Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(8): 13119-13127, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859290

RESUMO

We propose an all-fiber mode-selective power splitter (MSPS) for non-circular-symmetric LPlm (l = 1, 2, …) modes, which is suitable for multicasting and optical performance monitoring in mode-division multiplexing optical fiber networks. The MSPSs are asymmetric two-core few-mode directional couplers composed of a few-mode fiber and a two-mode fiber. We theoretically studied the three conditions required by the MSPSs. By carefully choosing the core-to-core distance and coupling length, the MSPS can achieve arbitrary splitting ratio regardless of the modal field orientation of the input non-circular-symmetric LP mode. By using an asymmetric structure, the MSPS can ensure the power splitting only happens on the target non-circular-symmetric LP mode when the phase matching condition is satisfied. In addition, we designed and numerically simulated LP31 MSPSs with four kinds of splitting ratios, among which the one with 90/10 splitting ratio was fabricated based on tapering and polishing method. The fabricated LP31 MSPS is characterized and the results show that its splitting ratio is much more stable than regular LP31 mode-selective coupler.

2.
Opt Lett ; 49(4): 981-984, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359241

RESUMO

Self-homodyne coherent transmission has recently received extensive investigation as a coherent lite candidate for high-speed short-reach optical networks. In this Letter, we propose a weakly coupled mode-division-multiplexing (MDM) self-homodyne coherent scheme using a multiple-ring-core few-mode fiber, in which one of the modes transmits a self-homodyne local oscillator (LO) and the rest are utilized for carrying signals. Multiple rings of index perturbations in the fiber core are applied to achieve low modal crosstalk, allowing the signals and the remote LO to be transmitted independently. We experimentally demonstrate a 7.2-Tb/s (5.64-Tb/s net rate) self-homodyne coherent transmission with an 800-Gb/s data rate for each of the nine information-bearing modes formatted in 80-GBaud probabilistic constellation-shaped 64-quadrature-amplitude modulation. To the best of our knowledge, this is the first experimental demonstration of an MDM self-homodyne coherent transmission with up to 10 spatial modes. The proposed scheme may pave the way for future high-capacity data center interconnections.

3.
Appl Opt ; 63(13): 3399-3405, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856524

RESUMO

Weakly coupled mode-division multiplexing (MDM) transmission over legacy laid multimode fiber (MMF) has great economic efficiency and can enormously enhance the capacity of short-reach optical interconnections. In order to be compatible with cost-efficient intensity-modulation/direct-detection (IM/DD) transceivers, weakly coupled mode-group demultiplexers that can simultaneously receive each mode group of MMFs are highly desired. In this paper, we propose a scalable low-modal-crosstalk mode-group demultiplexer over MMF based on multiplane light conversion (MPLC). Multiple input Hermite-Gaussian (HG) modes of MMF are first converted to bridging modes that are composed of H G 00 modes distributed as a right-angle triangle in Cartesian coordinates, and then each H G 00 mode belonging to a degenerate mode group is mapped to different overlapped H G n0 modes with vertical orientation for simultaneous detection. With the help of bridging modes, the MPLC-based mode-group demultiplexer can efficiently demultiplex all mode groups in standard MMFs with less than 20 phase masks. A nine-mode-group demultiplexer is further designed for demonstration, and simulation results show that the MPLC-based demultiplexer achieves low modal crosstalk of lower than -22.3d B at 1550 nm and lower than -17.9d B over the C-band for all the nine mode groups with only 16 phase masks.

4.
Opt Express ; 31(20): 31937-31945, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859007

RESUMO

Weakly-coupled mode division multiplexing (MDM) technique is a promising candidate for capacity enhancement of short-reach optical interconnections, for which the multiple-ring-core few-mode fiber (MRC-FMF) has been proven to be an effective design method to suppress distributed modal crosstalk. Similar to low chromatic-dispersion (CD) O-band transmission based on single-mode fibers (SMF), all the mode channels in a weakly-coupled FMF for short-reach applications should achieve low CD to support intensity-modulation/direct-detection (IM/DD) transmission. In this paper, we propose, for the first time to the best of our knowledge, an index perturbation method to adjust both effective index and CD of each mode in an MRC-FMF. Firstly, an accurate modeling method to model the relationship between SiO2-GeO2 material index and the germanium concentration at different wavelengths is proposed by analyzing the index characteristics of 4 kinds of germanium-doped fused silica SMFs at the same fabrication processing, which could be utilized to calculate the CD characteristics for an MRC-FMF with perturbed index profile. Then, based on the perturbation method considering the influences on both effective index and CD, a weakly-coupled low-CD MRC-FMF supporting 4 linearly-polarized (LP) modes is designed and fabricated. The measured minimum effective index difference min|Δneff| among all modes is larger than 1.3 × 10-3, and the CD values of all the modes lie between -6 and +6 ps/km/nm ranging from 1280 to 1320 nm, which agree well with the design. The 2-km transmission experiment indicates that the fabricated MRC-FMF could support stable digital-signal-processing (DSP)-free IM/DD transmission for all the 4 LP modes. This work is beneficial to the application of short-reach weakly-coupled MDM systems.

5.
Opt Express ; 31(5): 8586-8594, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859970

RESUMO

Weakly-coupled mode division multiplexing (MDM) techniques supporting intensity modulation and direct detection (IM/DD) transmission is a promising candidate to enhance the capacity of short-reach applications such as optical interconnections, in which low-modal-crosstalk mode multiplexers/demultiplexers (MMUX/MDEMUX) are highly desired. In this paper, we firstly propose an all-fiber low-modal-crosstalk orthogonal combine reception scheme for degenerate linearly-polarized (LP) modes, in which signals in both degenerate modes are firstly demultiplexed into the LP01 mode of single-mode fibers, and then are multiplexed into mutually orthogonal LP01 and LP11 modes of a two-mode fiber for simultaneous detection. Then a pair of 4-LP-mode MMUX/MDEMUX consisting of cascaded mode-selective couplers and orthogonal combiners are fabricated with side-polishing processing, which achieve low back-to-back modal crosstalk of lower than -18.51 dB and insertion loss of lower than 3.81 dB for all the 4 modes. Finally, a stable real-time 4 modes × 4λ × 10 Gb/s MDM-wavelength division multiplexing (WDM) transmission over 20-km few-mode fiber is experimentally demonstrated. The proposed scheme is scalable to support more modes and can pave the way to practical implementation of IM/DD MDM transmission applications.

6.
Opt Lett ; 48(18): 4905-4908, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707933

RESUMO

The integration of quantum key distribution (QKD) and classical optical communication has attracted widespread attention. In this Letter, we experimentally demonstrate a real-time co-propagation of 1 Tbps for 10 classical channels with one discrete-variable QKD channel in the weakly coupled few-mode fiber (FMF). Based on the selection of optimal device parameters and wavelength assignment of classical channels, as well as the optimization of equipment performance, a secure key rate of as high as 2.7 kbps of coexistence transmission of QKD and classical optical communication can be achieved using a 100.96 km weakly coupled FMF. Therefore, this study is a step toward realizing long-distance quantum-classical coexistence transmission.

7.
Opt Lett ; 48(6): 1367-1370, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946929

RESUMO

With the increasing signal rates of a long-haul backbone dense-wavelength-division-multiplexing (DWDM) transmission system, e.g., from 100 Gb/s to 400 Gb/s and even to 800 Gb/s, optical path impairments simultaneously become more severe. Harmful factors being formerly insignificant become noticeable, e.g., nonlinear phase noise (NPN) on main DWDM channels induced by the cross-phase modulation (XPM) from the low-speed optical supervisory channel (OSC). Field trials show that a greater than 5.13-dB penalty can be observed on the shortest channel of 400G DP-16QAM-PCS over G.654.E links, which greatly degrades the overall transmission performance and limits the maximum reach. In this paper, we propose a dual-OSC structure with opposite signals to compensate for performance degradation caused by OSC-induced NPN. This method involves no extra digital signal processing (DSP), which is not only simple but also applicable for universal signal rates. By experimental demonstration, a 1.32-dB gain in Q (dB) for 200G DP-16QAM transmission over 1618-km G.652.D can be done, almost achieving the same performance as the no OSC case.

8.
Opt Express ; 30(2): 1675-1685, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209323

RESUMO

Fan-in/fan-out (FI/FO) device with low crosstalk is essential for weakly coupled short-reach optical interconnect based on multicore fibers (MCF), for which the laser-direct-writing (LDW) technique is one of the preferred fabrication schemes. In this paper, the influence of FI/FO crosstalk on short-reach intensity-modulation/direction-detection MCF optical interconnection is firstly evaluated, and the crosstalk related to different refractive-index profiles of waveguides and misalignment is analyzed for LDW-FI/FO devices. Then low-crosstalk compact LDW-FI/FO devices matching 8-core MCF are fabricated, adopting multiple-scan method for waveguides with a flat-top refractive-index profile and aberration correction method for precise alignment. Owing to the low crosstalk, 8×100-Gbps optical interconnection over 10-km MCF is experimentally demonstrated with only 0.5-dB penalty compared to 10-km G.652D single-mode fiber transmission. Simulation results indicate that the transmission reach can be further extended to over 40 km. The proposed prototype system with low crosstalk is promising for high-speed optical interconnection applications.

9.
Opt Express ; 30(4): 5868-5878, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209540

RESUMO

Mode-division multiplexing (MDM) technique based on few-mode fibers (FMFs) can achieve multiplicative growth in single-fiber capacity by using different linearly polarized (LP) modes or mode groups as spatial channels. However, its deployment is seriously impeded because multiple-input multiple-output digital signal processing (MIMO-DSP) with huge computational load must be adopted to combat intermodal crosstalk for long-haul FMF transmission. In this paper, we present an intermodal-MIMO-free MDM transmission scheme based on weakly coupled multiple-ring-core FMF, which achieves ultralow distributed modal crosstalk (DMC) so that the signal in each LP mode can be independently received by single-LP-mode MIMO-DSP even after hundreds-of-kilometer transmission. Evaluation method for the required DMC levels is proposed and different transmission reaches are investigated by simulation. By adopting an improved method for quantitative DMC measurement, we show that the required DMC level for long-haul transmission is feasible. Finally, we experimentally demonstrate 1800-km LP01/LP02 multiplexed transmission and 525-km LP01/LP21/LP02 multiplexed transmission only adopting 2×2 or 4×4 MIMO-DSP. The proposed scheme may pave the way to practical applications of long-haul MDM techniques for the first time.

10.
Opt Lett ; 47(7): 1717-1720, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363716

RESUMO

In recent years, optical fiber distributed vibration sensors (DVSs) have received extensive investigation and play a significant role in different applications, such as structural health monitoring. In this Letter, we propose for the first time, to the best of our knowledge, a DVS mechanism based on linearly polarized mode coupling in weakly coupled few-mode fibers (FMFs), in which dynamic transverse stress induced by external vibration is measured with quantifiable and spatially resolvable mode coupling along the sensing FMF with ultralow inherent modal crosstalk. A swept-wavelength interferometer method is implemented and the involved data processing method is designed. A proof-of-concept DVS system is established and 5 Hz to 49 kHz frequency response, -50 dB detection sensitivity, and 22 m spatial resolution are successfully demonstrated based on a 9.6 km weakly coupled two-mode fiber. The wide frequency response over a long sensing length for the proposed scheme may extend the application range of DVS systems.

11.
Opt Express ; 28(9): 12558-12565, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403751

RESUMO

Quantum key distribution (QKD) is one of the most practical applications in quantum information processing, which can generate information-theoretical secure keys between remote parties. With the help of the wavelength-division multiplexing technique, QKD has been integrated with the classical optical communication networks. The wavelength-division multiplexing can be further improved by the mode-wavelength dual multiplexing technique with few-mode fiber (FMF), which has additional modal isolation and large effective core area of mode, and particularly is practical in fabrication and splicing technology compared with the multi-core fiber. Here, we present for the first time a QKD implementation coexisting with classical optical communication over weakly-coupled FMF using all-fiber mode-selective couplers. The co-propagation of QKD with one 100 Gbps classical data channel at -2.60 dBm launched power is achieved over 86 km FMF with 1.3 kbps real-time secure key generation. Compared with single-mode fiber using wavelength-division multiplexing, given the same fiber-input power, the Raman noise in FMF using the mode-wavelength dual multiplexing is reduced by 86% in average. Our work implements an important approach to the integration between QKD and classical optical communication and previews the compatibility of quantum communications with the next-generation mode division multiplexing networks.

12.
Opt Express ; 27(26): 38281-38288, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878598

RESUMO

Multiple-input-multiple-output digital signal processing (DSP) has become a severe bottleneck for mode division multiplexing (MDM) because of its huge computational complexity. In this paper, we propose a novel scheme for real-time DSP-free intensity-modulation/direct-detection (IM/DD) MDM transmission, in which the transmission few-mode fiber (FMF) is characterized by multiple-ring-core structure to suppress modal crosstalk among each LP mode, while each pair of non-circularly-symmetric degenerate modes is simultaneously demultiplexed by a degenerate-mode-selective fiber coupler for DSP-free reception. Based on a 10 km ultralow-modal-crosstalk double-ring-core FMF and a pair of all-fiber 4-LP-mode MUX/DEMUX, we demonstrate the first IM/DD MDM prototype system using commercial single-mode (SM) 10 Gbps SFP + modules and 4K video transceivers without any hardware modifications. The temperature and wavelength dependence are evaluated. The stable Q2-factor performance proves that it can be a smooth evolution scheme from conventional SM IM/DD systems. Moreover, the scheme can be further extended to support more modes with improved FMF design adopting more ring areas.

13.
Opt Express ; 27(11): 16271-16280, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163807

RESUMO

Spatial division multiplexing transmission over few-mode multicore fiber (FM-MCF) recently attracts great interests by simultaneously exploiting two more dimensions than conventional single mode fibers. In this paper, we propose an all-fiber spatial multiplexer (MUX) by cascading mode-selective fiber couplers (MSCs) with a fiber-bundle-type fan-in device, and spatial demultiplexer (DEMUX) by cascading a fiber-bundle-type fan-out device with degenerate-mode-selective fiber couplers and MSCs. Thanks to the low crosstalk of the FM-MCF, spatial MUX/DEMUX and their coupling, weakly-coupled 7-core-2-LP-mode real-time transmission over 1-km of FM-MCF is successfully demonstrated using 10-Gbps commercial enhanced small form-factor pluggable (SFP + ) transceivers.

14.
Opt Lett ; 44(9): 2145-2148, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042169

RESUMO

Three types of hollow-core fibers, i.e., photonic-bandgap fiber, negative-curvature fiber, and conjoined-tube fiber, are compared in terms of data transmission performance. Their group velocity dispersions and group indices are measured in detail by using low-coherence interferometry. Whilst all three fibers show good performance with an optimized central launch, they behave differently under offset launch for 10 Gbit/s on-off keying transmission. We use a Q2-factor analysis method to gain insight into the data transmission over a hollow-core fiber. The low-loss, low-intermodal crosstalk conjoined-tube fiber shows great resilience to bending and offset launch compared to the other two hollow-core fibers, enabling genuine penalty-free data transmission in realistic environments.

15.
Opt Express ; 26(7): 8356-8363, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715803

RESUMO

Weakly coupled-mode division multiplexing (MDM) over few-mode fibers (FMF) for short-reach transmission has attracted great interest, which can avoid multiple-input-multiple-output digital signal processing (MIMO-DSP) by greatly suppressing modal crosstalk. In this paper, step-index FMF supporting 4 linearity polarization (LP) modes for MIMO-free transmission is designed and fabricated for the first time, to our knowledge. Modal crosstalk of the fiber is suppressed by increasing the mode effective refractive index differences. The same fabrication method as standard single-mode fiber is adopted so that it is practical and cost-effective. The mode multiplexer/demultiplexer (MUX/DEMUX) consists of cascaded mode-selective couplers (MSCs), which are designed and fabricated by tapering the proposed FMF with single-mode fiber (SMF). The mode MUX and DEMUX achieve very low modal crosstalk not only for the multiplexing/demultiplexing but also for the coupling to/from the FMF. Based on the fabricated FMF and mode MUX/DEMUX, we successfully demonstrate the first simultaneous 4-modes (LP01, LP11, LP21 & LP31) 10-km FMF transmission with 10-Gb/s intensity modulation and MIMO-free direct detection (IM/DD). The modal crosstalk of the whole transmission link is successfully suppressed to less than -16.5 dB. The experimental results indicate that FMF with simple step-index structure supporting 4 weakly-coupled modes is feasible.

16.
Opt Express ; 25(14): 16603-16617, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789162

RESUMO

Recently mode-division-multiplexing (MDM) has been widely investigated to enhance fiber optics capacity, in which modes or mode groups in few-mode fiber (FMF) or multi-mode fiber (MMF) are exploited as different spatial channels for data transmission. For short-reach applications, significantly reducing inter-spatial-channel crosstalk to avoid coherent detection and multiple-input-multiple-output (MIMO) equalization is preferred. Currently most studies focus on the design of weakly-coupled FMFs and mode (de)multiplexers. Alternatively, in this work, a wavelength-interleaved (WI) scheme is proposed to mitigate inter-spatial-channel crosstalk by optimizing the design of direct detection (DD) MDM and wavelength-division-multiplexing (WDM) system. In weakly-coupled MDM systems, crosstalk mainly comes from the adjacent spatial channels, and the signal-to-crosstalk beat interference (SCBI) constitutes main crosstalk impairment after square-law detection. The WI scheme interleaves the WDM grids in adjacent spatial channels by half WDM channel spacing and uses an electrical low-pass filtering (ELPF) to remove out-of-band SCBI. The effectiveness of SCBI suppression is theoretically analyzed. The feasibility of WI scheme is experimentally verified by 3-mode 3-wavelength MDM-WDM transmission over 500-m OM3 MMF. Enabled by WI scheme, record 120-km 10G-per-channel MDM-WDM transmission over 2-mode FMF without MIMO equalization is successfully demonstrated. The WI scheme is promising to enhance the performance of short reach or even metro MDM optics.

17.
Opt Express ; 24(23): 26344-26356, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857370

RESUMO

Optical multicasting that supports point-to-multipoint traffic replication can be one of the necessary techniques in next-generation all-optical elastic networks. In this paper, we propose an optical multicasting approach for polarization-division-multiplexing (PDM) orthogonal frequency division multiplexing (OFDM) signals based on a novel polarization-interleaved multi-pump (PIMP) four-wave mixing (FWM) scheme in highly nonlinear fiber (HNLF). Besides format transparency and the support of PDM signals, the scheme further enables wide spectral tunability of generated replicas. The pump frequency arrangement for the scheme is presented, which successfully prevents the replicas from being superimposed by unwanted FWM components during tuning. We experimentally demonstrate multicasting operation of a 3-band 100-Gb/s PDM-OFDM signal. With different input positions, 1.4 and 1.6 Terahertz tuning ranges of four replicas are achieved with Q-factor performance better than the forward error correction threshold. Tunable replica spacing from 100-GHz to 250-GHz are also verified. In addition, the scalability of the scheme is demonstrated via 5-pump multicasting, successfully generating a total of 14 replicas.

18.
Opt Express ; 24(4): 4076-87, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907058

RESUMO

Elastic optical network (EON) has been proposed recently as a spectrum-efficient optical layer to adapt to rapidly-increasing traffic demands instead of current deployed wavelength-division-multiplexing (WDM) optical network. In contrast with conventional WDM optical cross-connect (OXCs) based on wavelength selective switches (WSSs), the EON OXCs are based on spectrum selective switches (SSSs) which are much more expensive than WSSs, especially for large-scale switching architectures. So the transition cost from WDM OXCs to EON OXCs is a major obstacle to realizing EON. In this paper, we propose and experimentally demonstrate a transition OXC (TOXC) structure based on 2-stage cascading switching architectures, which make full use of available WSSs in current deployed WDM OXCs to reduce number and port count of required SSSs. Moreover, we propose a contention-aware spectrum allocation (CASA) scheme for EON built with the proposed TOXCs. We show by simulation that the TOXCs reduce the network capital expenditure transiting from WDM optical network to EON about 50%, with a minor traffic blocking performance degradation and about 10% accommodated traffic number detriment compared with all-SSS EON OXC architectures.

19.
Opt Express ; 24(17): 18948-59, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27557176

RESUMO

Mode-division multiplexing (MDM) transmission over few-mode optical fiber has emerged as a promising technology to enhance transmission capacity, in which multiple-input-multiple-output (MIMO) digital signal processing (DSP) after coherent detection is used to demultiplex the signals. Compared with conventional single-mode systems, MIMO-MDM systems suffer non-recoverable signal degradation induced by mode-dependent loss (MDL). In this paper, the MDL-induced signal degradation in orthogonal-frequency-division-multiplexing (OFDM) MDM systems is theoretically quantified in terms of mode-average error vector magnitude (EVM) through frequency domain norm analysis. A novel scalar MDL metric is proposed considering the probability distribution of the practical MDM input signals, and a closed-form expression for EVM measured after zero-force (ZF) MIMO equalization is derived. Simulation results show that the EVM estimations utilizing the novel MDL metric remain unbiased for unrepeated links. For a 6 × 100 km 20-mode MDM transmission system, the estimation accuracy is improved by more than 90% compared with that utilizing traditional condition number (CN) based MDL metric. The proposed MDL metric can be used to predict the MDL-induced SNR penalty in a theoretical manner, which will be beneficial for the design of practical MIMO-MDM systems.

20.
Opt Express ; 24(19): 21609-18, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661899

RESUMO

Mode division multiplexing (MDM) has been widely investigated in optical transmission systems and networks to improve network capacity. However, the MDM receiver is always expensive and complex because coherent detection and multiplex-input-and-multiplex-output (MIMO) digital signal processing (DSP) are required to demultiplex each spatial mode. In this paper, we investigate the application of MDM in short-reach scenarios such as datacenter networking. Two-dimensional MDM and wavelength division multiplexing node structure based on low modal-crosstalk few-mode fiber (FMF) and components is proposed, in which signal in each mode or wavelength can be independently switched. We experimentally demonstrate independent adding, dropping and switching functionalities with two linearly polarized modes and four wavelength channels over a total 11.8-km 2-mode low modal-crosstalk FMFs. The structure is simple without coherent detection or MIMO DSP. Only slight penalties of receiver sensitivity are observed for all switching operations. The influence of modal-crosstalk accumulation for cascaded switching nodes is also investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA