Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant J ; 84(5): 925-36, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26478267

RESUMO

During anther development the male gametophyte develops inside the locule and the tapetal cells provide all nutrients for its development. Magnesium Transporter 5 (MGT5) is a member of the MGT family and has dual functions of Mg export and import. Here, we show that male gametophyte mitosis and intine formation are defective in a mgt5 mutant. The transient expression of GFP-MGT5 revealed that MGT5 is localized in the plasma membrane. These findings suggest that in the male gametophyte MGT5 plays a role in importing Mg from the locule and that Mg is essential for male gametophyte development. The expression of MGT5 in the knockout ABORTED MICROSPORES (AMS) mutant (AMS being an essential regulator of tapetum) is tremendously reduced. Chromatin immunoprecipitation and mobility shift assay experiments demonstrated that AMS can directly bind the promoter of MGT5. An immunoelectron microscopy assay revealed that MGT5-His is localized to the plasma membrane of the tapetum. These findings suggest that AMS directly regulates MGT5 in the tapetum and thus induces export of Mg into the locule. The mgt5 plant exhibits severe male sterility while the expression of MGT5 under the tapetum-specific promoter A9 partly rescued mgt5 fertility. mgt5 fertility was restored under high-Mg conditions. These findings suggest that the mgt5 tapetum still has the ability to export Mg and that a sufficient supply of Mg from the tapetum can improve the importation of Mg in the mgt5 male gametophyte. Therefore, MGT5 plays an important role in Mg transport from the tapetum to the microspore.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Magnésio/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Membrana Celular/metabolismo , Técnicas de Inativação de Genes , Reprodução/genética
2.
Nat Genet ; 37(10): 1141-6, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16155566

RESUMO

Many important agronomic traits in crop plants, including stress tolerance, are complex traits controlled by quantitative trait loci (QTLs). Isolation of these QTLs holds great promise to improve world agriculture but is a challenging task. We previously mapped a rice QTL, SKC1, that maintained K(+) homeostasis in the salt-tolerant variety under salt stress, consistent with the earlier finding that K(+) homeostasis is important in salt tolerance. To understand the molecular basis of this QTL, we isolated the SKC1 gene by map-based cloning and found that it encoded a member of HKT-type transporters. SKC1 is preferentially expressed in the parenchyma cells surrounding the xylem vessels. Voltage-clamp analysis showed that SKC1 protein functions as a Na(+)-selective transporter. Physiological analysis suggested that SKC1 is involved in regulating K(+)/Na(+) homeostasis under salt stress, providing a potential tool for improving salt tolerance in crops.


Assuntos
Oryza/metabolismo , Locos de Características Quantitativas , Canais de Sódio/genética , Canais de Sódio/fisiologia , Sódio/metabolismo , Sequência de Bases , Clonagem Molecular , Teste de Complementação Genética , Transporte de Íons/genética , Dados de Sequência Molecular , Oryza/genética , Potássio/análise , Canais de Potássio/genética , Canais de Potássio/fisiologia , Sais/metabolismo , Sódio/análise , Cloreto de Sódio/metabolismo
3.
J Integr Plant Biol ; 56(3): 315-32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24325391

RESUMO

In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K⁺ in the presence of toxic concentrations of Na⁺. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKT1;4, a member of the HKT gene family from Sorghum bicolor. Upon Na⁺ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na⁺ /K⁺ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na⁺ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K⁺, implicating that SbHKT1;4 may mediate K⁺ uptake in the presence of excessive Na⁺. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na⁺ and K⁺ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKT1;4 functions to maintain optimal Na⁺ /K⁺ balance under Na⁺ stress to the breeding of salt-tolerant glycophytic crops is discussed.


Assuntos
Proteínas de Transporte de Cátions/genética , Família Multigênica , Proteínas de Plantas/genética , Potássio/metabolismo , Sódio/metabolismo , Sorghum/genética , Sorghum/fisiologia , Estresse Fisiológico/genética , Simportadores/genética , Sequência de Aminoácidos , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Teste de Complementação Genética , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Dados de Sequência Molecular , Mutação/genética , Oócitos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Salinidade , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/fisiologia , Cloreto de Sódio/farmacologia , Sorghum/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Simportadores/química , Simportadores/metabolismo , Fatores de Tempo , Xenopus
4.
Plant Cell ; 22(5): 1633-46, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20501909

RESUMO

Long-distance transport of nitrate requires xylem loading and unloading, a successive process that determines nitrate distribution and subsequent assimilation efficiency. Here, we report the functional characterization of NRT1.8, a member of the nitrate transporter (NRT1) family in Arabidopsis thaliana. NRT1.8 is upregulated by nitrate. Histochemical analysis using promoter-beta-glucuronidase fusions, as well as in situ hybridization, showed that NRT1.8 is expressed predominantly in xylem parenchyma cells within the vasculature. Transient expression of the NRT1.8:enhanced green fluorescent protein fusion in onion epidermal cells and Arabidopsis protoplasts indicated that NRT1.8 is plasma membrane localized. Electrophysiological and nitrate uptake analyses using Xenopus laevis oocytes showed that NRT1.8 mediates low-affinity nitrate uptake. Functional disruption of NRT1.8 significantly increased the nitrate concentration in xylem sap. These data together suggest that NRT1.8 functions to remove nitrate from xylem vessels. Interestingly, NRT1.8 was the only nitrate assimilatory pathway gene that was strongly upregulated by cadmium (Cd(2+)) stress in roots, and the nrt1.8-1 mutant showed a nitrate-dependent Cd(2+)-sensitive phenotype. Further analyses showed that Cd(2+) stress increases the proportion of nitrate allocated to wild-type roots compared with the nrt1.8-1 mutant. These data suggest that NRT1.8-regulated nitrate distribution plays an important role in Cd(2+) tolerance.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cádmio/toxicidade , Nitratos/metabolismo , Exsudatos de Plantas/metabolismo , Xilema/enzimologia , Adaptação Fisiológica/genética , Proteínas de Transporte de Ânions/genética , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Mutação/genética , Transportadores de Nitrato , Exsudatos de Plantas/genética , Transporte Proteico/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Regulação para Cima/efeitos dos fármacos , Xilema/citologia , Xilema/efeitos dos fármacos , Xilema/genética
5.
Proc Natl Acad Sci U S A ; 107(15): 7089-94, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20351263

RESUMO

Plant high-affinity K(+) transport (HKT) proteins are so named because of their relation to bacterial and fungal transporters that mediate high-affinity K(+) uptake. The view that HKT family members are sodium-selective uniporters or sodium-potassium symporters is widely held. We have found that one of the rice HKT proteins also functions as a Ca(2+)-permeable cation channel that conducts current carried by a wide range of monovalent and divalent cations. The HKT rice gene, named OsHKT2;4, is expressed in several cell types, including root hairs and vascular parenchyma cells. The protein is localized to the plasma membrane, thereby providing a mechanism for cation uptake and extrusion. This finding goes against firmly entrenched dogma in showing that HKT proteins can function as both ion carriers and channels. The study further extends the function of HKT proteins to Ca(2+)-linked processes and, in so doing, defines a previously undescribed type of Ca(2+)-permeable cation channels in plants. The work also raises questions about the evolutionary changes in this protein family following the divergence of monocots and dicots.


Assuntos
Canais de Cálcio/metabolismo , Cátions/metabolismo , Oryza/metabolismo , Potássio/química , Canais de Sódio/metabolismo , Animais , Cálcio/química , Proteínas de Transporte de Cátions/química , Membrana Celular/metabolismo , Canais Iônicos/química , Cinética , Modelos Biológicos , Oócitos/metabolismo , Fenótipo , Simportadores/metabolismo , Xenopus
6.
Plant Sci ; 308: 110901, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034862

RESUMO

Nitrogen is an essential macronutrient for plants and regulates many aspects of plant growth and development. Nitrate is one of the major forms of nitrogen in plants. However, the role of nitrate uptake and allocation in seed development is not fully understood. Here, we identified the maize (Zea mays) small-kernel mutant zmnpf7.9 and characterized the candidate gene, ZmNPF7.9, which was the same gene as nitrate transport 1.5 (NRT1.5) in maize. This gene is specifically expressed in the basal endosperm transfer layer cells of maize endosperm. Dysfunction of ZmNPF7.9 resulted in delayed endosperm development, abnormal starch deposition and decreased hundred-grain weight. Functional analysis of cRNA-injected Xenopus oocytes showed that ZmNPF7.9 is a low-affinity, pH-dependent bidirectional nitrate transporter. Moreover, the amount of nitrate in mature seeds of the zmnpf7.9 mutant was reduced. These suggest that ZmNPF7.9 is involved in delivering nitrate from maternal tissues to the developing endosperm. Moreover, most of the key genes associated with glycolysis/gluconeogenesis, carbon fixation, carbon metabolism and biosynthesis of amino acids pathways in the zmnpf7.9 mutant were significantly down-regulated. Thus, our results demonstrate that ZmNPF7.9 plays a specific role in seed development and grain weight by regulating nutrition transport and metabolism, which might provide useful information for maize genetic improvement.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Proteínas de Transporte de Ânions/metabolismo , Endosperma/crescimento & desenvolvimento , Transportadores de Nitrato , Proteínas de Plantas/metabolismo , Amido/metabolismo , Zea mays/metabolismo
7.
J Integr Plant Biol ; 50(12): 1530-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19093971

RESUMO

Magnesium (Mg(2+)) is one of the essential cations in all cells. Although the Mg(2+) transport mechanism has been well-documented in bacteria, less is known about Mg(2+) transporters in eukaryotes. The AtMGT gene family encoding putative magnesium transport proteins had been described previously. We report here that one of the Arabidopsis MGT family members, the AtMGT7 gene, encodes two mRNAs that have resulted from alternative splicing variants, designated AtMGT7a and AtMGT7b. Interestingly, the two mRNA variants were expressed with different patterns with AtMGT7a expressing in all organs, but AtMGT7b appearing only in root and flowers. The AtMGT7a variant functionally complemented a bacterial mutant lacking Mg(2+) transport capacity, whereas AtMGT7b did not. The (63)Ni(2+) tracer uptake analysis in the bacterial model showed that AtMGT7a mediated low-affinity transport of Mg(2+). Consistent with the complementation assay result, (63)Ni(2+) tracer uptake analysis revealed that AtMGT7b did not transport Mg(2+). This study therefore has identified from a higher plant the first low-affinity Mg(2+) transporter encoded by a gene with alternatively spliced transcripts that produce proteins with distinct functions.


Assuntos
Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Magnésio/metabolismo , Processamento Alternativo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Expressão Gênica , Teste de Complementação Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salmonella/genética , Análise de Sequência de DNA , Zinco/metabolismo
8.
Mol Med Rep ; 13(6): 4927-33, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27082161

RESUMO

It has previously been reported that 16α, 17α-epoxypregnenolone-20-oxime (EPREGO) exerts an inhibitory effect on nitric oxide (NO) production and inducible NO synthase (iNOS) expression in microglia. The present study aimed to investigate the effects of EPREGO on the lipopolysaccharide (LPS)­induced inflammatory response in RAW264.7 macrophage cells, and to determine the underlying molecular mechanisms using western blot analysis, enzyme­linked immunosorbent assays and fluorescence­activated cell sorting. The present study demonstrated that LPS­induced production of NO and interleukin (IL)-6, and the protein expression levels of iNOS, were reduced by EPREGO in a dose­ and time­dependent manner, whereas, EPREGO did not affect tumor necrosis factor­α production. In addition, EPREGO suppressed LPS­induced cellular reactive oxygen species production and phagocytosis. Furthermore, EPREGO significantly inhibited the LPS­induced activation of mitogen­activated protein kinases and inhibitor of κB α degradation in LPS­stimulated RAW264.7 cells, thus resulting in modulation of the production of NO and IL­6. Taken together, these results suggest that EPREGO exhibits anti-inflammatory activity in macrophages, thus validating the hypothesis that EPREGO may be useful as a therapeutic agent for the treatment of macrophage-mediated inflammation.


Assuntos
Interleucina-6/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico/biossíntese , Oximas/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Espécies Reativas de Oxigênio/metabolismo
9.
Cell Res ; 19(7): 887-98, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19436262

RESUMO

Magnesium (Mg(2+)) is abundant in plant cells and plays a critical role in many physiological processes. A 10-member gene family AtMGT (also known as AtMRS2) was identified in Arabidopsis, which belongs to a eukaryote subset of the CorA superfamily, functioning as Mg(2+) transporters. Some family members (AtMGT1 and AtMGT10) function as high-affinity Mg(2+) transporter and could complement bacterial mutant or yeast mutant lacking Mg(2+) transport capability. Here we report an AtMGT family member, AtMGT9, that functions as a low-affinity Mg(2+) transporter, and is essential for pollen development. The functional complementation assay in Salmonella mutant strain MM281 showed that AtMGT9 is capable of mediating Mg(2+) uptake in the sub-millimolar range of Mg(2+). The AtMGT9 gene was expressed most strongly in mature anthers and was also detectable in vascular tissues of the leaves, and in young roots. Disruption of AtMGT9 gene expression resulted in abortion of half of the mature pollen grains in heterozygous mutant +/mgt9, and no homozygous mutant plant was obtained in the progeny of selfed +/mgt9 plants. Transgenic plants expressing AtMGT9 in these heterozygous plants can recover the pollen phenotype to the wild type. In addition, AtMGT9 RNAi transgenic plants also showed similar abortive pollen phenotype to mutant +/mgt9. Together, our results demonstrate that AtMGT9 functions as a low-affinity Mg(2+) transporter that plays a crucial role in male gametophyte development and male fertility.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Pólen/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Magnésio/farmacologia , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Pólen/metabolismo , Interferência de RNA , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
10.
Mol Plant ; 1(2): 238-48, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19825536

RESUMO

Calcium plays a vital role as a second messenger in many signaling pathways in plants. The calcineurin B-like proteins (CBLs) represent a family of plant calcium-binding proteins that function in calcium signaling by interacting with their interacting protein kinases (CIPKs). In our previous study, we have reported a role for one of the CBLs (CBL9) and one of the CIPKs (CIPK3) in ABA signaling. Here, we have shown that CBL9 and CIPK3 physically and functionally interact with each other in regulating the ABA responses. The CBL9 and CIPK3 proteins interacted with each other in the yeast two-hybrid system and when expressed in plant cells. The double mutant cbl9cipk3 showed the similar hypersensitive response to ABA as observed in single mutants (cbl9 or cipk3). The constitutively active form of CIPK3 genetically complemented the cbl9 mutant, indicating that CIPK3 function downstream of CBL9. Based on these findings, we conclude that CBL9 and CIPK3 act together in the same pathway for regulating ABA responses.


Assuntos
Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Germinação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Sementes/fisiologia , Transdução de Sinais/fisiologia , Agrobacterium tumefaciens/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Primers do DNA , Secas , Homeostase , Mutagênese Sítio-Dirigida , Plantas Geneticamente Modificadas/genética , Plasmídeos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética
11.
Mol Plant ; 1(4): 675-85, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19825572

RESUMO

Magnesium is an abundant divalent cation in plant cells and plays a critical role in many physiological processes. We have previously described the identification of a 10-member Arabidopsis gene family encoding putative magnesium transport (MGT) proteins. Here, we report that a member of the MGT family, AtMGT5, functions as a dual-functional Mg-transporter that operates in a concentration-dependent manner, namely it serves as a Mg-importer at micromolar levels and facilitates the efflux in the millimolar range. The AtMGT5 protein is localized in the mitochondria, suggesting that AtMGT5 mediates Mg-trafficking between the cytosol and mitochondria. The AtMGT5 gene was exclusively expressed in anthers at early stages of flower development. Examination of two independent T-DNA insertional mutants of AtMGT5 gene demonstrated that AtMGT5 played an essential role for pollen development and male fertility. This study suggests a critical role for Mg(2+) transport between cytosol and mitochondria in male gametogenesis in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Magnésio/metabolismo , Níquel/metabolismo , Especificidade de Órgãos , Fenótipo , Pólen/genética , Transporte Proteico
12.
Sheng Wu Gong Cheng Xue Bao ; 18(4): 468-71, 2002 Jul.
Artigo em Zh | MEDLINE | ID: mdl-12385245

RESUMO

Chilling-sensitive rice varieties acquire chilling tolerance when their roots are exposed to water stress for short time. Caffeine-sensitive calcium signal was involved in this procedure. By using total RNA differential display, a chilling induced cDNA(ICT: induction of chilling treatment) was isolated from roots of chilling-sensitive rice variety. It was determined that it is a novel cDNA by homology searching. The transcript level of ict mRNA is up-regulated under chilling stress, it is decreased to low level when the samples were transferred to standard culture conditions. Pre-treated with mannitol for two hours is beneficial to inducing ICT level of expression. This chilling induction was inhibited by caffeine, suggesting that it may play a putative role in signal transduction of caffeine-sensitive calcium.


Assuntos
DNA Complementar/isolamento & purificação , Perfilação da Expressão Gênica , Oryza/genética , Raízes de Plantas/genética , Temperatura Baixa , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Manitol/farmacologia , Oryza/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA