Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 615(7950): 62-66, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859585

RESUMO

For capacitive energy storage at elevated temperatures1-4, dielectric polymers are required to integrate low electrical conduction with high thermal conductivity. The coexistence of these seemingly contradictory properties remains a persistent challenge for existing polymers. We describe here a class of ladderphane copolymers exhibiting more than one order of magnitude lower electrical conductivity than the existing polymers at high electric fields and elevated temperatures. Consequently, the ladderphane copolymer possesses a discharged energy density of 5.34 J cm-3 with a charge-discharge efficiency of 90% at 200 °C, outperforming the existing dielectric polymers and composites. The ladderphane copolymers self-assemble into highly ordered arrays by π-π stacking interactions5,6, thus giving rise to an intrinsic through-plane thermal conductivity of 1.96 ± 0.06 W m-1 K-1. The high thermal conductivity of the copolymer film permits efficient Joule heat dissipation and, accordingly, excellent cyclic stability at elevated temperatures and high electric fields. The demonstration of the breakdown self-healing ability of the copolymer further suggests the promise of the ladderphane structures for high-energy-density polymer capacitors operating under extreme conditions.

2.
Mol Cancer ; 23(1): 85, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678233

RESUMO

Nuclear condensates have been shown to regulate cell fate control, but its role in oncogenic transformation remains largely unknown. Here we show acquisition of oncogenic potential by nuclear condensate remodeling. The proto-oncogene SS18 and its oncogenic fusion SS18-SSX1 can both form condensates, but with drastically different properties and impact on 3D genome architecture. The oncogenic condensates, not wild type ones, readily exclude HDAC1 and 2 complexes, thus, allowing aberrant accumulation of H3K27ac on chromatin loci, leading to oncogenic expression of key target genes. These results provide the first case for condensate remodeling as a transforming event to generate oncogene and such condensates can be targeted for therapy. One sentence summary: Expulsion of HDACs complexes leads to oncogenic transformation.


Assuntos
Histona Desacetilase 1 , Histona Desacetilase 2 , Proto-Oncogene Mas , Humanos , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Histonas/metabolismo , Animais
3.
BMC Plant Biol ; 24(1): 696, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044142

RESUMO

BACKGROUND: Phosphorus (P) deficiency, a major nutrient stress, greatly hinders plant growth. Phosphate (Pi) uptake in plant roots relies on PHT1 family transporters. However, melon (Cucumis melo L.) lacks comprehensive identification and characterization of PHT1 genes, particularly their response patterns under diverse stresses. RESULTS: This study identified and analyzed seven putative CmPHT1 genes on chromosomes 3, 4, 5, 6, and 7 using the melon genome. Phylogenetic analysis revealed shared motifs, domain compositions, and evolutionary relationships among genes with close histories. Exon number varied from 1 to 3. Collinearity analysis suggested segmental and tandem duplications as the primary mechanisms for CmPHT1 gene family expansion. CmPHT1;4 and CmPHT1;5 emerged as a tandemly duplicated pair. Analysis of cis-elements in CmPHT1 promoters identified 14 functional categories, including putative PHR1-binding sites (P1BS) in CmPHT1;4, CmPHT1;6, and CmPHT1;7. We identified that three WRKY transcription factors regulated CmPHT1;5 expression by binding to its W-box element. Notably, CmPHT1 promoters harbored cis-elements responsive to hormones and abiotic factors. Different stresses regulated CmPHT1 expression differently, suggesting that the adjusted expression patterns might contribute to plant adaptation. CONCLUSIONS: This study unveils the characteristics, evolutionary diversity, and stress responsiveness of CmPHT1 genes in melon. These findings lay the foundation for in-depth investigations into their functional mechanisms in Cucurbitaceae crops.


Assuntos
Cucumis melo , Regulação da Expressão Gênica de Plantas , Fosfatos , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Cucumis melo/genética , Cucumis melo/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genes de Plantas , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Transporte Biológico/genética
4.
Semin Dial ; 37(2): 101-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37743062

RESUMO

OBJECTIVE: To perform a systematic review of risk prediction models for cardiovascular (CV) events in hemodialysis (HD) patients, and provide a reference for the application and optimization of related prediction models. METHODS: PubMed, The Cochrane Library, Web of Science, and Embase databases were searched from inception to 1 February 2023. Two authors independently conducted the literature search, selection, and screening. The Prediction model Risk Of Bias Assessment Tool (PROBAST) was applied to evaluate the risk of bias and applicability of the included literature. RESULTS: A total of nine studies containing 12 models were included, with performance measured by the area under the receiver operating characteristic curve (AUC) lying between 0.70 and 0.88. Age, diabetes mellitus (DM), C-reactive protein (CRP), and albumin (ALB) were the most commonly identified predictors of CV events in HD patients. While the included models demonstrated good applicability, there were still certain risks of bias, primarily related to inadequate handling of missing data and transformation of continuous variables, as well as a lack of model performance validation. CONCLUSION: The included models showed good overall predictive performance and can assist healthcare professionals in the early identification of high-risk individuals for CV events in HD patients. In the future, the modeling methods should be improved, or the existing models should undergo external validation to provide better guidance for clinical practice.


Assuntos
Doenças Cardiovasculares , Diálise Renal , Humanos , Prognóstico , Diálise Renal/efeitos adversos , Medição de Risco , Proteína C-Reativa , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia
5.
J Environ Manage ; 351: 119978, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169258

RESUMO

Global climate change exerts a significant impact on sustainable horticultural crop production and quality. Rising Global temperatures have compelled the agricultural community to adjust planting and harvesting schedules, often necessitating earlier crop cultivation. Notably, climate change introduces a suite of ominous factors, such as greenhouse gas emissions (CGHs), including elevated temperature, increased carbon dioxide (CO2) concentrations, nitrous oxide (N2O) and methane (CH4) ozone depletion (O3), and deforestation, all of which intensify environmental stresses on crops. Consequently, climate change stands poised to adversely affect crop yields and livestock production. Therefore, the primary objective of the review article is to furnish a comprehensive overview of the multifaceted factors influencing horticulture production, encompassing fruits, vegetables, and plantation crops with a particular emphasis on greenhouse gas emissions and environmental stressors such as high temperature, drought, salinity, and emission of CO2. Additionally, this review will explore the implementation of novel horticultural crop varieties and greenhouse technology that can contribute to mitigating the adverse impact of climate change on agricultural crops.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Mudança Climática , Dióxido de Carbono/análise , Agricultura , Produtos Agrícolas , Horticultura , Óxido Nitroso/análise , Metano/análise , Solo
6.
Anal Chem ; 95(18): 7109-7117, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37098252

RESUMO

In this paper, a novel donor-acceptor pair was creatively proposed based on the principle of electrochemiluminescence resonance energy transfer (ECL-RET): luminol immobilized on polyethyleneimine (PEI)-functionalized manganese-based single-atom nanozymes (Mn SANE/PEI-luminol, donor) and a PtCu-grafted hollow metal polydopamine framework (PtCu/h-MPF, acceptor). A quenched ECL immunosensor was constructed for the ultrasensitive analysis of carcinoembryonic antigen (CEA). Mn SANE, as an efficient novel coreaction accelerator with the outstanding performance of significantly activating H2O2 to produce large amounts of ROS, was further modified by the coreactant PEI, which efficiently immobilized luminol to form a self-enhanced emitter. As a result, the electron transport distance was effectively shortened, the energy loss was reduced, and luminol achieved a high ECL efficiency. More importantly, PtCu-grafted h-MPF (PtCu/h-MPF) was proposed as a novel quencher. The UV-vis spectra of PtCu/h-MPF partially overlap with the ECL spectra of Mn SANE/PEI-luminol, which can effectively trigger the ECL-RET behavior between the donor and the acceptor. The multiple quenching effect on Mn SANE/PEI-luminol was achieved, which significantly improved the sensitivity of the immunosensor. The prepared immunosensor exhibited good linearity in the concentration range of 10-5 to 80 ng/mL. The results indicate that this work provides a new method for the early detection of CEA in clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Luminol , Antígeno Carcinoembrionário/análise , Polietilenoimina , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Imunoensaio/métodos , Limite de Detecção
7.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762295

RESUMO

Affected by global warming; heat stress is the main limiting factor for crop growth and development. Brassica rapa prefers cool weather, and heat stress has a significant negative impact on its growth, development, and metabolism. Understanding the regulatory patterns of heat-resistant and heat-sensitive varieties under heat stress can help deepen understanding of plant heat tolerance mechanisms. In this study, an integrative analysis of transcriptome and metabolome was performed on the heat-tolerant ('WYM') and heat-sensitive ('AJH') lines of Brassica rapa to reveal the regulatory networks correlated to heat tolerance and to identify key regulatory genes. Heat stress was applied to two Brassica rapa cultivars, and the leaves were analyzed at the transcriptional and metabolic levels. The results suggest that the heat shock protein (HSP) family, plant hormone transduction, chlorophyll degradation, photosynthetic pathway, and reactive oxygen species (ROS) metabolism play an outstanding role in the adaptation mechanism of plant heat tolerance. Our discovery lays the foundation for future breeding of horticultural crops for heat resistance.


Assuntos
Brassica rapa , Termotolerância , Brassica rapa/genética , Transcriptoma , Melhoramento Vegetal , Metaboloma , Termotolerância/genética
8.
BMC Anesthesiol ; 22(1): 413, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36585610

RESUMO

PURPOSE: Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) concentration is increased in cerebrospinal fluid (CSF) in early symptomatic phase of Alzheimer's disease (AD). This study investigated whether CSF sTREM2 has a relationship with early cognitive dysfunction following surgery in cardiac surgery patients. METHODS: A total of 82 patients undergoing thoracoabdominal aortic replacement were recruited in this study. Neuropsychological testing battery was conducted before and after surgery. Postoperative cognitive dysfunction (POCD) was defined as a Z-score > 1.96 on at least 2 different tests or Telephone Interviews for Cognitive Status-Modified (TICS-M) score < 27. The CSF and serum sTREM2, Aß42, T-tau and P-tau were collected and measured by ELISA on day before surgery and postoperative day 3. RESULTS: Patients were classified into POCD (n = 34) and non-POCD (n = 48) groups according to Z-score. Compared to non-POCD group, the levels of CSF sTREM2 (p < 0.001) and serum sTREM2 (p = 0.001) were significantly higher in POCD group on postoperative day 3. The levels of Aß42 (p = 0.005) and Aß42/T-tau ratio (p = 0.036) were significantly lower in POCD group on postoperative day 3. Multivariate logistic regression analysis revealed that higher value of postoperative CSF sTREM2 (odds ratio: 1.06, 95% confidence interval: 1.02-1.11, p = 0.009), age (OR: 1.15, 95%CI: 1.03-1.28, p = 0.014) and POD duration (OR: 2.47, 95%CI: 1.15-5.29, p = 0.02) were the risk factors of POCD. CONCLUSION: This study indicates that anesthesia and surgery-induced elevation of CSF sTREM2 is associated with an increased risk of early cognitive dysfunction following surgery.


Assuntos
Anestesia , Disfunção Cognitiva , Dissecção da Aorta Abdominal , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/etiologia
9.
Mikrochim Acta ; 189(9): 334, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35970980

RESUMO

To accomplish ultra-sensitive detection of alpha-fetoprotein(AFP), a novel electrochemical immunosensor using polydopamine-coated Fe3O4 nanoparticles (PDA@Fe3O4 NPs) as a smart label and polyaniline (PANI) and Au NPs as substrate materials has been created. The sensor has the following advantages over typical immunoassay technology: (1) The pH reaction causes PDA@Fe3O4 NPs to release Prussian blue (PB) prosoma while also destroying the secondary antibody label and immunological platform and lowering electrode impedance; (2) PB has a highly efficient catalytic effect on H2O2, allowing for the obvious amplification of electrical impulses; (3) PANI was electrodeposited on the electrode surface to avoid PB loss and signal leakage, which effectively absorbed and fixed PB while considerably increasing electron transmission efficiency. The sensor's detection limit was 0.254 pg·mL-1 (S/N = 3), with a detection range of 1 pg·mL-1 to 100 ng·mL-1. The sensor has a high level of selectivity, repeatability, and stability, and it is predicted to be utilized to detect AFP in real-world samples.


Assuntos
Técnicas Biossensoriais , alfa-Fetoproteínas , Preparações de Ação Retardada , Técnicas Eletroquímicas , Compostos Férricos/química , Ouro , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Imunoensaio , Indóis/análise , Indóis/química , Polímeros/química
10.
Ren Fail ; 44(1): 490-502, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35285398

RESUMO

INTRODUCTION: Virtual home visits may improve chronic disease management. However, whether they are suitable for peritoneal dialysis (PD) patients has not yet been fully investigated. This study aimed to compare the agreement and acceptance of virtual home visits and in-person home visits in PD patients. METHODS: This was a paired, single center, noninferiority trial. Participants received a virtual home visit and an in-person home visit simultaneously. A home visit checklist was built for standardization visits. The content was divided into three parts: domestic habits (57 items), bag exchange procedures (56 items), and exit site care (53 items). Satisfaction questionnaires for both patients and nurses were designed to assess attitudes toward home visits and socioeconomic effects. RESULTS: A total of 30 PD patients were enrolled in a single center. The information collected from virtual home visits and in-person home visits was found to be highly consistent. The perfect agreement was found in 52/57, 49/56, and 44/53 items (Cohen's kappa 0.81-1.00), substantial agreement in 4/57, 7/56, and 8/53 items (Cohen's kappa 0.61-0.80). Patients reported almost identical satisfaction for virtual home visits and in-person home visits (Z = 0.39, p = 0.70). PD nurses reported similar feasibility and patient cooperation for the two visit types (Z = 0.99, p = 0.33; Z = 1.65, p = 0.10, respectively). In addition, virtual home visits were found to be more cost-effective than in-person home visits. CONCLUSIONS: Virtual home visits information collection was similar to in-person home visits in PD. There were no differences in participant satisfaction and feasibility between the two visit types.


Assuntos
Visita Domiciliar , Diálise Peritoneal , Estudos de Viabilidade , Humanos , Cooperação do Paciente , Inquéritos e Questionários
11.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054918

RESUMO

Due to the frequent occurrence of continuous high temperatures and heavy rain in summer, extremely high-temperature and high-humidity environments occur, which seriously harms crop growth. High temperature and humidity (HTH) stress have become the main environmental factors of combined stress in summer. The responses of morphological indexes, physiological and biochemical indexes, gas exchange parameters, and chlorophyll fluorescence parameters were measured and combined with chloroplast ultrastructure and transcriptome sequencing to analyze the reasons for the difference in tolerance to HTH stress in HTH-sensitive 'JIN TAI LANG' and HTH-tolerant 'JIN DI' varieties. The results showed that with the extension of stress time, the superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) activities of the two melon varieties increased rapidly, the leaf water content increased, and the tolerant varieties showed stronger antioxidant capacity. Among the sensitive cultivars, Pn, Fv/Fm, photosystem II, and photosystem I chlorophyll fluorescence parameters were severely inhibited and decreased rapidly with the extension of stress time, while the HTH-tolerant cultivars slightly decreased. The cell membrane and chloroplast damage in sensitive cultivars were more severe, and Lhca1, Lhca3, and Lhca4 proteins in photosystem II and Lhcb1-Lhcb6 proteins in photosystem I were inhibited compared with those in the tolerant cultivar. These conclusions may be the main reason for the different tolerances of the two cultivars. These findings will provide new insights into the response of other crops to HTH stress and also provide a basis for future research on the mechanism of HTH resistance in melon.


Assuntos
Adaptação Biológica , Cucurbitaceae/fisiologia , Perfilação da Expressão Gênica , Genótipo , Temperatura Alta , Umidade , Transcriptoma , Antioxidantes/metabolismo , Biomarcadores , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Biologia Computacional/métodos , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Característica Quantitativa Herdável
12.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292929

RESUMO

Phosphate (Pi) deficiency is a common phenomenon in agricultural production and limits plant growth. Recent work showed that long-term Pi deficiency caused the inhibition of photosynthesis and inefficient electron transport. However, the underlying mechanisms are still unknown. In this study, we used the physiological, histochemical, and transcriptomic methods to investigate the effect of low-Pi stress on photosynthetic gas exchange parameters, cell membrane lipid, chloroplast ultrastructure, and transcriptional regulation of key genes in melon seedlings. The results showed that Pi deficiency significantly downregulated the expression of aquaporin genes, induced an increase in ABA levels, and reduced the water content and free water content of melon leaves, which caused physiological drought in melon leaves. Therefore, gas exchange was disturbed. Pi deficiency also reduced the phospholipid contents in leaf cell membranes, caused the peroxidation of membrane lipids, and destroyed the ultrastructure of chloroplasts. The transcriptomic analysis showed that 822 differentially expressed genes (DEGs) were upregulated and 1254 downregulated by Pi deficiency in leaves. GO and KEGG enrichment analysis showed that DEGs significantly enriched in chloroplast thylakoid membrane composition (GO:0009535), photosynthesis-antenna proteins (map00196), and photosynthesis pathways (map00195) were downregulated by Pi deficiency. It indicated that Pi deficiency regulated photosynthesis-related genes at the transcriptional level, thereby affecting the histochemical properties and physiological functions, and consequently causing the reduced light assimilation ability and photosynthesis efficiency. It enriches the mechanism of photosynthesis inhibition by Pi deficiency.


Assuntos
Cucumis melo , Cucumis melo/genética , Transcriptoma , Fotossíntese/genética , Folhas de Planta/metabolismo , Fosfatos/metabolismo , Água/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo
13.
Nano Lett ; 19(6): 4151-4157, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117764

RESUMO

X-type ligands, for example, the pair of oleylamine (OAm) and oleic acid (OA), have been widely used to prepare CsPbX3 nanocrystals (NCs). However, the proton exchange between coordinated OAm and OA may induce the detachment of ligands, resulting in poor performance after cleaning or long-time storage. Herein, density functional theory calculations predict that primary amines (L-type ligands) can stabilize a PbBr x-rich surface and yield a trap-free material with fully delocalized valence band maximum and conduction band minimum states, which can significantly improve the photophysical properties and stability of CsPbBr3 NCs. Along this prediction, a room-temperature reprecipitation method using L-type ligands (OAm, n-octylamine, or undecylamine) as the sole capping ligand has been developed to synthesize high-quality CsPbBr3 NCs with near-unity photoluminescence quantum yield and dramatically improved stability against purification and water treatment. The enhancement can be attributed to the strong binding of unprotonated amines to lead atoms and the effective surface passivation provided by the resulted PbBr x-rich surface, which are highly consistent with the theoretical predictions. This work not only offers an approach to synthesize high-quality perovskite NCs but also provides an in-depth understanding of the surface modification of CsPbX3 NCs for practical applications.

14.
Molecules ; 24(9)2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31083563

RESUMO

Carbon capture from flue gas and natural gas offers a green path to construct a net-zero emissions economic system. Selective adsorption-based gas separation by employing metal-organic frameworks (MOFs) is regarded as a promising technology due to the advantages of simple processing, easy regeneration and high efficiency. We synthesized two Zirconium MOFs (UiO-66 and UiO-66-NH2) nanocrystals for selective capture and further removal of CO2 from flue gas and natural gas. In particular, UiO-66-NH2 nanocrystals have a smaller grain size, a large amount of defects, and pending -NH2 groups inside their pores which display effective CO2 selective adsorption abilities over CH4 and N2 with the theoretical separation factors of 20 and 7. This breakthrough experiment further verified the selective adsorption-based separation process of natural gas and flue gas. In one further step, we used the Monte Carlo simulation to investigate the optimized adsorption sites and energy of CO2, N2 and CH4 molecules in the gas mixture. The significantly large adsorption energy of CO2 (0.32 eV) over N2 (0.19 eV) and N2 (0.2 eV) may help us to reveal the selective adsorption mechanism.


Assuntos
Estruturas Metalorgânicas/química , Nanopartículas/química , Gás Natural , Zircônio/química , Adsorção , Dióxido de Carbono/química
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 33(3): 312-5, 2016 Jun.
Artigo em Zh | MEDLINE | ID: mdl-27264810

RESUMO

OBJECTIVE: To perform genetic analysis for 7 patients with Waardenburg syndrome. METHODS: Potential mutation of MITF, PAX3, SOX10 and SNAI2 genes was screened by polymerase chain reaction and direct sequencing. Functions of non-synonymous polymorphisms were predicted with PolyPhen2 software. RESULTS: Seven mutations, including c.649-651delAGA (p.R217del), c.72delG (p.G24fs), c.185T>C (p.M62T), c.118C>T (p.Q40X), c.422T>C (p.L141P), c.640C>T (p.R214X) and c.28G>T(p.G43V), were detected in the patients. Among these, four mutations of the PAX3 gene (c.72delG, c.185T>C, c.118C>T and c.128G>T) and one SOX10 gene mutation (c.422T>C) were not reported previously. Three non-synonymous SNPs (c.185T>C, c.128G>T and c.422T>C) were predicted as harmful. CONCLUSION: Genetic mutations have been detected in all patients with Waardenburg syndrome.


Assuntos
Mutação , Síndrome de Waardenburg/genética , Adolescente , Criança , Feminino , Humanos , Masculino , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição SOXE/genética
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 33(6): 758-761, 2016 Dec 10.
Artigo em Zh | MEDLINE | ID: mdl-27984600

RESUMO

OBJECTIVE: To identify novel common mutations among patients with non-syndromic hearing loss (NSHL). METHODS: High-throughput gene capture technology was used to analyze 18 patients with NSHL in whom common mutations of deafness genes including GJB2, SLC26A4, GJB3, and mtDNA were excluded. Suspected mutation was verified with Sanger sequencing. RESULTS: Next generation sequencing has identified 62 mutations in 29 genes associated with hearing loss, which included 54 missense mutations, 4 splicing mutations, 3 deletional mutations, and 1 nonsense mutation. Mutations occurring more than twice in the 18 patients were verified by Sanger sequencing. This has confirmed 15 mutations in 8 genes, including 3 missense mutations (p.C2184G, p.L2825P, p.H1888Y) which have not been reported previously. Meanwhile, p.L445W, p.D866N, and IVS919-2A>G were common causative mutations. CONCLUSION: A number of common causative mutations, e.g., p.L445W, p.D866N, IVS919-2A>G, have been identified by high-throughput capture technology, which may facilitate the research and genetic diagnosis for hearing loss.


Assuntos
Surdez/genética , Perda Auditiva/genética , Mutação/genética , DNA Mitocondrial/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino
17.
Small Methods ; 8(8): e2301386, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38236164

RESUMO

Boron nitride nanosheets (BNNSs) have garnered significant attention across diverse fields; however, accomplishing on-demand, large-scale, and highly efficient preparation of BNNSs remains a challenge. Here, an on-demand preparation (OdP) method combining high-pressure homogenization and short-time ultrasonication is presented; it enables a highly efficient and controllable preparation of BNNSs from bulk hexagonal boron nitride (h-BN). The homogenization pressure and number of cycles are adjusted, and the production efficiency and yield of BNNSs reach 0.95 g g-1h-1 and 82.8%, respectively, which significantly exceed those attained by using existing methods. The universality of the OdP method is demonstrated on h-BN raw materials of various bulk sizes from various producers. Furthermore, this method allows the preparation of BNNSs having specific sizes based on the final requirements. Both simulation and experimental results indicate that large BNNSs are particularly suitable for enhancing the thermal conductivity and electrical insulation properties of dielectric polymer nanocomposites. Interestingly, the small BNNS-filled photonic nanocomposite films fabricated via the OdP method exhibit superior daytime radiative cooling properties. Additionally, the OdP method offers the benefits of low energy consumption and reduced greenhouse gas emissions and fossil energy use. These findings underscore the unique advantages of the OdP method over other techniques for a high-efficiency and controllable preparation of large BNNSs.

18.
ACS Nano ; 18(5): 3851-3870, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38266182

RESUMO

Polymer nanocomposites combine the merits of polymer matrices and the unusual effects of nanoscale reinforcements and have been recognized as important members of the material family. Being a fundamental material property, thermal conductivity directly affects the molding and processing of materials as well as the design and performance of devices and systems. Polymer nanocomposites have been used in numerous industrial fields; thus, high demands are placed on the thermal conductivity feature of polymer nanocomposites. In this Perspective, we first provide roadmaps for the development of polymer nanocomposites with isotropic, in-plane, and through-plane high thermal conductivities, demonstrating the great effect of nanoscale reinforcements on thermal conductivity enhancement of polymer nanocomposites. Then the significance of the thermal conductivity of polymer nanocomposites in different application fields, including wearable electronics, thermal interface materials, battery thermal management, dielectric capacitors, electrical equipment, solar thermal energy storage, biomedical applications, carbon dioxide capture, and radiative cooling, are highlighted. In future research, we should continue to focus on methods that can further improve the thermal conductivity of polymer nanocomposites. On the other hand, we should pay more attention to the synergistic improvement of the thermal conductivity and other properties of polymer nanocomposites. Emerging polymer nanocomposites with high thermal conductivity should be based on application-oriented research.

19.
Commun Biol ; 7(1): 1223, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349670

RESUMO

Metabolism has been implicated in cell fate determination, particularly through epigenetic modifications. Similarly, lipid remodeling also plays a role in regulating cell fate. Here, we present comprehensive lipidomics analysis during BMP4-driven primed to naive pluripotency transition or BiPNT and demonstrate that lipid remodeling plays an essential role. We further identify Cpt1a as a rate-limiting factor in BiPNT, driving lipid remodeling and metabolic reprogramming while simultaneously increasing intracellular acetyl-CoA levels and enhancing H3K27ac at chromatin open sites. Perturbation of BiPNT by histone acetylation inhibitors suppresses lipid remodeling and pluripotency transition. Together, our study suggests that lipid remodeling promotes pluripotency transitions and further regulates cell fate decisions, implicating Cpt1a as a critical regulator between primed-naive cell fate control.


Assuntos
Carnitina O-Palmitoiltransferase , Metabolismo dos Lipídeos , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Animais , Camundongos , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Lipidômica , Reprogramação Celular/genética
20.
Adv Mater ; : e2409473, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240041

RESUMO

While providing electrical energy for human society, power equipment also consumes electricity and generate heat. Cooling equipment consumes a significant amount of electricity, further increasing energy consumption and load on the power grid. Therefore, there is an urgent need to develop low-energy and sustainable cooling technologies for power equipment. In this study, a hybrid passive cooling composite designed to enhance heat dissipation for heavy-load power equipment is introduced. Specifically, the composite material achieves outstanding radiative cooling performance with an average solar reflectance of up to 0.98, while its excellent atmospheric water harvesting performance ensures high evaporation cooling power without the need for manual water replenishment. As a result, the composite effectively lowers the temperature of outdoor heavy-load power equipment (e.g., transformers) by 25.3 °C. The excellent heat dissipation properties of the composite make it a powerful tool in safeguarding electrical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA