RESUMO
BACKGROUND: The link between air pollution and increased risk of psychiatric disorders has been growing in evidence. However, the causal relationship between air pollution and psychiatric disorders remains poorly understood. METHODS: Single-nucleotide polymorphisms associated with air pollutants (including NOx, NO2, PM2.5, PM2.5-10, and PM10) from the UK Biobank were used as instrumental variables. Summary-level data for psychiatric disorders (major depressive disorder, anxiety, bipolar disorder, schizophrenia, post-traumatic stress disorder, attention deficit hyperactivity disorder, autism spectrum disorder, anorexia nervosa, and obsessive-compulsive disorder) were procured from the Psychiatric Genomics Consortium and FinnGen consortium. Two-sample Mendelian randomization (MR) analysis was conducted to analyze the causal associations. RESULTS: The MR analysis revealed significant associations between certain air pollutants and specific types of psychiatric disorders. The inverse-variance weighted model of preliminary analysis indicated that genetically predicted NO2 was associated with increased risks of major depressive disorder (odds ratio [OR]: 1.13, 95â¯% confidence intervals [CI]: 1.00-1.28, P = 0.041), bipolar disorder (OR: 1.26, 95â¯% CI: 1.00-1.58, P = 0.0497), schizophrenia (OR: 1.57, 95â¯% CI: 1.23-2.00, P < 0.001), attention deficit hyperactivity disorder (OR: 1.61, 95â¯% CI: 1.25-2.09, P < 0.001) and autism spectrum disorder (OR: 1.39, 95â¯% CI: 1.01-1.91, P = 0.044). Genetically predicted PM2.5 showed a positive association with the risk of major depressive disorder (OR: 1.21, 95â¯% CI: 1.06-1.39, P = 0.006), bipolar disorder (OR: 1.32, 95â¯% CI: 1.03-1.69, P = 0.030) and attention deficit hyperactivity disorder (OR: 1.57, 95â¯% CI: 1.16-2.12, P = 0.004). In addition, our results also indicated that NOx (OR: 1.64, 95â¯% CI: 1.21-2.21, P = 0.0012) and PM10 (OR: 1.70, 95â¯% CI: 1.23-2.36, P = 0.0014) could increase the risk of attention deficit hyperactivity disorder. CONCLUSIONS: The MR analysis provides evidence for the causality of different air pollutants on specific psychiatric disorders, underscoring the importance of mitigating air pollution to reduce the risk of psychiatric disorders.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Análise da Randomização Mendeliana , Transtornos Mentais , Material Particulado , Polimorfismo de Nucleotídeo Único , Humanos , Transtornos Mentais/genética , Transtornos Mentais/epidemiologia , Transtornos Mentais/induzido quimicamente , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Material Particulado/toxicidade , Exposição Ambiental/efeitos adversos , Reino Unido/epidemiologiaRESUMO
Salmonellosis is a worldwide zoonotic disease that poses a serious threat to the reproduction of livestock and poultry and the health of young animals. Probiotics including Bacillus species, have received increasing attention as a substitute for antibiotics. In this study, chicks infected with Salmonella were fed feed supplemented with the BSH to observe the pathological changes in the liver, detect the number of viable bacteria in the liver and spleen, and record the death of the chicks. The results showed that BSH could reduce the pathological changes in the liver and the invasion of Salmonella into the liver and spleen of chicks. In addition, the survival rate of chicks in the BSH experimental group was 60%, while that in the infected control group was 26%, indicating that BSH had a protective effect on chicks infected with Salmonella. Finally, the fecal microflora of 9-day-old chicks was analyzed by 16S rRNA high-throughput sequencing. The results showed that Salmonella infection could cause intestinal flora changes, while BSH could alleviate this change. In addition, BSH also promoted the proliferation of Lactobacillus salivarius in the cecum of chick. This study emphasized that BSH has anti- Salmonella infection effects in chickens and can be used as a candidate microecological preparation strain.
Assuntos
Microbioma Gastrointestinal , Doenças das Aves Domésticas , Probióticos , Salmonelose Animal , Ração Animal , Animais , Bacillus subtilis , Ceco , Galinhas , Doenças das Aves Domésticas/prevenção & controle , RNA Ribossômico 16S/genética , Salmonelose Animal/prevenção & controleRESUMO
The highly infectious porcine transmissible gastroenteritis virus (TGEV), which belongs to the coronaviruses (CoVs), causes diarrhea and high mortality rates in piglets, resulting in severe economic losses in the pork industry worldwide. In this study, we used Lactobacillus plantarum (L. plantarum) to anchor the expression of TGEV antigen (S) to dendritic cells (DCs) via dendritic cell-targeting peptides (DCpep). The results show that S antigen could be detected on the surface of L. plantarum by different detection methods. Furthermore, flow cytometry and ELISA techniques were used to measure the cellular, mucosal, and humoral immune responses of the different orally gavaged mouse groups. The obtained results demonstrated the significant effect of the constructed L. plantarum expressing S-DCpep fusion proteins in inducing high expression levels of B7 molecules on DCs, as well as high levels of IgG, secretory IgA, and IFN-γ and IL-4 cytokines compared with the other groups. Accordingly, surface expression of DC-targeted antigens successfully induced cellular, mucosal, and humoral immunity in mice and could be used as a vaccine.
Assuntos
Antígenos de Bactérias/imunologia , Lactobacillus plantarum/imunologia , Vírus da Gastroenterite Transmissível/imunologia , Animais , Anticorpos Antivirais/imunologia , Células Dendríticas/imunologia , Imunidade Humoral/imunologia , Imunização/métodos , Imunoglobulina A Secretora/imunologia , Camundongos , Suínos , Vacinação/métodos , Vacinas Virais/imunologiaRESUMO
Transmissible gastroenteritis coronavirus (TGEV) is one of the most severe threats to the swine industry. In this study, we constructed a suite of recombinant Lactobacillus plantarum with surface displaying the spike (S) protein coming from TGEV and fused with DC cells targeting peptides (DCpep) to develop an effective, safe, and convenient vaccine against transmissible gastroenteritis. Our research results found that the recombinant Lactobacillus plantarum (NC8-pSIP409-pgsA-S-DCpep) group expressing S fused with DCpep could not only significantly increase the percentages of MHC-II+CD80+ B cells and CD3+CD4+ T cells but also the number of IgA+ B cells and CD3+CD4+ T cells of ileum lamina propria, which elevated the specific secretory immunoglobulin A (SIgA) titers in feces and IgG titers in serum. Taken together, these results suggest that NC8-pSIP409-pgsA-S-DCpep expressing the S of TGEV fused with DCpep could effectively induce immune responses and provide a feasible original strategy and approach for the design of TGEV vaccines.
Assuntos
Proteínas de Bactérias/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lactobacillus plantarum/imunologia , Vírus da Gastroenterite Transmissível/imunologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Gastroenterite Suína Transmissível/imunologia , Imunoglobulina A Secretora/imunologia , Imunoglobulina G/imunologia , Suínos , Linfócitos T/imunologia , Vacinas Virais/imunologiaRESUMO
The genes responsible for silk biosynthesis are switched on and off at particular times in the silk glands of Bombyx mori. This switch appears to be under the control of endogenous and exogenous hormones. However, the molecular mechanisms by which silk protein synthesis is regulated by the juvenile hormone (JH) are largely unknown. Here, we report a basic helix-loop-helix transcription factor, Bmdimm, its silk gland-specific expression, and its direct involvement in the regulation of fibroin H-chain (fib-H) by binding to an E-box (CAAATG) element of the fib-H gene promoter. Far-Western blots, enzyme-linked immunosorbent assays, and co-immunoprecipitation assays revealed that Bmdimm protein interacted with another basic helix-loop-helix transcription factor, Bmsage. Immunostaining revealed that Bmdimm and Bmsage proteins are co-localized in nuclei. Bmdimm expression was induced in larval silk glands in vivo, in silk glands cultured in vitro, and in B. mori cell lines after treatment with a JH analog. The JH effect on Bmdimm was mediated by the JH-Met-Kr-h1 signaling pathway, and Bmdimm expression did not respond to JH by RNA interference with double-stranded BmKr-h1 RNA. These data suggest that the JH regulatory pathway, the transcription factor Bmdimm, and the targeted fib-H gene contribute to the synthesis of fibroin H-chain protein in B. mori.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fibroínas/genética , Proteínas de Insetos/genética , Hormônios Juvenis/genética , Seda/biossíntese , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Bombyx/genética , Fibroínas/metabolismo , Proteínas de Insetos/biossíntese , Hormônios Juvenis/metabolismo , Larva , Regiões Promotoras Genéticas/genética , Sericinas/biossíntese , Sericinas/genéticaRESUMO
The H9N2 avian influenza virus (AIV) causes serious economic losses to the poultry industry every year. Vaccines that induce a mucosal immune response may be successful against influenza virus infection because its transmission occurs primarily in the mucosa. To develop novel and potent oral vaccines based on Lactobacillus plantarum (L. plantarum) to control the spread of AIV in poultry industry, in the present study, we constructed and expressed fusions of the influenza antigens NP and M2 with the Salmonella Typhimurium flagellinprotein FliC on the surface of L. plantarum. Oral immunization of chicks was performed, and serum antibodies, mucosal antibodies, and specific cellular immunity were detected. Immunizing chicks with avian influenza virus was evaluated. The results showed high levels of IgG in addition to high levels of secretory immunoglobulin A (sIgA) in chickens orally administered recombinant L. plantarum. In addition, the fusion may significantly increase the levels of NP- and M2-specific T cell-mediated immunity in the case of mucosal administration of NC8-pSIP409-pgsA'-NP-M2-FliC. Recombinant NC8-pSIP409-pgsA'-NP-M2-FliC mediated effectively protected chickens against influenza virus and reduced virus titers in the lung. Our study outcomes indicate that the expression of influenza NP-M2 and a mucosal adjuvant (FliC), by L. plantarum could generate a mucosal vaccine candidate for animals in the future to defend against AIVs.
Assuntos
Antígenos de Superfície/imunologia , Antígenos Virais/imunologia , Vacinas contra Influenza/imunologia , Animais , Galinhas , Flagelina/imunologia , Influenza Aviária/prevenção & controle , Lactobacillus plantarum/genética , Lactobacillus plantarum/imunologiaRESUMO
To evaluate the efficiency of preventing pathogenic avian influenza by vaccination with recombinant Lactobacillus plantarum (L. plantarum) that expresses conserved antigens, the mucosal and systemic immune responses in animals vaccinated with recombinant L. plantarum NC8-409-1 (NC8-pSIP409-pgsA'-HA2) and NC8-409-2 (NC8-pSIP409-pgsA'-3M2e-HA2) were evaluated. Our results showed that recombinant L. plantarum NC8-409-1 and NC8-409-2 could substantially stimulate the specific IgA titer in the intestine and the specific IgG antibody titer in the serum. We also found that recombinant L. plantarum induced increases in the number of B220+ IgA+ cells in Peyer's patches (PPs), in lymphocyte proliferation and in the number of IFN-γ+ producing CD8+ T cells after immunization in mice. Most importantly, the mice that were vaccinated with recombinant L. plantarum NC8-409-2 and NC8-409-1 were to some extent protected against infection challenge with the H9N2 and H1N1 viruses. In particular, NC8-409-2 provided up to 80% protection against the H9N2 virus, and NC8-409-1 provided up to 60% protection. Lung tissue pathology was also reduced. Therefore, recombinant L. plantarum NC8-409-2 and NC8-409-1 may be candidate oral vaccines against bird flu.
Assuntos
Portadores de Fármacos , Hemaglutininas Virais/imunologia , Vacinas contra Influenza/imunologia , Lactobacillus plantarum/genética , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes de Fusão/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Sangue/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Modelos Animais de Doenças , Hemaglutininas Virais/genética , Imunoglobulina A/análise , Imunoglobulina G/sangue , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Interferon gama/metabolismo , Intestinos/imunologia , Pulmão/patologia , Camundongos , Proteínas Recombinantes de Fusão/genética , Análise de Sobrevida , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas da Matriz Viral/genéticaRESUMO
Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix-loop-helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells.