RESUMO
CRISPR-associated (Cas) protein systems have been increasingly incorporated in nucleic-acid diagnosis. CRISPR/Cas12a can cleave single-stranded DNA (ssDNA) after being guided to the target double-stranded DNA (dsDNA) with crRNA, making it a specific tool for dsDNA detection. Assisted by nucleic acid preamplification, CRISPR/Cas12a enables dsDNA detection at the attomolar level. However, such mandatory preamplification in CRISPR/Cas12a also accompanies the extra step of transferring preamplification products into the CRISPR/Cas12a system, which is not only cumbersome and time-consuming but also induces the risk of cross-contamination. Herein, we demonstrate a multiplex-crRNA strategy to enhance the sensitivity of the CRISPR/Cas12a system without any preamplification. This multiplex-crRNA strategy harnesses multiple sequences of crRNA which target different regions of the same dsDNA substrate in the same CRISPR/Cas12a system. Therefore, detection signals are accumulated without amplification, which augments the conventional detection limit. For application demonstration, the B646L gene from the African swine fever virus (ASFV), which is a dsDNA virus, is exemplified. The detection limit of the multiplex-crRNA system can be improved to â¼1 picomolar (pM) without amplification, which is â¼64 times stronger than the conventional single-crRNA system. The multiplex-crRNA system presented in this study, with slight modifications, can be generalized to other biosensing settings where preamplification is not readily available.
Assuntos
Vírus da Febre Suína Africana , Vírus da Febre Suína Africana/genética , Animais , Sistemas CRISPR-Cas/genética , DNA/genética , DNA de Cadeia Simples , Técnicas de Amplificação de Ácido Nucleico , SuínosRESUMO
African swine fever virus (ASFV) is a leading cause of worldwide agricultural loss. ASFV is a highly contagious and lethal disease for both domestic and wild pigs, which has brought enormous economic losses to a number of countries. Conventional methods, such as general polymerase chain reaction and isothermal amplification, are time-consuming, instrument-dependent, and unsatisfactorily accurate. Therefore, rapid, sensitive, and field-deployable detection of ASFV is important for disease surveillance and control. Herein, we created a one-pot visual detection system for ASFV with CRISPR/Cas12a technology combined with LAMP or RPA. A mineral oil sealing strategy was adopted to mitigate sample cross-contamination between parallel vials during high-throughput testing. Furthermore, the blue fluorescence signal produced by ssDNA reporter could be observed by the naked eye without any dedicated instrument. For CRISPR-RPA system, detection could be completed within 40 min with advantageous sensitivity. While CRISPR-LAMP system could complete it within 60 min with a high sensitivity of 5.8 × 102 copies/µl. Furthermore, we verified such detection platforms display no cross-reactivity with other porcine DNA or RNA viruses. Both CRISPR-RPA and CRISPR-LAMP systems permit highly rapid, sensitive, specific, and low-cost Cas12a-mediated visual diagnostic of ASFV for point-of-care testing (POCT) applications.