Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cerebellum ; 23(5): 1923-1931, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38558026

RESUMO

Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuroregulatory technique used to treat neurodegenerative diseases, holds promise for spinocerebellar ataxia type 3 (SCA3) treatment, although its efficacy and mechanisms remain unclear. This study aims to observe the short-term impact of cerebellar rTMS on motor function in SCA3 patients and utilize resting-state functional magnetic resonance imaging (RS-fMRI) to assess potential therapeutic mechanisms. Twenty-two SCA3 patients were randomly assigned to receive actual rTMS (AC group, n = 11, three men and eight women; age 32-55 years) or sham rTMS (SH group, n = 11, three men and eight women; age 26-58 years). Both groups underwent cerebellar rTMS or sham rTMS daily for 15 days. The primary outcome measured was the ICARS scores and parameters for regional brain activity. Compared to baseline, ICARS scores decreased more significantly in the AC group than in the SH group after the 15-day intervention. Imaging indicators revealed increased Amplitude of Low Frequency Fluctuation (ALFF) values in the posterior cerebellar lobe and cerebellar tonsil following AC stimulation. This study suggests that rTMS enhances motor functions in SCA3 patients by modulating the excitability of specific brain regions and associated pathways, reinforcing the potential clinical utility of rTMS in SCA3 treatment. The Chinese Clinical Trial Registry identifier is ChiCTR1800020133.


Assuntos
Doença de Machado-Joseph , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana/métodos , Adulto , Doença de Machado-Joseph/terapia , Doença de Machado-Joseph/fisiopatologia , Doença de Machado-Joseph/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Resultado do Tratamento
2.
Neurol Genet ; 10(3): e200162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841628

RESUMO

Background and Objectives: Spinocerebellar ataxia type 3 (SCA3) is a hereditary ataxia that occurs worldwide. Clinical patterns were observed, including the one characterized by marked spastic paraplegia. This study investigated the clinical features, disease progression, and multiparametric imaging aspects of patients with SCA3. Methods: We retrospectively analyzed 249 patients with SCA3 recruited from the Organization for Southeast China for cerebellar ataxia research between October 2014 and December 2020. Of the 249 patients, 145 were selected and assigned to 2 groups based on neurologic examination: SCA3 patients with spastic paraplegia (SCA3-SP) and SCA3 patients with nonspastic paraplegia (SCA3-NSP). Participants underwent 3.0-T brain MRI examinations, and voxel-wise and volume-of-interest-based approaches were used for the resulting images. A tract-based spatial statistical approach was used to investigate the white matter (WM) alterations using diffusion tensor imaging, neurite orientation dispersion, and density imaging metrics. Multiple linear regression analyses were performed to compare the clinical and imaging parameters between the 2 groups. The longitudinal data were evaluated using a linear mixed-effects model. Results: Forty-three patients with SCA3-SP (mean age, 37.58years ± 11.72 [SD]; 18 women) and 102 patients with SCA3-NSP (mean age, 47.42years ± 12.50 [SD]; 39 women) were analyzed. Patients with SCA3-SP were younger and had a lower onset age but a larger cytosine-adenine-guanine repeat number, as well as higher clinical severity scores (all corrected p < 0.05). The estimated progression rates of the Scale for the Assessment and Rating of Ataxia (SARA) and International Cooperative Ataxia Rating Scale scores were higher in the SCA3-SP subgroup than in the SCA3-NSP subgroup (SARA, 2.136 vs 1.218 points; ICARS, 5.576 vs 3.480 points; both p < 0.001). In addition, patients with SCA3-SP showed gray matter volume loss in the precentral gyrus with a decreased neurite density index in the WM of the corticospinal tract and cerebellar peduncles compared with patients with SCA3-NSP. Discussion: SCA3-SP differs from SCA3-NSP in clinical features, multiparametric brain imaging findings, and longitudinal follow-up progression.

3.
J Neurol ; 271(2): 918-928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37848650

RESUMO

BACKGROUND: Many neuroscience and neurology studies have forced a reconsideration of the traditional motor-related scope of cerebellar function, which has now expanded to include various cognitive functions. Spinocerebellar ataxia type 3 (SCA3; the most common hereditary ataxia) is neuropathologically characterized by cerebellar atrophy and frequently presents with cognitive impairment. OBJECTIVE: To characterize cognitive impairment in SCA3 and investigate the cerebellum-cognition associations. METHODS: This prospective, cross-sectional cohort study recruited 126 SCA3 patients and 41 healthy control individuals (HCs). Participants underwent a brain 3D T1-weighted images as well as neuropsychological tests. Voxel-based morphometry (VBM) and region of interest (ROI) approaches were performed on the 3D T1-weighted images. CERES was used to automatically segment cerebellums. Patients were grouped into cognitively impaired (CI) and cognitively preserved (CP), and clinical and MRI parameters were compared. Multivariable regression models were fitted to examine associations between cerebellar microstructural alterations and cognitive domain impairments. RESULTS: Compared to HCs, SCA3 patients showed cognitive domain impairments in information processing speed, verbal memory, executive function, and visuospatial perception. Between CI and CP subgroups, the CI subgroup was older and had lower education, as well as higher severity scores. VBM and ROI analyses revealed volume loss in cerebellar bilateral lobule VI, right lobule Crus I, and right lobule IV of the CI subgroup, and all these cerebellar lobules were associated with the above cognitive domain impairments. CONCLUSIONS: Our findings demonstrate the multiple cognitive domain impairments in SCA3 patients and indicate the responsible cerebellar lobules for the impaired cognitive domain(s).


Assuntos
Disfunção Cognitiva , Doença de Machado-Joseph , Humanos , Cerebelo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Estudos Transversais , Doença de Machado-Joseph/complicações , Doença de Machado-Joseph/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos
4.
Ann Clin Transl Neurol ; 10(2): 225-236, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479904

RESUMO

OBJECTIVES: Spinocerebellar ataxia type 3 is a disorder within the brain network. However, the relationship between the brain network and disease severity is still unclear. This study aims to investigate changes in the white matter (WM) structural motor network, both in preclinical and ataxic stages, and its relationship with disease severity. METHODS: For this study, 20 ataxic, 20 preclinical SCA3 patients, and 20 healthy controls were recruited and received MRI scans. Disease severity was quantified using the SARA and ICARS scores. The WM motor structural network was created using probabilistic fiber tracking and was analyzed using graph theory and network-based statistics at global, nodal, and edge levels. In addition, the correlations between network topological measures and disease duration or clinical scores were analyzed. RESULTS: Preclinical patients showed increasing assortativity of the motor network, altered subnetwork including 12 edges of 11 nodes, and 5 brain regions presenting reduced nodal strength. In ataxic patients assortativity of the motor network also increased, but global efficiency, global strength, and transitivity decreased. Ataxic patients showed a wider altered subnetwork and a higher number of reduced nodal strengths. A negative correlation between the transitivity of the motor network and SARA and ICARS scores was observed in ataxic patients. INTERPRETATION: Changes to the WM motor network in SCA3 start before ataxia onset, and WM motor network involvement increases with disease progression. Global network topological measures of the WM motor network appear to be a promising image biomarker for disease severity. This study provides new insights into the pathophysiology of disease in SCA3/MJD.


Assuntos
Ataxia Cerebelar , Doença de Machado-Joseph , Substância Branca , Humanos , Doença de Machado-Joseph/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
5.
Front Neurosci ; 17: 1180454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179566

RESUMO

Background: Cerebellar ataxia (CA) is a movement disorder that can affect balance and gait, limb movement, oculomotor control, and cognition. Multiple system atrophy-cerebellar type (MSA-C) and spinocerebellar ataxia type 3 (SCA3) are the most common forms of CA, for which no effective treatment is currently available. Transcranial alternating current stimulation (tACS) is a non-invasive method of brain stimulation supposed to alter cortical excitability and brain electrical activity, modulating functional connectivity within the brain. The cerebellar tACS can modulate the cerebellar outflow and cerebellum-linked behavior and it is a proven safe technique for humans. Therefore, the aim of this study is to 1) examine whether cerebellar tACS improves ataxia severity and various non-motor symptoms in a homogeneous cohort of CA patients consisting of MSA-C and SCA3, 2) explore the time course of these effects, and 3) assess the safety and tolerance of cerebellar tACS in all participants. Methods/design: This is a 2-week, triple-blind, randomised, sham-controlled study. 164 patients (MSA-C: 84, SCA3: 80) will be recruited and randomly assigned to either active cerebellar tACS or sham cerebellar tACS, in a 1:1 ratio. Patients, investigators, and outcome assessors are unaware of treatment allocation. Cerebellar tACS (40 min, 2 mA, ramp-up and down periods of 10s each) will be delivered over 10 sessions, distributed in two groups of five consecutive days with a two-day break in between. Outcomes are assessed after the tenth stimulation (T1), and after 1 month (T2) and 3 months (T3). The primary outcome measure is the difference between the active and sham groups in the proportion of patients with an improvement of 1.5 points in the Scale for the Assessment and Rating of Ataxia (SARA) score after 2 weeks of treatment. In addition, effects on a variety of non-motor symptoms, quality of life, and autonomic nerve dysfunctions are assessed via relative scales. Gait imbalance, dysarthria, and finger dexterity are objectively valued via relative tools. Finally, functional magnetic resonance imaging is performed to explore the possible mechanism of treatment effects. Discussion: The results of this study will inform whether repeated sessions of active cerebellar tACS benefit CA patients and whether this form of non-invasive stimulation might be a novel therapeutic approach to consider in a neuro-rehabilitation setting.Clinical Trial Registration: ClinicalTrials.gov, identifier NCT05557786; https://www.clinicaltrials.gov/ct2/show/NCT05557786.

6.
Front Aging Neurosci ; 14: 827993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547622

RESUMO

Background: Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant hereditary ataxia, and, thus far, effective treatment remains low. Repetitive transcranial magnetic stimulation (rTMS) can improve the symptoms of spinal cerebellar ataxia, but the mechanism is unclear; in addition, whether any improvement in the symptoms is related to cerebellar metabolism has not yet been investigated. Therefore, the purpose of this study was to investigate the effects of low-frequency rTMS on local cerebellar metabolism in patients with SCA3 and the relationship between the improvement in the symptoms and cerebellar metabolism. Methods: A double-blind, prospective, randomized, sham-controlled trial was carried out among 18 SCA3 patients. The participants were randomly assigned to the real stimulation group (n = 9) or sham stimulation group (n = 9). Each participant in both the groups underwent 30 min of 1 Hz rTMS stimulation (a total of 900 pulses), differing only in terms of stimulator placement, for 15 consecutive days. To separately compare pre- and post-stimulation data (magnetic resonance spectroscopy (MRS) data and the International Cooperative Ataxia Rating Scale (ICARS) score) in the real and sham groups, paired-sample t-tests and Wilcoxon's signed-rank tests were used in the analyses. The differences in the ICARS and MRS data between the two groups were analyzed with independent t-tests and covariance. To explore the association between the changes in the concentration of cerebellar metabolism and ICARS, we applied Pearson's correlation analysis. Results: After 15 days of treatment, the ICARS scores significantly decreased in both the groups, while the decrease was more significant in the real stimulation group compared to the sham stimulation group (p < 0.001). The analysis of covariance further confirmed that the total ICARS scores decreased more dramatically in the real stimulation group after treatment compared to the sham stimulation group (F = 31.239, p < 0.001). The values of NAA/Cr and Cho/Cr in the cerebellar vermis, bilateral dentate nucleus, and bilateral cerebellar hemisphere increased significantly in the real stimulation group (p < 0.05), but no significant differences were found in the sham stimulation group (p > 0.05). The analysis of covariance also confirmed the greater change in the real stimulation group. This study also demonstrated that there was a negative correlation between NAA/Cr in the right cerebellar hemisphere and ICARS in the real stimulation group (r = - 0.831, p = 0.02). Conclusion: The treatment with rTMS over the cerebellum was found to induce changes in the cerebellar local metabolism and microenvironment in the SCA3 patients. The alterations may contribute to the improvement of the symptoms of ataxia in SCA3 patients.

7.
J Agric Food Chem ; 69(22): 6229-6239, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34028274

RESUMO

Rhynchanthus beesianus (Zingiberaceae) has been an important food spice and vegetable in southern China. Fifteen phenolic compounds (1-15) including three new diarylheptanoids, rhynchanines A-C (1-3) and one new phenylpropanoid, 4-O-methylstroside B (9), were isolated from R. beesianus rhizomes. The structures of new compounds were elucidated by comprehensive analyses through NMR, HRMS technique, acid hydrolysis, and Mosher's reaction. Among them, compound 5 is the first isolated natural product and its NMR data are reported. Most of the isolated compounds, especially 3-6 and 8, showed significant antioxidant activities on DPPH, ABTS+ radical scavenging, and FRAP assays. Furthermore, the antioxidant phenolic compounds were evaluated for their cytoprotective capacity against H2O2-induced oxidative stress in HepG-2 cells. Compounds 3 and 5 could significantly inhibit reactive oxygen species production, and compounds 3, 5, and 6 could remarkably prevent the cell apoptosis. Then, the R. beesianus rhizome, which contained phenolic compounds, might serve as a functional food for potential application on preventing oxidative stress-connected diseases.


Assuntos
Antioxidantes , Zingiberaceae , Antioxidantes/farmacologia , China , Diarileptanoides , Peróxido de Hidrogênio , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA