Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 153(2): 024701, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668940

RESUMO

Understanding the charge reactions at the semiconductor/cocatalyst interface is of great interest for boosting photoelectrochemical water splitting since the charge transfer to water molecules is the sluggish one. Besides the dopants, porosity, or ion-penetration of the cocatalyst, the crystallinity of the cocatalyst may also influence the charge reactions at the interface. Herein, we prepared amorphous LaNiOx and crystalline La-doped NiO (c-LaNiOx) cocatalysts through photochemical decomposition and ion-exchange of Ni(OH)2 precipitation, respectively. Both lanthanum nickel oxides (LaNiOx) showed considerable improvement of hematite photoanodes. By using electrochemical impedance measurements, we confirmed that the catalyst could store photogenerated charges with reduced transfer resistance and passivate the surface state, resulting in the overall charge transfer rate enhancement. This study may lead to a chance to uncover the kinetic bottleneck with an efficient cocatalyst in well-controlled crystallinity in the future.

2.
ACS Appl Mater Interfaces ; 8(24): 15820-7, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27300016

RESUMO

Doping Zn(2+) in CuS nanoflower into chemically homogeneous superlattice crystal structure is proposed to convert p-type CuS semiconductor to an n-type CuS semiconductor for significantly enhanced photoelectric response performance. In this study, the chemically homogeneous Zn-doped CuS nanoflowers (Zn0.06Cu0.94S, Zn0.26Cu0.73S1.01, Zn0.36Cu0.62S1.02, Zn0.49Cu0.50S1.01, Zn0.58Cu0.40S1.02) are synthesized by reacting appropriate amounts of CuCl and Zn(Ac)2·2H2O with sulfur powders in ethanol solvothermal process. By tuning the Zn/Cu atomic ratios to ∼1:1, the chemically homogeneous Zn-doped CuS nanoflowers could be converted to the perfect Zn0.49Cu0.50S1.01 superlattice structure, corresponding to the periodic Cu-S-Zn atom arrangements in the entire crystal lattice, which can induce an effective built-in electric field with n-type semiconductor characteristics to significantly improve the photoelectric response performance, such as the lifetime of photogenerated charge carriers up to 6 × 10(-8)-6 × 10(-4) s with the transient photovoltage (TPV) response intensity to ∼44 mV. This study reveals that the Zn(2+) doping in CuS nanoflowers is a key factor in determining the superlattice structure, semiconductor type, and the dynamic behaviors of charge carriers.

3.
ACS Appl Mater Interfaces ; 8(25): 16476-85, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27275513

RESUMO

Band structure engineering of the interface between the semiconductor and the conductive substrate may profoundly influence charge separation and transport for photovoltaic and photoelectrochemical devices. In this work, we found that a reduction-annealing treatment resulted in a diffused junction through enhanced interdiffusion of hematite/FTO at the interface. The activated hematite exhibited higher nanoelectric conductivity that was probed by a PeakForce TUNA AFM method. Furthermore, charge accumulation and recombination via surface states at the interface were dramatically reduced after the reduction-annealing activation, which was confirmed by transient surface photovoltage measurements. The diffused hematite junction promises improved photoelectrochemical performance without the need for a buffer layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA