Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 222, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37858133

RESUMO

BACKGROUND: Energy homeostasis is essential for the adaptation of animals to their environment and some wild animals keep low metabolism adaptive to their low-nutrient dietary supply. Giant panda is such a typical low-metabolic mammal exhibiting species specialization of extremely low daily energy expenditure. It has low levels of basal metabolic rate, thyroid hormone, and physical activities, whereas the cellular bases of its low metabolic adaptation remain rarely explored. RESULTS: In this study, we generate a single-nucleus transcriptome atlas of 21 organs/tissues from a female giant panda. We focused on the central metabolic organ (liver) and dissected cellular metabolic status by cross-species comparison. Adaptive expression mode (i.e., AMPK related) was prominently displayed in the hepatocyte of giant panda. In the highest energy-consuming organ, the heart, we found a possibly optimized utilization of fatty acid. Detailed cell subtype annotation of endothelial cells showed the uterine-specific deficiency of blood vascular subclasses, indicating a potential adaptation for a low reproductive energy expenditure. CONCLUSIONS: Our findings shed light on the possible cellular basis and transcriptomic regulatory clues for the low metabolism in giant pandas and helped to understand physiological adaptation response to nutrient stress.


Assuntos
Ursidae , Animais , Feminino , Ursidae/genética , Ursidae/metabolismo , Transcriptoma , Células Endoteliais , Animais Selvagens , Exercício Físico
2.
Chem Soc Rev ; 51(24): 10120-10122, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36448635

RESUMO

Correction for 'Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts' by Xiaoping Tao et al., Chem. Soc. Rev., 2022, 51, 3561-3608, https://doi.org/10.1039/d1cs01182k.

3.
Chem Soc Rev ; 51(9): 3561-3608, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35403632

RESUMO

The conversion and storage of solar energy to chemical energy via artificial photosynthesis holds significant potential for optimizing the energy situation and mitigating the global warming effect. Photocatalytic water splitting utilizing particulate semiconductors offers great potential for the production of renewable hydrogen, while this cross-road among biology, chemistry, and physics features a topic with fascinating interdisciplinary challenges. Progress in photocatalytic water splitting has been achieved in recent years, ranging from fundamental scientific research to pioneering scalable practical applications. In this review, we focus mainly on the recent advancements in terms of the development of new light-absorption materials, insights and strategies for photogenerated charge separation, and studies towards surface catalytic reactions and mechanisms. In particular, we emphasize several efficient charge separation strategies such as surface-phase junction, spatial charge separation between facets, and polarity-induced charge separation, and also discuss their unique properties including ferroelectric and photo-Dember effects on spatial charge separation. By integrating time- and space-resolved characterization techniques, critical issues in photocatalytic water splitting including photoinduced charge generation, separation and transfer, and catalytic reactions are analyzed and reviewed. In addition, photocatalysts with state-of-art efficiencies in the laboratory stage and pioneering scalable solar water splitting systems for hydrogen production using particulate photocatalysts are presented. Finally, some perspectives and outlooks on the future development of photocatalytic water splitting using particulate photocatalysts are proposed.


Assuntos
Energia Solar , Água , Catálise , Hidrogênio/química , Luz , Água/química
4.
Angew Chem Int Ed Engl ; 62(21): e202302575, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36959093

RESUMO

The interfacial barrier of charge transfer from semiconductors to cocatalysts means that the photogenerated charges cannot be fully utilized, especially for the challenging water oxidation reaction. Using cobalt cubane molecules (Co4 O4 ) as water oxidation cocatalysts, we rationally assembled partially oxidized graphene (pGO), acting as a charge-transfer mediator, on the hole-accumulating {-101} facets of lead chromate (PbCrO4 ) crystal. The assembled pGO enables preferable immobilization of Co4 O4 molecules on the {-101} facets of the PbCrO4 crystal, which is favorable for the photogenerated holes transferring from PbCrO4 to Co4 O4 molecules. The surface charge-transfer efficiency of PbCrO4 was boosted by selective assembly of pGO between PbCrO4 and Co4 O4 molecules. An apparent quantum efficiency for photocatalytic water oxidation on the Co4 O4 /pGO/PbCrO4 photocatalyst exceeded 10 % at 500 nm. This strategy of rationally assembling charge-transfer mediator provides a feasible method for acceleration of charge transfer and utilization in semiconductor photocatalysis.

5.
Small ; 18(5): e2103245, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34766433

RESUMO

Crystal facet engineering has been recognized as a powerful strategy to finely modulate the charge separation behavior in semiconductor photocatalysis; however, disclosing the intrinsic roles that the morphologies and crystal facets play on photogenerated charge separation of semiconductor nanocrystals remains elusive. Herein, exemplified on the typical visible-light-responsive photocatalyst bismuth vanadate (BiVO4 ), for the first time, the successful fabrication is reported of well-defined BiVO4 square nanocrystals with precisely controllable (040)/(200) facet proportion, which undergo a dissolution-recrystallization-facet growth process accompanied with tetragonal to monoclinic phase transition. Spatial separation of photogenerated electrons and holes has been evidently demonstrated to take place between (040) and (200) facets of BiVO4 nanocrystals, on which the charge separation efficiency is verified to definitely depend on the facet proportion of (040)/(200). Further theoretical simulation reveals that the matching degree of charge collection length and crystal configuration is considered to be the major factor determining charge separation efficiency of BiVO4 nanocrystals. This study presents a strategy to fabricate morphology-tailored semiconductors, which will be favorable to advance the understanding of spatial charge separation in semiconductor photocatalysis.

6.
Chemistry ; 28(66): e202202007, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36163587

RESUMO

Efficient separation of photogenerated electrons and holes is of key importance in photocatalysis. Tuning the charge separation pathway is significant but still suffering from low efficiency for the charge extraction from semiconductors. Herein, taking 2D g-C3 N4 (CN) nanosheets as a model photocatalyst, it was found the decoration of homophase junction between brookite TiO2 rods and nanoparticles (BN -BR ) onto CN can effectively modulate photogenerated charge extraction and transfer in BN -BR /CN composites. The BN -BR /CN exhibits a remarkably enhanced photocatalytic H2 evolution under visible light irradiation (λ>420 nm) compared with the single component. A continuous electron transfer channel constructed by an interfacial chemical bond Ti-O-N between CN and brookite rods (BR ) and BN -BR homophase junction between brookite nanoparticles and rods was proposed to benefit the charge extraction and transfer. This work provides a strategy to tune the charge separation and transfer to facilitate the photocatalytic performance in heterogeneous photocatalysis.

7.
Mol Biol Rep ; 49(6): 4901-4908, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35534585

RESUMO

BACKGROUND: Research on genetic diversity based on mitochondrial DNA of giant pandas mainly focused on a single marker or a few genes. OBJECTIVE: To provide a more comprehensive assessment of the genetic diversity on giant pandas based on 13 mitochondrial protein coding genes. METHODS: We assembled 13 protein coding genes in the mitochondrial genome of the giant panda based on the whole genome sequencing data, including ND1, ND2, COX1, COX2, ATP8, ATP6, COX3, ND3, ND4L, ND4, ND5, ND6 and Cyt b. RESULTS: We successfully obtained long sequence of 11,416 base pairs with all 13 genes for 110 giant panda individual, accounting for 67.93% in length of the mitochondrial reference genome. Haplotype diversity was 0.9518 ± 0.009 and nucleotide diversity (π) was 0.00157 ± 0.00014. We detected three new haplotypes, including GPC10 and GPC21 for the CR sequence and GPB12 for the Cyt b gene. CONCLUSION: These multi-gene sequences provided more genetic variable information to compare captive and wild giant panda population.


Assuntos
Genoma Mitocondrial , Ursidae , Animais , Composição de Bases , Citocromos b/genética , DNA Mitocondrial/genética , Genes Mitocondriais/genética , Genoma Mitocondrial/genética , Análise de Sequência de DNA , Ursidae/genética
8.
Angew Chem Int Ed Engl ; 61(37): e202207161, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35716112

RESUMO

A crucial issue in artificial photosynthesis is how to modulate the behaviors of photogenerated charges of semiconductor photocatalysts. Here, using lead chromate (PbCrO4 ) as an example, we conducted the morphology tailoring from parallelepiped (p-PbCrO4 ) to truncated decahedron (t-PbCrO4 ) and elongated rhombic (r-PbCrO4 ), resulting in exposed anisotropic facets. The spatial separation of photogenerated charges closely correlates to the anisotropic facets of crystals, which can only be realized for t-PbCrO4 and r-PbCrO4 . The charge-separation efficiencies exhibit a quasilinear relation with the surface photovoltage difference between anisotropic facets. The r-PbCrO4 gives an apparent quantum efficiency of 6.5 % at 500 nm for photocatalytic water oxidation using Fe3+ ions as electron acceptors. Moreover, the oxidation reverse reaction from Fe2+ to Fe3+ ions was completely blocked with ∼100 % of Fe3+ conversion achieved on the anisotropic PbCrO4 crystals.

9.
Angew Chem Int Ed Engl ; 59(24): 9653-9658, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32181560

RESUMO

Scalable solar hydrogen production by water splitting using particulate photocatalysts is promising for renewable energy utilization. However, photocatalytic overall water splitting is challenging owing to slow water oxidation kinetics, severe reverse reaction, and H2 /O2 gas separation. Herein, mimicking nature photosynthesis, a practically feasible approach named Hydrogen Farm Project (HFP) is presented, which is composed of solar energy capturing and hydrogen production subsystems integrated by a shuttle ion loop, Fe3+ /Fe2+ . Well-defined BiVO4 crystals with precisely tuned {110}/{010} facets are ideal photocatalysts to realize the HFP, giving up to 71 % quantum efficiency for photocatalytic water oxidation and full forward reaction with nearly no reverse reaction. An overall solar-to-chemical efficiency over 1.9 % and a solar-to-hydrogen efficiency exceeding 1.8 % could be achieved. Furthermore, a scalable HFP panel for solar energy storage was demonstrated under sunlight outdoors.

10.
Angew Chem Int Ed Engl ; 59(16): 6590-6595, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31994300

RESUMO

Surface atomic arrangement and coordination of photocatalysts highly exposed to different crystal facets significantly affect the photoreactivity. However, controversies on the true photoreactivity of a specific facet in heterogeneous photocatalysis still exits. Herein, we exemplified well-defined BiOBr nanosheets dominating with respective facets, (001) and (010), to track the reactivity of crystal facets for photocatalytic water splitting. The real photoreactivity of BiOBr-(001) were evidenced to be significantly higher than BiOBr-(010) for both hydrogen production and oxygen evolution reactions. Further in situ photochemical probing studies verified the distinct reactivity is not only owing to the highly exposed facets, but dominated by the co-exposing facets, leading to an efficient spatial separation of photogenerated charges and further making the oxidation and reduction reactions separately occur with different reaction rates, which ordains the fate of the true photoreactivity.

11.
Angew Chem Int Ed Engl ; 59(2): 935-942, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31670455

RESUMO

Photocatalytic overall water splitting has been recognized as a promising approach to convert solar energy into hydrogen. However, most of the photocatalysts suffer from low efficiencies mainly because of poor charge separation. Herein, taking a model semiconductor gallium nitride (GaN) as an example, we uncovered that photogenerated electrons and holes can be spatially separated to the nonpolar and polar surfaces of GaN nanorod arrays, which is presumably ascribed to the different surface band bending induced by the surface polarity. The photogenerated charge separation efficiency of GaN can be enhanced significantly from about 8 % to more than 80 % via co-exposing polar and nonpolar surfaces. Furthermore, spatially assembling reduction and oxidation cocatalysts on the nonpolar and polar surfaces remarkably boosts photocatalytic overall water splitting, with the quantum efficiency increased from 0.9 % for the film photocatalyst to 6.9 % for the nanorod arrays photocatalyst.

12.
Chemistry ; 25(68): 15586-15593, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31574171

RESUMO

Development of Pt group metal-free catalysts for low-temperature CO oxidation remains critical. In this work, active and stable mesoporous Cu-Ce-Ox solid solutions are prepared by using spray pyrolysis. The specific surface areas and pore volumes reach as high as 170 m2 g-1 and 0.24 cm3 g-1 , respectively. The results of CO oxidation study suggest that (1) the catalyst obtained by spray pyrolysis possesses much higher activity than those made by co-precipitation, sol-gel, and hydrothermal methods; (2) the optimal Cu0.2 -Ce0.8 -Ox solid solution presents a reactivity over 28 times that of both single-component CuO and CeO2 at 70 °C. Based on the study of pure-phase Cu-Ce-Ox solid solutions by selective leaching of segregated CuOx species, the active center for CO oxidation is confirmed as the bimetallic Cu-Ce-O site, whereas the individual CuOx particles not only act as spectators but also block the active Cu-Ce-O sites. A low apparent activation energy of approximately 48 kJ mol-1 is detected for CO oxidation at the Cu-Ce-O site, making Cu-Ce-Ox solid solutions able to present high activity at low temperature. Furthermore, the Cu-Ce-Ox catalysts exhibit excellent stability and thermal tolerance toward CO oxidation.

13.
Twin Res Hum Genet ; 21(6): 527-532, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30375300

RESUMO

The giant panda, native to mountains of south-west China, is one of the world's rarest bear species and is subject to considerable conservation effort. In captivity, the proportion of twins accounts for 54% of the total number of births. To date, little is known about zygosity in panda populations - specifically, the proportion of monozygotic and dizygotic twins. In this study, we used 10 microsatellite markers for reliable zygosity testing, and the probability of monozygotic twins was 99.963% when all 10 markers were concordant. Out of 43 studied twin pairs, no MZ twins were found, indicating that there may be no identical panda twins (or the incidence is very low). We speculate that the fertilized eggs of giant pandas do not have the capability to split into two identical embryos, or that this ability is very poor, which is likely due to delayed implantation that is common in bear species. The results of this study deepen our understanding of giant panda breeding, yield insight into panda twins' likely mechanism of formation, and reduce the uncertainty of individual identity in wild population surveys.


Assuntos
Repetições de Microssatélites , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Ursidae/genética , Animais , Feminino , Genótipo , Masculino
14.
J Am Chem Soc ; 139(34): 11771-11778, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28777568

RESUMO

Plasmonic photocatalysis, stemming from the effective light absorbance and confinement of surface plasmons, provides a pathway to enhance solar energy conversion. Although the plasmonic hot electrons in water reduction have been extensively studied, exactly how the plasmonic hot holes participate in the water splitting reaction has not yet been well understood. In particular, where the plasmonic hot holes participate in water oxidation is still illusive. Herein, taking Au/TiO2 as a plasmonic photocatalyst prototype, we investigated the plasmonic hot holes involved in water oxidation. The reaction sites are positioned by photodeposition together with element mapping by electron microscopy, while the distribution of holes is probed by surface photovoltage imaging with Kelvin probe force microscopy. We demonstrated that the plasmonic holes are mainly concentrated near the gold-semiconductor interface, which is further identified as the reaction site for plasmonic water oxidation. Density functional theory also corroborates these findings by revealing the promotion role of interfacial structure (Ti-O-Au) for oxygen evolution. Furthermore, the interfacial effect on plasmonic water oxidation is validated by other Au-semiconductor photocatalytic systems (Au/SrTiO3, Au/BaTiO3, etc.).

15.
Faraday Discuss ; 198: 463-472, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28267163

RESUMO

The separation of photogenerated charge carries is a challenging issue in artificial photocatalyst systems for solar energy conversion. It has been reported that spatial charge separation can take place between different facets of semiconductor-based crystals with regular morphology and facets, which could be used to rationally deposit cocatalysts on the right facets. However, the spatial separation of photogenerated electrons and holes is still a big challenge for a particulate photocatalyst without regular morphology and specific facets. In this work, we demonstrated that photogenerated electrons and holes can be regularly separated on ferroelectric PbTiO3 photocatalyst even without regular morphology and facets. The reduction cocatalyst and oxidation cocatalyst could be selectively formed on different sites via an in situ photochemical deposition method. It is found that the photoactivity and hydrogen production for PbTiO3 with spatially separated dual-cocatalysts is remarkably enhanced to more than 100 times greater compared to native PbTiO3, which is much higher than that the case of dual-cocatalysts with a random distribution. The intrinsic electric fields and spontaneous electric polarization in the bulk of PbTiO3 are proposed to play important roles in the spatial distribution of active sites on irregular PbTiO3 particles. Our work emphasizes the essential roles of two important factors, efficient charge separation strategy and the location of dual-cocatalysts on the right sites, to construct integrated artificial photocatalyst systems for solar energy conversion.

16.
Chemistry ; 21(41): 14337-41, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26332275

RESUMO

Spatial separation of reduction sites and oxidation sites to inhibit the recombination of photogenerated electrons and holes plays a vital role in improving the efficiency of photocatalyst systems. It is very challenging to rationally deposit cocatalysts on the right facets (sites), namely, the reduction cocatalyst on the reduction facets (sites) and the oxidation cocatalyst on the oxidation facets (sites). Herein, we report that the reduction and oxidation cocatalysts can be selectively constructed on the different facets of p-type Cu2 O crystals with anisotropic facets, but not on the Cu2 O crystal with isotropic facets. The deposition of dual cocatalysts on the different facets resulted in a remarkable synergetic effect in the photocatalytic performance, which could be attributed to the spatial separation of the photogenerated charges between facets. Our work reports an instructive strategy for constructing high-efficiency photocatalyst systems for solar energy conversion.

17.
Chem Commun (Camb) ; 60(39): 5136-5148, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38656314

RESUMO

Hydrogen production via the photocatalytic water splitting reaction on semiconductors presents a promising avenue to directly achieve solar energy conversion and storage. Bismuth-based semiconductors with layered structures, a hierarchical arrangement of components stacked in the form of two-dimensional extended layers where the atoms within each layer are typically strongly bonded, while the interactions between the layers are relatively weak, have emerged as an important series of photocatalyst candidates. In this review, we focus on the new emerging layered bismuth-based semiconductors with structures in Sillén, Aurivillius, Sillén-Aurivillius and bismuth chromate systems primarily employed in the photocatalytic water splitting reaction. From a crystal structure-oriented view, we delve into discussions on how the component and unit of a crystal structure influence the intrinsic properties, including light absorption and photogenerated charge transfer and separation, of materials as well as the corresponding photocatalytic performance of the water splitting reaction. The strategies for modulating the ferroelectricity and surface modification of these layered bismuth-based semiconductors are also involved. We also discuss the limitations of these materials accompanied by a forward-looking perspective, and we hope to provide some insights from the view of rational material design and engineering for the fabrication of high-efficiency photocatalytic water splitting systems.

18.
Small Methods ; 8(2): e2300405, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37231584

RESUMO

Bismuth-based halide perovskite materials have attracted extensive attention for optoelectronic applications due to nontoxicity and ambient stability. However, limited by low-dimensional structure and isolate octahedron arrangement, the undesirable photophysical properties of bismuth-based perovskites are still not well modulated. Here, the rational design and synthesis of Cs3 SbBiI9 with improved optoelectronic performance via premeditatedly incorporating antimony atoms with a similar electronic structure to bismuth into the host lattice of Cs3 Bi2 I9 is reported. Compared with Cs3 Bi2 I9 , the absorption spectrum of Cs3 SbBiI9 is broadened from ≈640 to ≈700 nm, the photoluminescence intensity enhances by two orders of magnitude indicating the extremely suppressed carrier nonradiative recombination, and the charge carrier lifetime is further increased from 1.3 to 207.6 ns. Taking representative applications in perovskite solar cells, the Cs3 SbBiI9 exhibits a higher photovoltaic performance benefiting from the improved intrinsic optoelectronic properties. Further structure analysis reveals that the introduced Sb atoms regulate the interlayer spacing between dimers in c-axis direction and the micro-octahedral configuration, which correlate well with the improvement of optoelectronic properties of Cs3 SbBiI9 . It is anticipated that this work will benefit the design and fabrication of lead-free perovskite semiconductors for optoelectronic applications.

19.
Int J Womens Health ; 16: 17-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204972

RESUMO

Introduction: Alveolar soft part sarcoma (ASPS) is a rare and distinct subtype of soft tissue sarcoma. This study aims to describe the unique presentation of ASPS in the female genital tract. Methods: Prognostic factors for cancer-specific overall survival (CSS) were evaluated using multivariate analyses. Results: In our case series, we identified a novel TFE3-PRCC gene fusion in a 24-year-old unmarried patient with cervical ASPS who underwent fertility-sparing surgery and remained recurrence-free for 41 months. The other two patients underwent radical hysterectomy and bilateral salpingo-oophorectomy. At the time of writing, the two patients had been disease-free for 49 and 71 months, fluorescence in situ hybridization showed break-apart signals for the ASPL-TFE3 gene. Among the 55 cases with available information from the PubMed/Medline database, most presented with localized disease, and at the last follow-up, all patients were alive and 45 patients showed no evidence of disease. The 5-year CSS rate in the female genital tract cohort from SEER database was 86.2%. Multivariate analysis revealed that older age was associated with a 1.042-fold increased risk of cancer-specific mortality (HR=1.042, 95% CI 1.022-1.063, P < 0.001), involvement of soft tissue including the heart was associated with a 4.786-fold higher risk (HR=4.7868, 95% CI 1.681-13.623, P= 0.003), and regional infiltration and distant metastasis were associated with approximately 8.6-fold and 18-fold higher risk of cancer-specific mortality compared to local disease, respectively (HR=8.652, 95% CI 2.529-29.63, P = 0.001; HR=18.366, 95% CI 6.153-54.817, P< 0.001). Patients who underwent radical excision did not show reduced cancer-specific mortality compared to those who underwent local excision (HR=0.492, 95% CI 0.224-1.081, P = 0.078). Discussion: Previously unrecognized genetic diversity exists in ASPS. Patients with ASPS in the female genital tract have the lowest likelihood of presenting with a distant disease and are associated with a more favorable survival outcome.

20.
Talanta ; 273: 125924, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518717

RESUMO

Wildlife conservation is often challenged by a lack of knowledge about the reproduction biology and adaptability of endangered species. Although monitoring steroids and related molecules can increase this knowledge, the applicability of current techniques (e.g. immunoassays) is hampered by species-specific steroid metabolism and the requisite to avoid invasive sampling. This study presents a validated steroidomics method for the (un)targeted screening of a wide range of sex and stress steroids and related molecules in urine using ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). In total, 50 steroids (conjugated and non-conjugated androgens, estrogens, progestogens and glucocorticoids) and 6 prostaglandins could be uniquely detected. A total of 45 out of 56 compounds demonstrated a detection limit below 0.01 ng µL-1. Excellent linearity (R2 > 0.99), precision (CV < 20 %), and recovery (80-120 %) were observed for 46, 41, and 39 compounds, respectively. Untargeted screening of pooled giant panda and human samples yielded 9691 and 8366 features with CV < 30 %, from which 84.1 % and 83.0 %, respectively, also demonstrated excellent linearity (R2 > 0.90). The biological validity of the method was investigated on male and female giant panda urine (n = 20), as well as pooled human samples (n = 10). A total of 24 different steroids were detected with clear qualitative and quantitative differences between human and giant panda samples. Furthermore, expected differences were revealed between female giant panda samples from different reproductive phases. In contrast to traditional biomonitoring techniques, the developed steroidomics method was able to screen a wide range of compounds and provide information on the putative identities of metabolites potentially important for reproductive monitoring in giant pandas. These results illustrate the advancements steroidomics brings to the field of wildlife biomonitoring in the pursuit to better understand the biology of endangered species.


Assuntos
Animais Selvagens , Ursidae , Animais , Masculino , Feminino , Humanos , Monitoramento Biológico , Espectrometria de Massas , Esteroides/análise , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA