using DHT as a matrix can improve the detection and imaging of AAs in biological samples by MALDI-MS.


Assuntos
Aminoácidos , Diagnóstico por Imagem , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ácido Glutâmico
5.
Invest New Drugs ; 41(3): 438-452, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37097369

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide. Combination of drugs targeting independent signaling pathways would effectively block the proliferation of cancer cells with lower concentrations and stronger synergy effects. Dasatinib, a multi-targeted protein tyrosine kinase inhibitor targeting BCR-ABL and kinases of SRC family, has been successfully applied in the treatment of chronic myeloid leukemia (CML). BMS-754807, an inhibitor targeting the insulin-like growth factor 1 receptor (IGF-IR) and insulin receptor (IR) family kinases, has been in phase I development for the treatment of a variety of human cancers. Herein, we demonstrated that dasatinib in combination with BMS-754807 inhibited lung cancer cell growth, while induced autophagy as well as cell cycle arrest at the G1 phase. Dasatinib in combination with BMS-754807 suppressed the expression of cell cycle marker proteins, Rb, p-Rb, CDK4, CDK6 and Cyclin D1, and the PI3K/Akt/mTOR signaling pathway. Dasatinib in combination with BMS-754807 induced autophagy in lung cancer cells, evidenced by the upregulation of LC3B II and beclin-1, the downregulation of LC3B I and SQSTM1/p62, and the autophagic flux observed with a confocal fluorescence microscopy. Furthermore, dasatinib (18 mg/kg) in combination with BMS-754807 (18 mg/kg) inhibited the growth of tumors in NCI-H3255 xenografts without changing the bodyweight. Overall, our results suggest that dasatinib in combination with BMS-754807 inhibits the lung cancer cell proliferation in vitro and tumor growth in vitro, which indicates promising evidence for the application of the drug combination in lung cancer therapy.


Assuntos
Neoplasias Pulmonares , Fosfatidilinositol 3-Quinases , Humanos , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Tiazóis/farmacologia , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proliferação de Células , Pontos de Checagem do Ciclo Celular , Fase G1 , Autofagia , Apoptose , Linhagem Celular Tumoral
6.
Analyst ; 148(4): 823-831, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36637134

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a powerful approach that has been widely used for in situ detection of various endogenous compounds in tissues. However, there are still challenges with in situ analysis of proteins using MALDI-MSI due to the ion suppression effects of small molecules in tissue sections. Therefore, tissue-washing steps are crucial for protein MALDI tissue imaging to remove these interfering molecules. Here, we successfully developed a new method named the concentration-descending washing strategy (CDWS) with methanol (MeOH), i.e., washing of biological tissue with 100%, 95%, and 70% MeOH solutions, for the enhancement of endogenous in situ protein detection and imaging in tissues using MALDI-MS. The method of MeOH-based CDWS (MeOH-CDWS) led to the successful in situ detection of 272 ± 3, 185 ± 4, and 134 ± 2 protein ion signals from rat liver, rat brain, and germinating Chinese-yew seed tissue sections, respectively. By comparison, 161 ± 2, 121 ± 1, and 114 ± 2 protein ions were detected by three commonly used methods, i.e., Carnoy's wash, ethanol (EtOH)-based CAWS (i.e., concentration-ascending washing strategy, 70% EtOH followed by 90% EtOH/9% AcOH), and isopropanol (iPrOH)-based CAWS (70% iPrOH followed by 95% iPrOH), respectively, in rat liver tissue sections, indicating that 68.9 ± 3.1%, 124.8 ± 3.3%, and 138.6 ± 4.4% more protein ion signals could be detected by the use of MeOH-CDWS than the three abovementioned washing strategies. Our results show that the use of MeOH-CDWS improves the performance of MALDI-MSI for in situ protein detection such as the number and intensity of proteins. The use of MeOH-CDWS improves the fixation of proteins and thus reduces the loss of proteins, which significantly reduces protein delocalization in tissue and enhances the performance of MALDI tissue imaging of protein. Thus, the use of MeOH-CDWS improves the quality of protein images in tissue sections through MALDI-MSI and has the potential to be used as standard practice for MALDI tissue imaging of proteins.


Assuntos
Metanol , Proteínas , Ratos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Diagnóstico por Imagem , Sementes
7.
Inorg Chem ; 62(37): 14912-14921, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37667503

RESUMO

By the combination of N,N'-bis(carboxymethyl)-pyromellitic diimide (H2CMPMD, 1) and zinc ions, a novel PMD-based coordination polymer (CP), [Zn(CMPMD)(DMF)1.5]·0.5DMF (2) (DMF = N,N'-dimethylformamide), has been prepared and characterized. 1 and 2 exhibit completely different photochromic properties, which are mainly reflected in the photoresponsive rate (5 s for 1 vs 1 s for 2) and coloration contrast (from colorless to light green for 1 vs green for 2). This phenomenon should be attributed to the introduction of zinc ions and the consequent formation of the distinct interfacial contacts of electron donors (EDs) and electron acceptors (EAs) (dn-π = 3.404 and 3.448 Å for 1 vs dn-π = 3.343, 3.359, 3.398, and 3.495 Å for 2), suggesting a subtle modulating effect of metal ions on interfacial contacts, photoinduced intermolecular electron transfer (PIET) and photochromic behaviors. Interestingly, the photochromic performance of 2 can be enhanced after the removal of coordinated DMF, which might be ascribed to the decrease of the distance of EDs/EAs caused by lattice shrinkage, which further improves the efficiency of PIET. Meanwhile, 2 displays rapid electrochromic behavior with an obvious reversible color change from colorless to green, which can be used in an electrochromic device. This work develops a new type of EA for the construction of stimuli-responsive functional materials with excellent dual photo-/electrochromic properties.

8.
Inorg Chem ; 61(17): 6403-6410, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35426305

RESUMO

Various arylenediimides (ADIs) have been applied to construct photoresponsive coordination polymers (CPs), while the size effect of ADI π-conjugate systems on the photoresponsive behaviors in CPs has been overlooked in the past few years. Herein, we emphasize the size effect of ADI π-conjugate systems on photoinduced electron transfer (ET) in CPs, taking two Eu3+-based CPs, [Eu(H2BINDI)(BINDI)0.5(H2O)2]·NH2(CH3)2·8H2O (1) and [Eu2(BIPMDI)(DMF)4(NO3)2]·H2O·2DMF (2) [H4BINDI = N,N'-bis(5-isophthalic acid)naphthalenediimide; H4BIPMDI = N,N'-bis(5-isophthalic acid)pyromellitic diimide; DMF = N,N-dimethylformamide], as a case. Both 1 and 2 display ET-based photochromic behaviors with distinct photoresponsive rates and coloration contrast, which can contribute to the size effect of diimide cores on the interfacial contacts of electron donors/acceptors. Meanwhile, ET between the neighboring larger NDI cores of the H4BINDI ligands can block ligand-to-metal charge transfer and quench luminescence of the Eu3+ metal center in 1. Therefore, this work will provide a theoretical basis for the development and exploration of photoresponsive materials.

9.
BMC Genomics ; 21(1): 699, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028229

RESUMO

BACKGROUND: Selenium is an essential trace element, and selenocysteine (Sec, U) is its predominant form in vivo. Proteins that contain Sec are selenoproteins, whose special structural features include not only the TGA codon encoding Sec but also the SECIS element in mRNA and the conservation of the Sec-flanking region. These unique features have led to the development of a series of bioinformatics methods to predict and research selenoprotein genes. There have been some studies and reports on the evolution and distribution of selenoprotein genes in prokaryotes and multicellular eukaryotes, but the systematic analysis of single-cell eukaryotes, especially algae, has been very limited. RESULTS: In this study, we predicted selenoprotein genes in 137 species of algae by using a program we previously developed. More than 1000 selenoprotein genes were obtained. A database website was built to record these algae selenoprotein genes ( www.selenoprotein.com ). These genes belong to 42 selenoprotein families, including three novel selenoprotein gene families. CONCLUSIONS: This study reveals the primordial state of the eukaryotic selenoproteome. It is an important clue to explore the significance of selenium for primordial eukaryotes and to determine the complete evolutionary spectrum of selenoproteins in all life forms.


Assuntos
Eucariotos , Selênio , Selenoproteínas , Códon de Terminação , Eucariotos/genética , Eucariotos/metabolismo , Evolução Molecular , Proteoma , Selenocisteína , Selenoproteínas/genética , Selenoproteínas/metabolismo
10.
BMC Cardiovasc Disord ; 20(1): 481, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176699

RESUMO

BACKGROUND: Keshan disease is an endemic cardiomyopathy of undefined causes. Being involved in the unclear pathogenesis of Keshan disease, a clear diagnosis, and effective treatment cannot be initiated. However, the rapid development of gut flora in cardiovascular disease combined with omics and big data platforms may promote the discovery of new diagnostic markers and provide new therapeutic options. This study aims to identify biomarkers for the early diagnosis and further explore new therapeutic targets for Keshan disease. METHODS: This cohort study consists of two parts. Though the first part includes 300 participants, however, recruiting will be continued for the eligible participants. After rigorous screening, the blood samples, stools, electrocardiograms, and ultrasonic cardiogram data would be collected from participants to elucidate the relationship between gut flora and host. The second part includes a prospective follow-up study for every 6 months within 2 years. Finally, deep mining of big data and rapid machine learning will be employed to analyze the baseline data, experimental data, and clinical data to seek out the new biomarkers to predict the pathogenesis of Keshan disease. DISCUSSION: Our study will clarify the distribution of gut flora in patients with Keshan disease and the abundance and population changes of gut flora in different stages of the disease. Through the big data platform analyze the relationship between environmental factors, clinical factors, and gut flora, the main factors affecting the occurrence of Keshan disease were identified, and the changed molecular pathways of gut flora were predicted. Finally, the specific gut flora and molecular pathways affecting Keshan disease were identified by metagenomics combined with metabonomic analysis. TRIAL REGISTRATION: ChiCTR1900026639. Registered on 16 October 2019.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Biomarcadores/metabolismo , Cardiomiopatias/microbiologia , Infecções por Enterovirus/microbiologia , Microbioma Gastrointestinal , Intestinos/microbiologia , Metabolômica , Metagenômica , Adolescente , Adulto , Idoso , Bactérias/classificação , Big Data , Cardiomiopatias/diagnóstico , Cardiomiopatias/virologia , Estudos de Casos e Controles , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Projetos de Pesquisa , Adulto Jovem
11.
Exp Cell Res ; 383(1): 111496, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31306654

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide, and there is currently no effective therapeutic strategy in clinical practice. Gene therapy has great potential for decreasing tumor-induced mortality but has been clinically limited because of the lack of tumor-specific targets and insufficient gene transfer. The study of targeted transport of therapeutic genes in HCC treatment seems to be very important. In this study, we evaluated a gene therapy approach targeting HCC using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system in HCC cell lines and in an in vivo human HCC xenograft mouse model. GP73-modified liposomes targeted gene delivery to the tumor tissue, and the survivin promoter drove HSVtk expression in the HCC cells. Our results showed that the survivin promoter was specifically activated in tumor cells and HSVtk was expressed selectively in tumor cells. Combined with GCV treatment, HSVtk expression resulted in suppression of HCC cell proliferation via enhancing apoptosis. Moreover, tail vein injection of GP73-HSVtk significantly suppressed the growth of xenograft tumors through an apoptosis-dependent pathway and extended the survival of tumor-bearing mice without damaging the mice liver functions. Taken together, this study demonstrates an effective cancer-specific gene therapy strategy using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system for HCC that can be further developed for future clinical trials.


Assuntos
Carcinoma Hepatocelular/terapia , Terapia Genética , Lipossomos/administração & dosagem , Neoplasias Hepáticas/terapia , Proteínas de Membrana/química , Survivina/genética , Timidina Quinase/genética , Animais , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Feminino , Ganciclovir/administração & dosagem , Vetores Genéticos/administração & dosagem , Humanos , Lipossomos/química , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Regiões Promotoras Genéticas , Simplexvirus/enzimologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Hepatology ; 68(4): 1361-1375, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29637572

RESUMO

Insulin is critical for the regulation of de novo fatty acid synthesis, which converts glucose to lipid in the liver. However, how insulin signals are transduced into the cell and then regulate lipogenesis remains to be fully understood. Here, we identified CREB/ATF bZIP transcription factor (CREBZF) of the activating transcription factor/cAMP response element-binding protein (ATF/CREB) gene family as a key regulator for lipogenesis through insulin-Akt signaling. Insulin-induced gene 2a (Insig-2a) decreases during refeeding, allowing sterol regulatory element binding protein 1c to be processed to promote lipogenesis; but the mechanism of reduction is unknown. We show that Insig-2a inhibition is mediated by insulin-induced CREBZF. CREBZF directly inhibits transcription of Insig-2a through association with activating transcription factor 4. Liver-specific knockout of CREBZF causes an induction of Insig-2a and Insig-1 and resulted in repressed lipogenic program in the liver of mice during refeeding or upon treatment with streptozotocin and insulin. Moreover, hepatic CREBZF deficiency attenuates hepatic steatosis in high-fat, high-sucrose diet-fed mice. Importantly, expression levels of CREBZF are increased in livers of diet-induced insulin resistance or genetically obese ob/ob mice and humans with hepatic steatosis, which may underscore the potential role of CREBZF in the development of sustained lipogenesis in the liver under selective insulin resistance conditions. CONCLUSION: These findings uncover an unexpected mechanism that couples changes in extracellular hormonal signals to hepatic lipid homeostasis; disrupting CREBZF function may have the therapeutic potential for treating fatty liver disease and insulin resistance. (Hepatology 2018).


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Resistência à Insulina/genética , Lipogênese/genética , Análise de Variância , Animais , Biópsia por Agulha , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Transdução de Sinais
13.
Opt Express ; 27(3): 2258-2267, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732265

RESUMO

We report for the first time on a closed-loop cycle narrow linewidth XeF(C-A) blue laser at a repetition rate of up to 10 Hz with each pulse energy of >1 J. A FWHM linewidth of less than 1.5 nm (minimum to 1.1 nm) with a highly stable wavelength centered at 488.3 nm was achieved by employing a polarization-independent custom-designed narrowband optical filter (NBOF) into the cavity. The pulse energy, as well as the repetition rate, to the best of our knowledge, is the highest ever reported in the narrow linewidth XeF(C-A) blue lasers at repetitively-pulsed mode.

14.
BMC Cancer ; 19(1): 1126, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747895

RESUMO

BACKGROUND: TAE-gene therapy for hepatoma, incorporating the tumor-targeted therapeutic efficacy of trans-arterial embolization, hydroxyapatite nanoparticles (nHAP) and anti-cancer wild-type p53 gene (wt-p53), was presented in our former studies (Int J Nanomedicine 8:3757-68, 2013, Liver Int 32:998-1007, 2012). However, the incompletely antitumoral effect entails defined guidelines on searching properer materials for this novel therapy. METHODS: Unmodified nHAP, Ca(2+) modified nHAP, poly-lysine modified nHAP and liposome were separately used to form U-nanoplex, Ca-nanoplex, Pll-nanoplex, L-nanoplex respectively with wt-p53 expressing plasmid. The four nanoplexs were then applied in vitro for human normal hepacyte L02 and hepatoma HePG2 cell line, and in vivo for rabbits with hepatic VX2 tumor by injection of nanoplexs/lipiodol emulsion into the hepatic artery in a tumor target manner. The distribution, superficial potential, physical structure, morphology and chemical compositions of nanoplexs were evaluated by TEM, SEM, EDS etc., with the objective of understanding their roles in hepatoma TAE-gene therapy. RESULTS: In vitro, L-nanoplex managed the highest gene transferring efficiency. Though with the second highest transfection activity, Pll-nanoplex showed the strongest tumor inhibition activity while maintaining safe to the normal hepacyte L02. In fact, only Pll-nanoplex can combine both the antitumoral effect to HePG2 and safe procedure to L02 among the four systems above. In vivo, being the only one with successful gene transference to hepatic VX2 tumor, Pll-nanoplex/lipiodol emulsion can target the tumor more specifically, which may explain its best therapeutic effect and hepatic biologic response. Further physical characterizations of the four nanoplexs suggested particle size and proper electronic organic surface may be crucial for nano-TAE gene therapy. CONCLUSION: Pll-nanoplex is the most proper system for the combined therapy due to its selectively retention in liver cancer cells, secondary to its morphological and physico-chemical properties of nanometric particle size, steady emulsion, proper organic and electronic surface.


Assuntos
Carcinoma Hepatocelular/terapia , Quimioembolização Terapêutica , Terapia Genética , Neoplasias Hepáticas/terapia , Proteína Supressora de Tumor p53/genética , Animais , Carcinoma Hepatocelular/diagnóstico , Quimioembolização Terapêutica/efeitos adversos , Quimioembolização Terapêutica/métodos , Emulsões , Óleo Etiodado/administração & dosagem , Feminino , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Humanos , Neoplasias Hepáticas/diagnóstico , Masculino , Nanopartículas , Coelhos , Nanomedicina Teranóstica
15.
Inorg Chem ; 58(20): 13969-13978, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31577144

RESUMO

A series of isomorphic lanthanide metal-organic frameworks (Ln-MOFs), {[Ln(L)(H2O)2]·5H2O}n (1-Ln, where Ln = Eu, Tb, Gd, and EuxTb1-x), have been synthesized by a rigid 1,3-bis(3,5-dicarboxyphenyl)imidazolium chloride (H4L+Cl-) ligand and Ln3+ ions via a solvothermal method. Single-crystal X-ray diffraction indicated that 1-Ln exhibited similar three-dimensional porous frameworks with one-dimensional channels decorated by the uncoordinated carboxylate oxygen atoms. The luminescent sensing studies indicated that 1-Eu is an outstanding reusable luminescent probe suitable for the simultaneous detection of Cr2O72-, CrO42-, and MnO4- ions in an aqueous solution. Remarkably, the different proportions of Eu3+ and Tb3+ can be combined into the same Ln-MOF to yield a new series of differently doped 1-EuxTb1-x MOFs. At the same excitation wavelength, they generated dual-emission peaks of Eu3+ and Tb3+ to show a gradual change in luminous color between yellow-green, yellow, orange, orange-red, and red. On the basis of the excellent optical properties of 1-Ln complexes, they can be employed as promising luminescent probe and multicolor tunable photoluminescence materials.

16.
Inorg Chem ; 58(5): 3409-3415, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30762354

RESUMO

Owing to the rapid increase of Hg(II) ions in water resources, the design and development of new adsorbents for Hg(II) removal are becoming a significant challenge in environmental protection. Herein, a thiol-functionalized metal-organic framework (SH-MiL-68(In)) was successfully prepared through a post-synthesis modification procedure, and the framework intactness and porosity were well maintained after this process. SH-MiL-68(In) exhibited selective adsorption performance for Hg(II) ions in water. Meanwhile, SH-MiL-68(In) also shows a high adsorption capacity (450 mg g-1), large adsorption rate (rate constant k2 = 1.25 g mg-1 min-1), and good recycling of adsorption capacity toward Hg(II) ions. The excellent adsorption performance resulted from the strong binding interactions between -SH soft basic groups and Hg(II) soft acidic ions.

17.
J Biol Chem ; 292(33): 13551-13564, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28637868

RESUMO

Tamoxifen-resistant (TAMR) estrogen receptor-positive (ER+) breast cancer is characterized by elevated Erb-B2 receptor tyrosine kinase 2 (ERBB2) expression. However, the underlying mechanisms responsible for the increased ERBB2 expression in the TAMR cells remain poorly understood. Herein, we reported that the ERBB2 expression is regulated at the post-transcriptional level by miR26a/b and the RNA-binding protein human antigen R (HuR), both of which associate with the 3'-UTR of the ERBB2 transcripts. We demonstrated that miR26a/b inhibits the translation of ERBB2 mRNA, whereas HuR enhances the stability of the ERBB2 mRNA. In TAMR ER+ breast cancer cells with elevated ERBB2 expression, we observed a decrease in the level of miR26a/b and an increase in the level of HuR. The forced expression of miR26a/b or the depletion of HuR decreased ERBB2 expression in the TAMR cells, resulting in the reversal of tamoxifen resistance. In contrast, the inactivation of miR26a/b or forced expression of HuR decreased tamoxifen responsiveness of the parental ER+ breast cancer cells. We further showed that the increase in HuR expression in the TAMR ER+ breast cancer cells is attributable to an increase in the HuR mRNA isoform with shortened 3'-UTR, which exhibits increased translational activity. This shortening of the HuR mRNA 3'-UTR via alternative polyadenylation (APA) was observed to be dependent on cleavage stimulation factor subunit 2 (CSTF2/CstF-64), which is up-regulated in the TAMR breast cancer cells. Taken together, we have characterized a model in which the interplay between miR26a/b and HuR post-transcriptionally up-regulates ERBB2 expression in TAMR ER+ breast cancer cells.


Assuntos
Regiões 3' não Traduzidas/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Proteína Semelhante a ELAV 1/metabolismo , MicroRNAs/metabolismo , Receptor ErbB-2/metabolismo , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator Estimulador de Clivagem , Feminino , Humanos , MicroRNAs/antagonistas & inibidores , Mutação , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Poliadenilação/efeitos dos fármacos , Interferência de RNA , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/agonistas , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Neoplásico/agonistas , RNA Neoplásico/antagonistas & inibidores , RNA Neoplásico/química , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/agonistas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptor ErbB-2/agonistas , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Elementos de Resposta/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
Inorg Chem ; 57(14): 8550-8557, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29969252

RESUMO

The study of mononuclear lanthanide-based systems, where the observed single-molecule magnets (SMMs) properties originate from the local description of the magnetic properties of the lanthanide ion, has been widely investigated through the literature. The case of polynuclear SMMs becomes more challenging both experimentally and theoretically due to the complexity of such architectures involving interactions between the magnetic centers. Many efforts have been focused on the understanding of the nature of these interactions and their effects on the SMM properties. In this work, a series of three structurally related tetranuclear dysprosium(III) SMMs, namely, [Dy4(L)4(OH)2(DMF)4(NO3)2]·2(DMF)·(H2O) (1), [Dy4(L)4(OH)2(DMF)2(tfaa)2]·2(CH3CN) (2), and [Dy4(L)4(OH)2(DMF)2(acac)2]·2(DMF) (3) (H2L = 2-(2-hydroxy-3-methoxybenzylideneamino)phenol, Htfaa = trifluoroacetylactone, Hacac = acetylacetonate), has been synthesized and investigated. By a fine-tuning of the ligands on the changeable coordination sites in these Dy(III)4 SMMs, the intramolecular magnetic interactions can be modified, switching from antiferromagnetic (for 1 and 2) to ferromagnetic (for 3). Ab initio calculations support these statements. In addition, the formation of 1 has been analyzed by ESI-MS analysis of the reaction mixture, indicating rather quick and high-yield formation of the [Dy4] framework in solution. The combination of experimental work and ab initio calculations offers further insight into the relationship between structures and magnetic properties and sheds light on how to tune magnetic interactions in future polynuclear dysprosium complexes.

19.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 47(5): 558-563, 2018 05 25.
Artigo em Zh | MEDLINE | ID: mdl-30693700

RESUMO

Cancer associated fibroblasts (CAFs) are important components of the tumor microenvironment. Through secreting of multiple growth factors, cytokines and proteases, CAFs play a significant role in regulating the recruitment and function of various innate immune cells and adaptive immune cells in tumor microenvironment. In addition, extracellular matrix secreted by CAFs can also promote the formation of immunosuppression and hypoxia of tumor microenvironment. Here, we review the progress on CAFs in regulation of immune cells and tumor immunity.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Microambiente Tumoral , Matriz Extracelular/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/fisiopatologia , Microambiente Tumoral/imunologia
20.
Yi Chuan ; 39(10): 897-907, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29070485

RESUMO

Wnt signaling pathway plays important roles in the development and homeostasis of multicellular organisms. Through their bindings with the Frizzled receptors, the Wnt ligands regulate a wide range of developmental processes, such as axis patterning, cell division, and cell fate specification. Wnt signaling plays vital roles in the development of inner ear of the mouse. In the early stages of inner ear development, Wnt signaling specifies the size of the placode and the formation of the otic vesicle. In later stages, Wnt signaling mediates hair cell specification and orients the stereociliary bundles in a uniform direction. In this review, we summarize the current knowledge on the roles of Wnt signaling in hair cell differentiation and regeneration, which may provide references and insights for investigators in the field.


Assuntos
Células Ciliadas Auditivas/citologia , Regeneração , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular , Células Ciliadas Auditivas/fisiologia , Humanos , Trombospondinas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA