Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912705

RESUMO

Orientation engineering is a crucial aspect of thin film growth, and it is rather challenging to engineer film epitaxy beyond the substrate constraint. Guided by density functional theory calculations, we use SrRuO3 (SRO) as a buffer layer and successfully deposit [111]-oriented CoFe2O4 (CFO) on [001]-, [110]-, and [111]-oriented SrTiO3 (STO) substrates. This enables subsequent growth of [111]-oriented functional oxides, such as PbTiO3 (PTO), overcoming the constraint of the substrate. This strategy is quite general and applicable to lanthanum aluminate and yttria-stabilized zirconia substrates as well. X-ray Φ scans and atomic resolution aberration-corrected scanning transmission electron microscopy (AC-STEM) reveal detailed epitaxial relations in each of the cases, with four variants of [111]-CFO found on [001]-STO and two variants found on [110]-STO, formed to mitigate the large lattice misfit strain between the film and substrate. Our strategy thus provides a general pathway for orientation engineering of oxide epitaxy beyond substrate constraint.

2.
Nano Lett ; 24(21): 6337-6343, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38742772

RESUMO

The bulk photovoltaic effect (BPVE) offers an interesting approach to generate a steady photocurrent in a single-phase material under homogeneous illumination, and it has been extensively investigated in ferroelectrics exhibiting spontaneous polarization that breaks inversion symmetry. Flexoelectricity breaks inversion symmetry via a strain gradient in the otherwise nonpolar materials, enabling manipulation of ferroelectric order without an electric field. Combining these two effects, we demonstrate active mechanical control of BPVE in suspended 2-dimensional CuInP2S6 (CIPS) that is ferroelectric yet sensitive to electric field, which enables practical photodetection with an order of magnitude enhancement in performance. The suspended CIPS exhibits a 20-fold increase in photocurrent, which can be continuously modulated by either mechanical force or light polarization. The flexoelectrically engineered photodetection device, activated by air pressure and without any optimization, possesses a responsivity of 2.45 × 10-2 A/W and a detectivity of 1.73 × 1011 jones, which are superior to those of ferroelectric-based photodetection and comparable to those of the commercial Si photodiode.

3.
Phys Chem Chem Phys ; 26(6): 5323-5332, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38268467

RESUMO

Nonvolatile electrical control of two-dimensional (2D) van der Waals (vdW) magnetism is important for spintronic devices. Here, using first-principles calculations, we systematically investigated the magnetic properties of the MXene Hf2MnC2O2 combined with the ferroelectric MXene Sc2CO2. When flipping the electric polarization of Sc2CO2, a transition between a semiconductor and a half-metal occurs in the Hf2MnC2O2 monolayer. Moreover, the ferromagnetic exchange parameter J1 can be enhanced to 9.67 meV under polarized P↑ of Sc2CO2, much larger than those of the pristine Hf2MnC2O2 monolayer and Hf2MnC2O2/Sc2CO2-P↓. In addition, the easy magnetization axis of the Hf2MnC2O2 monolayer is also dependent on the polarization orientation of Sc2CO2. Our results indicate a multiferroic heterostructure based on MXenes, offering an effective way for obtaining nonvolatile electrical control of electronic and magnetic properties.

4.
Proc Natl Acad Sci U S A ; 118(24)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34117121

RESUMO

Superelastic materials capable of recovering large nonlinear strains are ideal for a variety of applications in morphing structures, reconfigurable systems, and robots. However, making oxide materials superelastic has been a long-standing challenge due to their intrinsic brittleness. Here, we fabricate ferroelectric BaTiO3 (BTO) micropillars that not only are superelastic but also possess excellent fatigue resistance, lasting over 1 million cycles without accumulating residual strains or noticeable variation in stress-strain curves. Phase field simulations reveal that the large recoverable strains of BTO micropillars arise from surface tension-modulated 90° domain switching and thus are size dependent, while the small energy barrier and ultralow energy dissipation are responsible for their unprecedented cyclic stability among superelastic materials. This work demonstrates a general strategy to realize superelastic and fatigue-resistant domain switching in ferroelectric oxides for many potential applications.

5.
Small ; 19(44): e2302072, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431202

RESUMO

Spectrally selective narrowband photodetection is critical for near-infrared (NIR) imaging applications, such as for communicationand night-vision utilities. It is a long-standing challenge for detectors based on silicon, to achieve narrowband photodetection without integrating any optical filters. Here, this work demonstrates a NIR nanograting Si/organic (PBDBT-DTBT:BTP-4F) heterojunction photodetector (PD), which for the first time obtains the full-width-at-half-maximum (FWHM) of only 26 nm and fast response of 74 µs at 895 nm. The response peak can be successfully tailored from 895 to 977 nm. The sharp and narrow response NIR peak is inherently attributed to the coherent overlapping between the NIR transmission spectrum of organic layer and diffraction enhanced absorption peak of patterned nanograting Si substrates. The finite difference time domain (FDTD) physics calculation confirms the resonant enhancement peaks, which is well consistent with the experiment results. Meanwhile, the relative characterization indicates that the introduction of the organic film can promote carrier transfer and charge collection, facilitating efficient photocurrent generation. This new device design strategy opens up a new window in developing low-cost sensitive NIR narrowband detection.

6.
Chemistry ; 29(48): e202301121, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37300353

RESUMO

Lithium-sulfur (Li-S) batteries are a promising energy storage technology due to their tempting high theoretical capacity and energy density. Nevertheless, the wastage of active materials that originates from the shuttling effect of polysulfides still hinders advancement of Li-S batteries. The effective design of cathode materials is extremely pivotal to solve this thorny problem. Herein, surface engineering in covalent organic polymers (COPs) has been performed to investigate the influence of pore wall polarity on the performance of COP-based cathodes used for Li-S batteries. With the assistance of experimental investigation and theoretical calculations, performance improvement by increasing pore surface polarity and a synergy effect of the polarized functionalities, along with nano-confinement effect of the COPs, are disclosed, to which the improved performance of Li-S batteries including outstanding Coulombic efficiency (99.0 %) and extremely low capacity decay (0.08 % over 425 cycles at 1.0 C) is attributed. This work not only enlightens the designable synthesis and applications of covalent polymers as polar sulfur hosts with high utilization of active materials, but also provides a feasible guide for the design of effective cathode materials for future advanced Li-S batteries.

7.
Nano Lett ; 22(15): 6215-6222, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35852915

RESUMO

In a two-dimensional moiré superlattice, the atomic reconstruction of constituent layers could introduce significant modifications to the lattice symmetry and electronic structure at small twist angles. Here, we employ conductive atomic force microscopy to investigate a twisted trilayer graphene double-moiré superlattice. Two sets of moiré superlattices are observed. At neighboring domains of the large moiré, the current exhibits either 2- or 6-fold rotational symmetry, indicating delicate symmetry breaking beyond the rigid model. Moreover, an anomalous current appears at the "A-A" stacking site of the larger moiré, contradictory to previous observations on twisted bilayer graphene. Both behaviors can be understood by atomic reconstruction, and we also show that the measured current is dominated by the tip-graphene contact resistance that maps the local work function qualitatively. Our results reveal new insights of atomic reconstruction in novel moiré superlattices and opportunities for manipulating exotic quantum states on the basis of twisted van der Waals heterostructures.

8.
Nano Lett ; 22(23): 9685-9692, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36441867

RESUMO

The practical application of Na-superionic conductor structured materials is hindered by limited energy density and structure damage upon activating the third Na+. We propose a bimetal substitution strategy with cheaper Fe and Ni elements for costive vanadium in the polyanion to improve both ionic and electronic conductivities, and a single two-phase reaction during Na+ intercalation/deintercalation and much reduced Na+ diffusion barrier are uncovered by ex-situ X-ray diffraction and density functional theory calculations. Thus, the obtained cathode, Na3Fe0.8VNi0.2(PO4)3, shows excellent electrochemical performances including high specific capacity (102.2 mAh g-1 at 0.1C), excellent rate capability (79.3 mAh g-1 at 20C), cycling stability (84.6% of capacity retention over 1400 cycles at 20C), low-temperature performance (89.7 mAh g-1 at 2C and -10 °C), and structure stability in an extended voltage window for the third Na+ utilization. A competitive energy density of ≈287 Wh kg-1 for full batteries based on cathode and anode materials is also confirmed.

9.
Small ; 18(16): e2200523, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35266302

RESUMO

Triple-cation mixed-halide perovskites have attracted considerable attention due to their excellent photovoltaic properties and enhanced stability, though the power conversion efficiency (PCE) is still far below the theoretical expectation. In order to understand the microscopic mechanisms responsible for the gap, a Cs0.05 (FA0.85 MA0.15 )0.95 Pb(I0.85 Br0.15 )3 (CsFAMA)-based solar cell with respectful efficiency over 20% is examined, and distinct high- and low-current regions are observed in photoconductive atomic force microscopy (pc-AFM) mapping. Simulations attribute the difference in local photocurrents to interfacial donor defect densities at the NiO/CsFAMA interface, which is supported by electrochemical strain microscopy (ESM) mapping, revealing a negative correlation between ionic defects and photocurrents. The interfacial defects can be further manipulated by external bias upon relaxation study, resulting in reduced photocurrents accompanied by topography change when positive ions are driven toward the NiO/CsFAMA interface. It is also observed that both structure variation and photocurrent degradation upon accelerated aging test initiate at grain boundaries, which gradually expand at the expense of grain interior, suggesting that ionic defects are most active at grain boundaries. These findings render a direct correlation between interfacial defects and photocurrents while revealing degradation evolution, and if such interfacial defects heterogeneity can be mitigated, PCE toward the theoretical limit with enhanced stability can be envisioned.

10.
Small ; 18(3): e2104213, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816590

RESUMO

Multiferroics with simultaneous electric and magnetic orderings are highly desirable for sensing, actuation, data storage, and bio-inspired systems, yet developing flexible materials with robust multiferroic properties at room temperature is a long-term challenge. Utilizing water-soluble Sr3 Al2 O6 as a sacrificial layer, the authors have successfully self-assembled a freestanding BaTiO3 -CoFe2 O4 heteroepitaxial nanostructure via pulse laser deposition, and confirmed its epitaxial growth in both out-of-plane and in-plane directions, with highly ordered CoFe2 O4 nanopillars embedded in a single crystalline BaTiO3 matrix free of substrate constraint. The freestanding nanostructure enjoys super flexibility and mechanical integrity, not only capable of spontaneously curving into a roll, but can also be bent with a radius as small as 4.23 µm. Moreover, piezoelectricity and ferromagnetism are demonstrated at both microscopic and macroscopic scales, confirming its robust multiferroicity at room temperature. This work establishes an effective route for flexible multiferroic materials, which have the potential for various practical applications.


Assuntos
Nanoestruturas , Compostos de Bário/química , Nanoestruturas/química , Temperatura , Titânio/química
11.
Phys Rev Lett ; 129(10): 107601, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112449

RESUMO

Room-temperature polar skyrmions, which have been recently discovered in oxide superlattice, have received considerable attention for their potential applications in nanoelectronics owing to their nanometer size, emergent chirality, and negative capacitance. For practical applications, their manipulation using external stimuli is a prerequisite. Herein, we study the dynamics of individual polar skyrmions at the nanoscale via in situ scanning transmission electron microscopy. By monitoring the electric-field-driven creation, annihilation, shrinkage, and expansion of topological structures in real space, we demonstrate the reversible transformation among skyrmion bubbles, elongated skyrmions, and monodomains. The underlying mechanism and interactions are discussed in conjunction with phase-field simulations. The electrical manipulation of nanoscale polar skyrmions allows the tuning of their dielectric permittivity at the atomic scale, and the detailed knowledge of their phase transition behaviors provides fundamentals for their applications in nanoelectronics.

12.
Nano Lett ; 21(7): 3280-3286, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33749279

RESUMO

Moiré superlattices in van der Waals heterostructures are gaining increasing attention because they offer new opportunities to tailor and explore unique electronic phenomena. Using a combination of lateral piezoresponse force microscopy (LPFM) and scanning Kelvin probe microscopy (SKPM), we directly correlate ABAB and ABCA stacked graphene with local surface potential. We find that the surface potential of the ABCA domains is ∼15 mV higher (smaller work function) than that of the ABAB domains. First-principles calculations show that the different work functions between ABCA and ABAB domains arise from the stacking-dependent electronic structure. Moreover, while the moiré superlattice visualized by LPFM can change with time, imaging the surface potential distribution via SKPM appears more stable, enabling the mapping of ABAB and ABCA domains without tip-sample contact-induced effects. Our results provide a new means to visualize and probe local domain stacking in moiré superlattices along with its impact on electronic properties.

13.
Anal Bioanal Chem ; 413(28): 7073-7080, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34628526

RESUMO

A versatile fluorescence scaffold was constructed by connecting a G-triplex sequence (G31) with G-rich DNA (aptamer of kanamycin) and using thioflavin T (ThT) as the fluorescent molecule. With the assistance of an aptamer, the G-quadruplex DNA structure was fabricated using G31 as three strands and the aptamer as the fourth strand. Due to the parallel planar morphology of the final products, which was favorable for ThT binding and which restricted the rotation of the aromatic rings of ThT, the fluorescence signal intensity of ThT was significantly enhanced. Because of the specific interaction of aptamer and kanamycin, in addition to the greater ability for kanamycin to bind with G-triplex than ThT, the conformation of G-quadruplex DNA was changed; in addition, ThT was dissociated from the aptamer-G31, and therefore a 'turn-on' to 'turn-off' detection principle was applied for kanamycin detection, which yielded reasonable sensitivity and selectivity. The detection range was 50-2000 nM, with a limit of detection of 1.05 nM. Our proposed method was thus successfully applied for kanamycin determination in pork, chicken, and beef samples, and satisfactory results were obtained.


Assuntos
Antibacterianos/análise , Canamicina/análise , Espectrometria de Fluorescência/métodos , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Estudos de Viabilidade , Limite de Detecção
14.
Nanotechnology ; 31(15): 155401, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31855853

RESUMO

Electrode materials that can function well in both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) are desirable for electrochemical energy storage applications, especially under high rate. In this work, a three-dimensional (3D) mesoporous γ-Fe2O3@carbon nanofiber (γ-Fe2O3@CNF) mat has been successfully synthesized by sol-gel based electrospinning and carbonization. It delivers a specific capacity of 820 mAh g-1 at 0.5 C after 250 cycles, 430 mAh g-1 at 6 C after 1000 cycles, and 222 mAh g-1 at ultrahigh rate of 60 C for LIBs, while for SIBs it delivers a specific capacity of 360 mAh g-1 at 1 C after 1000 cycles and 130 mAh g-1 at 60 C. Besides, the result of ex situ microstructure examination shows the polycrystalline nature of γ-Fe2O3 nanoparticle still exists in LIB even after 1000 cycles, while it vanishes in SIB, suggesting that the relatively larger volume expansion occurred during Na+ insertion/deinsertion, resulting in pulverization of the particles. The CNFs maintained their pristine 3D network structure after the charge/discharge, which demonstrated the critical role of a robust conductive electrode in promoting fast Li+/Na+ transportation. More importantly, they act as an electrical bridge between Li+/Na+ and γ-Fe2O3 nanoparticles, therefore suppressing the cell impedance growth and γ-Fe2O3 volume expansion, resulting in the enhancement in both cyclic and rate capability.

15.
J Am Chem Soc ; 141(50): 19715-19727, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31763827

RESUMO

Despite the many attempts to build ultrathin 2D-2D heterojunctions via wet chemical methods, the resulting composite materials reported to date suffer from poor interfacial bonding and/or complexity of the synthetic protocols. Encouraged by the structural compatibility of Bi2WO6 and Bi2O2S, both of which are 2D semiconductors sharing a rather similar structural unit of a [Bi2O2]2+ slice in their crystal structures, we have successfully fabricated an ultrathin nanosheet with a tightly bonded 2D-2D heterojunction between the two components by facilely joining the [Bi2O2]2+ and [S]2- slices using a simple two-step hydrothermal method. Such a Bi2WO6-Bi2O2S 2D-2D heterojunction has a five-alternating-layer (Bi2O2S-Bi2WO6-Bi2O2S-Bi2WO6-Bi2O2S) sandwich structure and a thickness down to ca. 5 nm and was obtained by simply growing the Bi2O2S layer in situ on the surface of monolayer Bi2WO6 nanosheets. The judicious combination of Bi2WO6 and Bi2O2S through a 2D-2D heterojunction not only extended light absorption in the visible range but also significantly enhanced photo(electro)chemical water splitting efficiencies in comparison to the bare Bi2WO6 nanosheets alone due to the close-bonding-promoted interfacial charge separation. Our findings provide a viable methodology to build a host of nanomaterials with closely bonded 2D nanosheets, which can be used as photocatalysts and electrocatalysts, among others.

16.
Analyst ; 144(5): 1831-1839, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30676591

RESUMO

In this paper, a composite material comprised of ZnFe2O4 nanomaterial, carbon nanotubes (CNT) and glucose oxidase (GOD) was synthesized and used for glucose detection. ZnFe2O4-CNT was formed by a one-step solvothermal approach using acid-treated CNT as precursor, then GOD was linked to it by coupling reaction between -NH2 and -COOH. After addition of glucose, which is oxidized by GOD, the intermediate product (H2O2) further oxidizes the 3,3',5,5'-tetramethylbenzidine (TMB) substrate and forms a blue product. This process was accelerated in the presence of peroxidase-mimic ZnFe2O4 nanomaterial and the detected signal intensity was correspondingly enhanced. The linear detection range of glucose was 0.8 to 250 µM, with a limit of detection of 0.58 µM. This may originate from (1) the limited diffusion of intermediate species, which resulted in enhanced local concentrations of reaction compounds; (2) enhanced electron transmission among CNT, GOD and ZnFe2O4; (3) the synergistic enhancement of catalytic activity of ZnFe2O4 compared with other metal oxides; (4) the high loading capacity of ZnFe2O4-CNT for GOD molecules, because of its high surface-to-volume ratio. Meanwhile, this method has reasonable selectivity, stability and reusability and can be used for real serum detection, which may be useful for the development of sensitive biosensors.


Assuntos
Glicemia/análise , Enzimas Imobilizadas/química , Compostos Férricos/química , Glucose Oxidase/química , Nanotubos de Carbono/química , Benzidinas/química , Colorimetria/métodos , Humanos , Peróxido de Hidrogênio/química , Limite de Detecção , Nanocompostos/química
17.
Nanotechnology ; 30(20): 205703, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-30699396

RESUMO

Collagen is the main protein in extracellular matrix that is found in many connective tissues, and it exhibits piezoelectricity that is expected to correlate with its hierarchical microstructure. Resolving fine electromechanical structure of collagen, however, is challenging, due to its weak piezoresponse, rough topography, and microstructural hierarchy. Here we adopt the newly developed sequential excitation strategy in combination with piezoresponse force microscopy to overcome these difficulties. It excites the local electromechanical response of collagen via a sequence of distinct frequencies, minimizing crosstalk with topography, followed by principal component analysis to remove the background noise and simple harmonic oscillator model for physical analysis and data reconstruction. These enable us to acquire high fidelity mappings of fine electromechanical response at the nanoscale that correlate with the gap and overlap domains of collagen fibrils, which show substantial improvement over conventional piezoresponse force microscopy techniques. It also embodies the spirit of big data atomic force microscopy that can be readily extended into other applications with targeted data acquisition.


Assuntos
Artérias/ultraestrutura , Colágeno/química , Microscopia de Força Atômica/métodos , Animais , Matriz Extracelular/química , Fenômenos Mecânicos , Análise de Componente Principal , Suínos
18.
Nanotechnology ; 30(33): 335703, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995621

RESUMO

The mechanical properties of two-dimensional (2D) materials are critical for their applications in functional devices as well as for strain engineering. Here, we report the Young's modulus and breaking strength of multilayered InSe, an emerging 2D semiconductor of the layered group III chalcogenide. Few-layer InSe flaks were exfoliated from bulk InSe crystal onto Si/SiO2 substrate with micro-fabricated holes, and indentation tests were carried out using an atomic force microscopy probe. In combination with both continuum analysis and finite element simulation, we measured the Young's modulus of multilayer 2D InSe (>5 L) to be 101.37 ± 17.93 GPa, much higher than its bulk counterpart, while its breaking strength is determined to be 8.68 GPa, approaching the theoretical limit of 10.1 GPa. Density functional theory calculations were also carried out to explain the insensitivity of Young's modulus to the layer count. It is found that 2D InSe is softer than most 2D materials, and exhibits breaking strength higher than that of carbon fiber, yet remaining more compliant, making it ideal for flexible electronics applications. The reliability of our method is also validated by measurement of graphene.

19.
Anal Bioanal Chem ; 411(11): 2405-2414, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30828760

RESUMO

In this paper, a fluorescent method was developed for ochratoxin A (OTA) detection that uses iron-doped porous carbon (MPC) and aptamer-functionalized nitrogen-doped graphene quantum dots (NGQDs-Apt) as probes. In this method, the adsorbance of the NGQDs-Apt on the MPC due to a π-π interaction between the aptamer and the MPC results in the quenching of the fluorescence of the NGQDs-Apt. However, since OTA interacts strongly with the aptamer, the presence of OTA leads to the detachment of the NGQDs-Apt from the MPC, resulting in the resumption of fluorescence from the NGQDs-Apt. When exonuclease I (Exo I) is also added to the solution, this exonuclease specifically digests the aptamer, leading to the release of the OTA back into the solution. This free OTA then interacts with another MPC-NGQDs-Apt system, inducing the release of more NGQDs into the solution, which enhances the fluorescent intensity compared to that of the system with no Exo I. Utilizing this behavior of OTA in the presence of NGQDs-Apt, it was possible to detect concentrations of OTA ranging from 10 to 5000 nM, with a limit of detection of 2.28 nM. Our method was tested by applying it to the detection of OTA in wheat and corn samples. This method has four advantages: (1) the magnetic porous carbon is easy to prepare, its porosity enhances its loading capacity for NGQDs, it highly efficiently quenches the fluorescence of the NGQDs, and its magnetic properties facilitate the separation of the MPC from other species in solution; (2) applying double magnetic separation decreases the background signal; (3) Exo I digests the free aptamer effectively, which allows the resulting free OTA to induce the release of more NGQDs-Apt, ultimately enhancing the fluorescent signal; and (4) the proposed method presented high sensitivity and a wide linear detection range. This method may prove helpful in food safety analysis and new biosensor development (achieved by using different aptamer sequences to that used in the present work). Graphical abstract Exonuclease I (Exo I)-assisted fluorescent method for ochratoxin A (OTA) detection using magnetic porous carbon (MPC), nitrogen-doped graphene quantum dots (NGQDs), and double magnetic separation.


Assuntos
Técnicas Biossensoriais/métodos , Grafite/química , Ferro/química , Nitrogênio/química , Ocratoxinas/análise , Pontos Quânticos/química , Aptâmeros de Nucleotídeos/química , Exodesoxirribonucleases/química , Análise de Alimentos/métodos , Magnetismo/métodos , Porosidade , Espectrometria de Fluorescência/métodos , Triticum/química , Zea mays/química
20.
Langmuir ; 34(33): 9847-9855, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30044634

RESUMO

The orientation and conformation of adhesive proteins after adsorption play a central role in cell-binding bioactivity. Fibronectin (Fn) holds two peptide sequences that favor cell adhesion: the Arg-Gly-Asp (RGD) loop on the tenth type-III domain (Fn-III10) and the Pro-His-Ser-Arg-Asn (PHSRN) synergy site on the ninth type-III domain (Fn-III9). Herein, adsorption of Fn fragments (Fn-III10 and Fn-III9-10) on self-assembled monolayers (SAMs) carrying various functional groups (-COOH, -NH2, -CH3, and -OH) was investigated by the Monte Carlo method and molecular dynamics simulation in order to understand its mediation effect on cell adhesion. The results demonstrated that Fn-III9 could enhance the stiffness of the Fn molecule and further fix the adsorption orientation. The RGD site of the Fn fragment appeared to be deactivated on hydrophobic surfaces (CH3-SAM) because of the binding of adjacent nonpolar residues on surfaces, whereas charged surfaces (COOH-SAM and NH2-SAM) and hydrophilic surfaces (OH-SAM) were conducive to the formation of cell-binding-favorable orientation for Fn fragments. The cell adhesion capability of Fn fragments was highly improved on positively charged surfaces (NH2-SAM) and hydrophilic surfaces because of the advantageous steric structure and orientation of both RGD and PHSRN sites. This work provides an insight into the interplay at the atomic scale between protein adsorption and surface chemistry for designing biologically responsive substrate surfaces.


Assuntos
Fibronectinas/química , Adsorção , Adesão Celular , Domínio de Fibronectina Tipo III , Simulação de Dinâmica Molecular , Método de Monte Carlo , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA