RESUMO
Current therapies for autoimmune diseases rely on traditional immunosuppressive medications that expose patients to an increased risk of opportunistic infections and other complications. Immunoregulatory interventions that act prophylactically or therapeutically to induce antigen-specific tolerance might overcome these obstacles. Here we use the transpeptidase sortase to covalently attach disease-associated autoantigens to genetically engineered and to unmodified red blood cells as a means of inducing antigen-specific tolerance. This approach blunts the contribution to immunity of major subsets of immune effector cells (B cells, CD4+ and CD8+ T cells) in an antigen-specific manner. Transfusion of red blood cells expressing self-antigen epitopes can alleviate and even prevent signs of disease in experimental autoimmune encephalomyelitis, as well as maintain normoglycemia in a mouse model of type 1 diabetes.
RESUMO
Erythropoietin (EPO) signaling is critical to many processes essential to terminal erythropoiesis. Despite the centrality of iron metabolism to erythropoiesis, the mechanisms by which EPO regulates iron status are not well-understood. To this end, here we profiled gene expression in EPO-treated 32D pro-B cells and developing fetal liver erythroid cells to identify additional iron regulatory genes. We determined that FAM210B, a mitochondrial inner-membrane protein, is essential for hemoglobinization, proliferation, and enucleation during terminal erythroid maturation. Fam210b deficiency led to defects in mitochondrial iron uptake, heme synthesis, and iron-sulfur cluster formation. These defects were corrected with a lipid-soluble, small-molecule iron transporter, hinokitiol, in Fam210b-deficient murine erythroid cells and zebrafish morphants. Genetic complementation experiments revealed that FAM210B is not a mitochondrial iron transporter but is required for adequate mitochondrial iron import to sustain heme synthesis and iron-sulfur cluster formation during erythroid differentiation. FAM210B was also required for maximal ferrochelatase activity in differentiating erythroid cells. We propose that FAM210B functions as an adaptor protein that facilitates the formation of an oligomeric mitochondrial iron transport complex, required for the increase in iron acquisition for heme synthesis during terminal erythropoiesis. Collectively, our results reveal a critical mechanism by which EPO signaling regulates terminal erythropoiesis and iron metabolism.
Assuntos
Células Eritroides/metabolismo , Eritropoetina/metabolismo , Ferroquelatase/metabolismo , Heme/biossíntese , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Células Eritroides/citologia , Eritropoese , Células HEK293 , Humanos , Proteínas de Membrana/química , Camundongos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Transporte ProteicoRESUMO
Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated with random insertion into the genome. Gene-specific targeting has historically been limited to mouse embryonic stem cells. The development of zinc finger nucleases (ZFNs) has permitted efficient genome editing in transformed and primary cells that were previously thought to be intractable to such genetic manipulation. In vitro, ZFNs have been shown to promote efficient genome editing via homology-directed repair by inducing a site-specific double-strand break (DSB) at a target locus, but it is unclear whether ZFNs can induce DSBs and stimulate genome editing at a clinically meaningful level in vivo. Here we show that ZFNs are able to induce DSBs efficiently when delivered directly to mouse liver and that, when co-delivered with an appropriately designed gene-targeting vector, they can stimulate gene replacement through both homology-directed and homology-independent targeted gene insertion at the ZFN-specified locus. The level of gene targeting achieved was sufficient to correct the prolonged clotting times in a mouse model of haemophilia B, and remained persistent after induced liver regeneration. Thus, ZFN-driven gene correction can be achieved in vivo, raising the possibility of genome editing as a viable strategy for the treatment of genetic disease.
Assuntos
Reparo do DNA/genética , Modelos Animais de Doenças , Marcação de Genes/métodos , Terapia Genética/métodos , Genoma/genética , Hemofilia B/genética , Hemostasia , Animais , Sequência de Bases , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Éxons/genética , Fator IX/análise , Fator IX/genética , Vetores Genéticos/genética , Células HEK293 , Hemofilia B/fisiopatologia , Humanos , Íntrons/genética , Fígado/metabolismo , Regeneração Hepática , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Fenótipo , Homologia de Sequência , Dedos de ZincoRESUMO
Monogenic diseases, including hemophilia, represent ideal targets for genome-editing approaches aimed at correcting a defective gene. Here we report that systemic adeno-associated virus (AAV) vector delivery of zinc finger nucleases (ZFNs) and corrective donor template to the predominantly quiescent livers of adult mice enables production of high levels of human factor IX in a murine model of hemophilia B. Further, we show that off-target cleavage can be substantially reduced while maintaining robust editing by using obligate heterodimeric ZFNs engineered to minimize unwanted cleavage attributable to homodimerization of the ZFNs. These results broaden the therapeutic potential of AAV/ZFN-mediated genome editing in the liver and could expand this strategy to other nonreplicating cell types.
Assuntos
Endonucleases/genética , Fator IX/biossíntese , Terapia Genética/métodos , Vetores Genéticos , Genoma , Hemofilia B/terapia , Dedos de Zinco/genética , Animais , Dependovirus/genética , Modelos Animais de Doenças , Endonucleases/metabolismo , Fator IX/genética , Fator IX/metabolismo , Hemofilia B/genética , Hemofilia B/patologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Multimerização ProteicaRESUMO
Acute myeloid leukemia (AML) shows variable clinical outcome. The normal hematopoietic cell of origin impacts the clinical behavior of AML, with AML from hematopoietic stem cells (HSCs) prone to chemotherapy resistance in model systems. However, the mechanisms by which HSC programs are transmitted to AML are not known. Here, we introduce the leukemogenic MLL-AF9 translocation into defined human hematopoietic populations, finding that AML from HSCs is enriched for leukemic stem cells (LSCs) compared to AML from progenitors. By epigenetic profiling, we identify a putative inherited program from the normal HSC that collaborates with oncogene-driven programs to confer aggressive behavior in HSC-AML. We find that components of this program are required for HSC-AML growth and survival and identify RNA polymerase (RNAP) II-mediated transcription as a therapeutic vulnerability. Overall, we propose a mechanism as to how epigenetic programs from the leukemic cell of origin are inherited through transformation to impart the clinical heterogeneity of AML.
RESUMO
Organismal aging has been associated with diverse metabolic and functional changes across tissues. Within the immune system, key features of physiological hematopoietic cell aging include increased fat deposition in the bone marrow, impaired hematopoietic stem and progenitor cell (HSPC) function, and a propensity towards myeloid differentiation. This shift in lineage bias can lead to pre-malignant bone marrow conditions such as clonal hematopoiesis of indeterminate potential (CHIP) or clonal cytopenias of undetermined significance (CCUS), frequently setting the stage for subsequent development of age-related cancers in myeloid or lymphoid lineages. At the systemic as well as sub-cellular level, human aging has also been associated with diverse lipid alterations, such as decreased phospholipid membrane fluidity that arises as a result of increased saturated fatty acid (FA) accumulation and a decay in n-3 polyunsaturated fatty acid (PUFA) species by the age of 80 years, however the extent to which impaired FA metabolism contributes to hematopoietic aging is less clear. Here, we performed comprehensive multi-omics analyses and uncovered a role for a key PUFA biosynthesis gene, ELOVL2 , in mouse and human immune cell aging. Whole transcriptome RNA-sequencing studies of bone marrow from aged Elovl2 mutant (enzyme-deficient) mice compared with age-matched controls revealed global down-regulation in lymphoid cell markers and expression of genes involved specifically in B cell development. Flow cytometric analyses of immune cell markers confirmed an aging-associated loss of B cell markers that was exacerbated in the bone marrow of Elovl2 mutant mice and unveiled CD79B, a vital molecular regulator of lymphoid progenitor development from the pro-B to pre-B cell stage, as a putative surface biomarker of accelerated immune aging. Complementary lipidomic studies extended these findings to reveal select alterations in lipid species in aged and Elovl2 mutant mouse bone marrow samples, suggesting significant changes in the biophysical properties of cellular membranes. Furthermore, single cell RNA-seq analysis of human HSPCs across the spectrum of human development and aging uncovered a rare subpopulation (<7%) of CD34 + HSPCs that expresses ELOVL2 in healthy adult bone marrow. This HSPC subset, along with CD79B -expressing lymphoid-committed cells, were almost completely absent in CD34 + cells isolated from elderly (>60 years old) bone marrow samples. Together, these findings uncover new roles for lipid metabolism enzymes in the molecular regulation of cellular aging and immune cell function in mouse and human hematopoiesis. In addition, because systemic loss of ELOVL2 enzymatic activity resulted in down-regulation of B cell genes that are also associated with lymphoproliferative neoplasms, this study sheds light on an intriguing metabolic pathway that could be leveraged in future studies as a novel therapeutic modality to target blood cancers or other age-related conditions involving the B cell lineage.
RESUMO
Folate, an essential vitamin, is a one-carbon acceptor and donor in key metabolic reactions. Erythroid cells harbor a unique sensitivity to folate deprivation, as revealed by the primary pathological manifestation of nutritional folate deprivation: megaloblastic anemia. To study this metabolic sensitivity, we applied mild folate depletion to human and mouse erythroid cell lines and primary murine erythroid progenitors. We show that folate depletion induces early blockade of purine synthesis and accumulation of the purine synthesis intermediate and signaling molecule, 5'-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR), followed by enhanced heme metabolism, hemoglobin synthesis, and erythroid differentiation. This is phenocopied by inhibition of folate metabolism using the inhibitor SHIN1, and by AICAR supplementation. Mechanistically, the metabolically driven differentiation is independent of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine 5'-monophosphate-activated protein kinase (AMPK) and is instead mediated by protein kinase C. Our findings suggest that folate deprivation-induced premature differentiation of erythroid progenitor cells is a molecular etiology to folate deficiency-induced anemia.
Assuntos
Ácido Fólico , Purinas , Camundongos , Humanos , Animais , Ácido Fólico/metabolismo , Diferenciação Celular , Linhagem Celular , Alvo Mecanístico do Complexo 1 de RapamicinaAssuntos
Eritrócitos Anormais/patologia , Ferredoxina-NADP Redutase/genética , Neutrófilos/patologia , Deficiência de Vitamina B 12 , Eritrócitos Anormais/enzimologia , Ferredoxina-NADP Redutase/metabolismo , Homocisteína/genética , Homocisteína/metabolismo , Humanos , Lactente , Masculino , Metionina/sangue , Metionina/genética , Mutação , Neutrófilos/enzimologia , Vitamina B 12 , Deficiência de Vitamina B 12/enzimologia , Deficiência de Vitamina B 12/genética , Deficiência de Vitamina B 12/patologiaRESUMO
Gene transfer using adeno-associated virus (AAV) vectors has great potential for treating human disease. Recently, questions have arisen about the safety of AAV vectors, specifically, whether integration of vector DNA in transduced cell genomes promotes tumor formation. This study addresses these questions with high-dose liver-directed AAV-mediated gene transfer in the adult mouse as a model (80 AAV-injected mice and 52 controls). After 18 months of follow-up, AAV-injected mice did not show a significantly higher rate of hepatocellular carcinoma compared with controls. Tumors in mice treated with AAV vectors did not have significantly different amounts of vector DNA compared with adjacent normal tissue. A novel high-throughput method for identifying AAV vector integration sites was developed and used to clone 1029 integrants. Integration patterns in tumor tissue and adjacent normal tissue were similar to each other, showing preferences for active genes, cytosine-phosphate-guanosine islands, and guanosine/cytosine-rich regions. [corrected] Gene expression data showed that genes near integration sites did not show significant changes in expression patterns compared with genes more distal to integration sites. No integration events were identified as causing increased oncogene expression. Thus, we did not find evidence that AAV vectors cause insertional activation of oncogenes and subsequent tumor formation.
Assuntos
Dependovirus/genética , Terapia Genética/efeitos adversos , Vetores Genéticos/efeitos adversos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Dependovirus/fisiologia , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/fisiologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Insercional/fisiologia , Testes de MutagenicidadeRESUMO
The majority of patients with chronic graft-versus-host disease (cGVHD) are steroid refractory (SR), creating a need for safe and effective therapies. Subcutaneous low-dose interleukin-2 (LD IL-2), which preferentially expands CD4+ regulatory T cells (Tregs), has been evaluated in 5 clinical trials at our center with partial responses (PR) in â¼50% of adults and 82% of children by week 8. We now report additional real-world experience with LD IL-2 in 15 children and young adults. We conducted a retrospective chart review of patients with SR-cGVHD at our center who received LD IL-2 from August 2016 to July 2022 not on a research trial. The median age at start of LD IL-2 was 10.4 years (range, 1.2-23.2 years) at a median of 234 days from cGVHD diagnosis (range, 11-542 days). Patients had a median of 2.5 (range, 1-3) active organs at LD IL-2 start and received a median of 3 (range, 1-5) prior therapies. The median duration of LD IL-2 therapy was 462 days (range, 8-1489 days). Most patients received 1 × 106 IU/m2 per day. There were no serious adverse effects. The overall response rate in 13 patients who received >4 weeks of therapy was 85% (complete response, n = 5; PR, n = 6) with responses in diverse organs. Most patients significantly weaned corticosteroids. Tregs preferentially expanded with a median peak fold increase of 2.8 in the ratio of Tregs to CD4+ conventional T cells (range, 2.0-19.8) by 8 weeks on therapy. LD IL-2 is a well-tolerated, steroid-sparing agent with a high response rate in children and young adults with SR-cGVHD.
Assuntos
Doença Enxerto-Hospedeiro , Interleucina-2 , Criança , Humanos , Adulto Jovem , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Imunoterapia , Interleucina-2/administração & dosagem , Estudos Retrospectivos , Lactente , Pré-Escolar , AdolescenteRESUMO
Early erythroid progenitors are transit-amplifying cells with high proliferative capacity committed to undergoing red cell differentiation. CD71/CD24low progenitors are less mature and have greater proliferative capacity than CD71/CD24high. We present protocols for isolation of CD71/CD24low progenitors from mouse fetal liver using both fluorescence-activated cell sorting (FACS) and immunomagnetic enrichment. CD71/CD24low progenitors isolated with both approaches show similar transcriptomes at single-cell resolution and exhibit characteristic proliferative responses to glucocorticoids. For complete details on the use and execution of this protocol, please refer to Li et al. (2019).
Assuntos
Células Precursoras Eritroides , Eritropoese , Animais , Eritropoese/fisiologia , Citometria de Fluxo/métodos , Fígado , Camundongos , TranscriptomaRESUMO
To accelerate the translation of cancer nanomedicine, we used an integrated genomic approach to improve our understanding of the cellular processes that govern nanoparticle trafficking. We developed a massively parallel screen that leverages barcoded, pooled cancer cell lines annotated with multiomic data to investigate cell association patterns across a nanoparticle library spanning a range of formulations with clinical potential. We identified both materials properties and cell-intrinsic features that mediate nanoparticle-cell association. Using machine learning algorithms, we constructed genomic nanoparticle trafficking networks and identified nanoparticle-specific biomarkers. We validated one such biomarker: gene expression of SLC46A3, which inversely predicts lipid-based nanoparticle uptake in vitro and in vivo. Our work establishes the power of integrated screens for nanoparticle delivery and enables the identification and utilization of biomarkers to rationally design nanoformulations.
Assuntos
Antineoplásicos , Biomarcadores Farmacológicos , Proteínas de Transporte de Cobre , Composição de Medicamentos , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas , Neoplasias , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proteínas de Transporte de Cobre/genética , Expressão Gênica , Genômica , Humanos , Lipossomos , Camundongos , Nanomedicina , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismoRESUMO
Neutralizing antibody (NAb) titer is a key biomarker of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but point-of-care methods for assessing NAb titer are not widely available. Here, we present a lateral flow assay that captures SARS-CoV-2 receptor-binding domain (RBD) that has been neutralized from binding angiotensin-converting enzyme 2 (ACE2). Quantification of neutralized RBD in this assay correlates with NAb titer from vaccinated and convalescent patients. This methodology demonstrated superior performance in assessing NAb titer compared with either measurement of total anti-spike immunoglobulin G titer or quantification of the absolute reduction in binding between ACE2 and RBD. Our testing platform has the potential for mass deployment to aid in determining at population scale the degree of protective immunity individuals may have following SARS-CoV-2 vaccination or infection and can enable simple at-home assessment of NAb titer.
Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Vacinas contra COVID-19 , Sistemas Automatizados de Assistência Junto ao Leito , Anticorpos Antivirais , COVID-19/diagnósticoRESUMO
Humoral immune responses occur following exposure to Adeno-associated virus (AAV) or AAV vectors. Many studies characterized antibody responses to AAV, but human IgG subclass responses to AAV have not been previously described. In this study, IgG subclass responses were examined in serum samples of normal human subjects exposed to wild-type AAV, subjects injected intramuscularly with AAV vectors and subjects injected intravascularly with AAV vectors. A diversity of IgG subclass responses to AAV capsid were found in different subjects. IgG1 was found to be the dominant response. IgG2, IgG3, and IgG4 responses were also observed in most normal human subjects; IgG2 and IgG3 each represented the major fraction of total anti-AAV capsid IgG in a subset of normal donors. Subjects exposed to AAV vectors showed IgG responses to AAV capsid of all four IgG subclasses. IgG responses to AAV capsid in clinical trial subjects were inversely proportional to the level of pre-existing anti-AAV antibody and independent of the vector dose. The high levels of anti-AAV capsid IgG1 can mask differences in IgG2, IgG3, and IgG4 responses that were observed in this study. Analysis of IgG subclass distribution of anti-AAV capsid antibodies indicates a complex, non-uniform pattern of responses to this viral antigen. J. Med. Virol. 81:65-74, 2009. (c) 2008 Wiley-Liss, Inc.
Assuntos
Anticorpos Antivirais/sangue , Dependovirus/imunologia , Vetores Genéticos/imunologia , Imunoglobulina G/sangue , Infecções por Parvoviridae/imunologia , Adolescente , Adulto , Idoso , Capsídeo/imunologia , Humanos , Imunoglobulina M/sangue , Pessoa de Meia-Idade , Testes de NeutralizaçãoRESUMO
Adeno-associated virus (AAV) vectors demonstrate highly efficient gene transfer to hepatocytes in vivo. One of the remaining obstacles to the treatment of hemophilia B patients with AAV vectors is the sensitivity of these vectors to antibody-mediated neutralization following systemic delivery. Testing and implementation of strategies to circumvent pre-existing antibodies requires knowledge of the clearance kinetics of AAV from circulation. In this study, AAV clearance kinetics were established for serotypes 2 and 8 in cell culture and in mice. Administration of pooled neutralizing serum subsequent to administration of the vector was used to define the time period in which the vector is susceptible to antibody-mediated neutralization. These experiments defined the in vivo clearance rates for both AAV2 and AAV8 vectors to be between 2 and 4 hours. In mice, portal vein and tail vein administration of each vector was tested with similar results. Cell culture studies in W162 cells established that cellular attachment and internalization both contribute to the clearance kinetics of AAV vectors. These studies characterize the in vivo clearance rates of AAV vectors for the first time and guide the development of future strategies for the avoidance of antibody-mediated AAV vector neutralization.
Assuntos
Anticorpos Antivirais/fisiologia , Dependovirus/imunologia , Vetores Genéticos/imunologia , Fígado/imunologia , Transdução Genética , Animais , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/sangue , Linhagem Celular , Vetores Genéticos/antagonistas & inibidores , Vetores Genéticos/metabolismo , Humanos , Soros Imunes/administração & dosagem , Soros Imunes/sangue , Soros Imunes/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Fatores de TempoRESUMO
The nature of cell-state transitions during the transit-amplifying phases of many developmental processes-hematopoiesis in particular-is unclear. Here, we use single-cell RNA sequencing to demonstrate a continuum of transcriptomic states in committed transit-amplifying erythropoietic progenitors, which correlates with a continuum of proliferative potentials in these cells. We show that glucocorticoids enhance erythrocyte production by slowing the rate of progression through this developmental continuum of transit-amplifying progenitors, permitting more cell divisions prior to terminal erythroid differentiation. Mechanistically, glucocorticoids prolong expression of genes that antagonize and slow induction of genes that drive terminal erythroid differentiation. Erythroid progenitor daughter cell pairs have similar transcriptomes with or without glucocorticoid stimulation, indicating largely symmetric cell division. Thus, the rate of progression along a developmental continuum dictates the absolute number of erythroid cells generated from each transit-amplifying progenitor, suggesting a paradigm for regulating the total output of differentiated cells in numerous other developmental processes.
Assuntos
Células Sanguíneas/metabolismo , Proliferação de Células/genética , Células Precursoras Eritroides/metabolismo , Hematopoese/genética , Animais , Células Sanguíneas/citologia , Diferenciação Celular/genética , Divisão Celular/genética , Células Cultivadas , Eritrócitos/citologia , Eritrócitos/metabolismo , Células Eritroides/citologia , Células Eritroides/metabolismo , Células Precursoras Eritroides/citologia , Eritropoese/genética , Glucocorticoides/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos , Análise de Célula Única/métodos , Transcriptoma/genéticaRESUMO
Objective: To highlight a novel, treatable syndrome, we report 4 patients with CNS-isolated inflammation associated with familial hemophagocytic lymphohistiocytosis (FHL) gene mutations (CNS-FHL). Methods: Retrospective chart review. Results: Patients with CNS-FHL are characterized by chronic inflammation restricted to the CNS that is not attributable to any previously described neuroinflammatory etiology and have germline mutations in known FHL-associated genes with no signs of systemic inflammation. Hematopoietic stem cell transplantation (HCT) can be well tolerated and effective in achieving or maintaining disease remission in patients with CNS-FHL. Conclusions: Early and accurate diagnosis followed by treatment with HCT can reduce morbidity and mortality in CNS-FHL, a novel, treatable syndrome. Classification of evidence: This study provides Class IV evidence that HCT is well tolerated and effective in treating CNS-FHL.
Assuntos
Doenças do Sistema Nervoso Central/diagnóstico , Linfo-Histiocitose Hemofagocítica/diagnóstico , Doenças do Sistema Nervoso Central/genética , Criança , Pré-Escolar , Feminino , Mutação em Linhagem Germinativa , Humanos , Linfo-Histiocitose Hemofagocítica/genéticaRESUMO
Diamond-Blackfan anemia (DBA) is a severe congenital hypoplastic anemia caused by mutation in a ribosomal protein gene. Major clinical issues concern the optimal management of patients resistant to steroids, the first-line therapy. Hematopoietic stem cell transplantation is indicated in young patients with an HLA-matched unaffected sibling donor, and recent results with matched unrelated donor transplants indicate that these patients also do well. When neither steroids nor a transplant is possible red cell transfusions are required, and iron loading is rapid in some DBA patients, so effective chelation is vital. Also discussed are novel treatments under investigation for DBA.