Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 62(1): 168-177, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-37678194

RESUMO

OBJECTIVES: Cancer morbidity and mortality can be reduced if the cancer is detected early. Cell-free DNA (cfDNA) fragmentomics emerged as a novel epigenetic biomarker for early cancer detection, however, it is still at its infancy and requires technical improvement. We sought to apply a single-strand DNA sequencing technology, for measuring genetic and fragmentomic features of cfDNA and evaluate the performance in detecting multiple cancers. METHODS: Blood samples of 364 patients from six cancer types (colorectal, esophageal, gastric, liver, lung, and ovarian cancers) and 675 healthy individuals were included in this study. Circulating tumor DNA mutations, cfDNA fragmentomic features and a set of protein biomarkers were assayed. Sensitivity and specificity were reported by cancer types and stages. RESULTS: Circular Ligation Amplification and sequencing (CLAmp-seq), a single-strand DNA sequencing technology, yielded a population of ultra-short fragments (<100 bp) than double-strand DNA preparation protocols and reveals a more significant size difference between cancer and healthy cfDNA fragments (25.84 bp vs. 16.05 bp). Analysis of the subnucleosomal peaks in ultra-short cfDNA fragments indicates that these peaks are regulatory element "footprints" and correlates with gene expression and cancer stages. At 98 % specificity, a prediction model using ctDNA mutations alone showed an overall sensitivity of 46 %; sensitivity reaches 60 % when protein is added, sensitivity further increases to 66 % when fragmentomics is also integrated. More improvements observed for samples representing earlier cancer stages than later ones. CONCLUSIONS: These results suggest synergistic properties of protein, genetic and fragmentomics features in the identification of early-stage cancers.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias , Humanos , Detecção Precoce de Câncer , Mutação , DNA Tumoral Circulante/genética , Neoplasias/diagnóstico , Neoplasias/genética , Biomarcadores Tumorais/genética
2.
iScience ; 27(6): 110125, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904069

RESUMO

The UN (United Nations) collects global data on the country-level Percentage of Population Residing in Urban Area (PPRUA). However, variations in urban definitions make these data incomparable across countries. This study assesses national defined PPRUA within UN statistics against estimates we derived using global comparable definitions. Refer to the UN's Degree of Urbanization framework, we propose 90 global harmonized methods for estimating PPRUA by combining different configurations of three global population datasets, six urban total population thresholds, and five urban population density thresholds. This approach demonstrated significant variations in country-level PPRUA estimations, with wide 95% confidence intervals using the Z score method. Most national defined PPRUA fall between the upper 95% CI and the median of the estimations, underscoring the need for globally harmonious PPRUA estimates. This study advocates for a reassessment of datasets and thresholds in the future and for investigating urbanization on a scale beyond the country level.

3.
Quant Imaging Med Surg ; 14(1): 1022-1038, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223110

RESUMO

Background: The use of artificial intelligence (AI) technology has been growing in the management of intracranial aneurysms (IAs). This study aims to conduct a bibliometric analysis of researches on intracranial aneurysm management with artificial intelligence technology (IAMWAIT) to gain insights into global research trends and potential future directions. Methods: A comprehensive search of articles and reviews related to IAMWAIT, published from January 1, 1900 to July 20, 2023, was conducted using the Web of Science Core Collection (WoWCC).Visualizations of the bibliometric analysis were generated utilizing WPS Office, Scimago Graphica, VOSviewer, CiteSpace, and R. Results: A total of 277 papers were included in the study. China emerged as the most prolific country in terms of publications, institutions, cooperating countries, and prolific authors. The United States garnered the highest number of total citations, institutions with the highest citations/H index, cooperating countries (n=9), and 3 of the top 10 cited papers. Both the total number of papers and the citation count exhibited a positive and significant correlation with the gross domestic product (GDP) of countries. The journal with the highest publication frequency was Frontiers in Neurology, while Stroke recorded the highest number of citations, H-index, and impact factor (IF). Areas of primary interest in IAMWAIT, leveraging AI technology, included rupture risk assessment/prediction, computer-assisted diagnosis, outcome prediction, hemodynamics, and laboratory research of IAs. Conclusions: IAMWAIT is an active area of research that has undergone rapid development in recent years. Future endeavors should focus on broader application of AI algorithms in various sub-fields of IAMWAIT to better suit the real world.

4.
Front Biosci (Landmark Ed) ; 29(3): 98, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38538261

RESUMO

PURPOSE: Numerous studies have emphasised the importance of necroptosis in the malignant progression of colorectal cancer (CRC). However, whether necroptosis-related genes (NRGs) can be used to predict the prognosis of CRC remains to be revealed. METHODS: Patients with CRC were divided into two clusters based on the expression of NRGs, and prognosis was compared between the two clusters. A prognostic model was established based on NRGs, and its predictive efficiency was validated using Kaplan-Meier (K-M) curves, receiver operating characteristic (ROC) curves and a nomogram. Immune infiltration, single-cell and drug sensitivity analyses were used to examine the effects of NRGs on the prognosis of CRC. RESULTS: The prognostic model served as a valid and independent predictor of CRC prognosis. Immune infiltration and single-cell analyses revealed that the unique immune microenvironment of CRC was regulated by NRGs. Drug sensitivity analysis showed that patients in the high- and low-risk groups were sensitive to different drugs. In addition, H2BC18 was found to play an important role in regulating the malignant progression of CRC. CONCLUSION: This study provides novel insights into precision immunotherapy based on NRGs in CRC. The NRG-based prognostic model may help to identify targeted drugs and develop more effective and individualised treatment strategies for patients with CRC.


Assuntos
Neoplasias Colorretais , Necroptose , Humanos , Prognóstico , Necroptose/genética , Histonas , Perfilação da Expressão Gênica , Neoplasias Colorretais/genética , Microambiente Tumoral/genética
5.
EMBO Mol Med ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164471

RESUMO

While whole genome sequencing (WGS) of cell-free DNA (cfDNA) holds enormous promise for detection of molecular residual disease (MRD), its performance is limited by WGS error rate. Here we introduce AccuScan, an efficient cfDNA WGS technology that enables genome-wide error correction at single read-level, achieving an error rate of 4.2 × 10-7, which is about two orders of magnitude lower than a read-centric de-noising method. The application of AccuScan to MRD demonstrated analytical sensitivity down to 10-6 circulating variant allele frequency at 99% sample-level specificity. AccuScan showed 90% landmark sensitivity (within 6 weeks after surgery) and 100% specificity for predicting relapse in colorectal cancer. It also showed 67% sensitivity and 100% specificity in esophageal cancer using samples collected within one week after surgery. When AccuScan was applied to monitor immunotherapy in melanoma patients, the circulating tumor DNA (ctDNA) levels and dynamic profiles were consistent with clinical outcomes. Overall, AccuScan provides a highly accurate WGS solution for MRD detection, empowering ctDNA detection at parts per million range without requiring high sample input or personalized reagents.

6.
medRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38260271

RESUMO

While whole genome sequencing (WGS) of cell-free DNA (cfDNA) holds enormous promise for molecular residual disease (MRD) detection, its performance is limited by WGS error rate. Here we introduce AccuScan, an efficient cfDNA WGS technology that enables genome-wide error correction at single read level, achieving an error rate of 4.2×10 -7 , which is about two orders of magnitude lower than a read-centric de-noising method. When applied to MRD detection, AccuScan demonstrated analytical sensitivity down to 10 -6 circulating tumor allele fraction at 99% sample level specificity. In colorectal cancer, AccuScan showed 90% landmark sensitivity for predicting relapse. It also showed robust MRD performance with esophageal cancer using samples collected as early as 1 week after surgery, and predictive value for immunotherapy monitoring with melanoma patients. Overall, AccuScan provides a highly accurate WGS solution for MRD, empowering circulating tumor DNA detection at parts per million range without high sample input nor personalized reagents. One Sentence Summary: AccuScan showed remarkable ultra-low limit of detection with a short turnaround time, low sample requirement and a simple workflow for MRD detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA