Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Hum Genet ; 108(10): 1891-1906, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34551312

RESUMO

The success of personalized genomic medicine depends on our ability to assess the pathogenicity of rare human variants, including the important class of missense variation. There are many challenges in training accurate computational systems, e.g., in finding the balance between quantity, quality, and bias in the variant sets used as training examples and avoiding predictive features that can accentuate the effects of bias. Here, we describe VARITY, which judiciously exploits a larger reservoir of training examples with uncertain accuracy and representativity. To limit circularity and bias, VARITY excludes features informed by variant annotation and protein identity. To provide a rationale for each prediction, we quantified the contribution of features and feature combinations to the pathogenicity inference of each variant. VARITY outperformed all previous computational methods evaluated, identifying at least 10% more pathogenic variants at thresholds achieving high (90% precision) stringency.


Assuntos
Algoritmos , Biologia Computacional/normas , Doença/etiologia , Mutação de Sentido Incorreto , Predisposição Genética para Doença , Humanos , Fenótipo , Medicina de Precisão , Software
2.
Am J Hum Genet ; 108(7): 1283-1300, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214447

RESUMO

Most rare clinical missense variants cannot currently be classified as pathogenic or benign. Deficiency in human 5,10-methylenetetrahydrofolate reductase (MTHFR), the most common inherited disorder of folate metabolism, is caused primarily by rare missense variants. Further complicating variant interpretation, variant impacts often depend on environment. An important example of this phenomenon is the MTHFR variant p.Ala222Val (c.665C>T), which is carried by half of all humans and has a phenotypic impact that depends on dietary folate. Here we describe the results of 98,336 variant functional-impact assays, covering nearly all possible MTHFR amino acid substitutions in four folinate environments, each in the presence and absence of p.Ala222Val. The resulting atlas of MTHFR variant effects reveals many complex dependencies on both folinate and p.Ala222Val. MTHFR atlas scores can distinguish pathogenic from benign variants and, among individuals with severe MTHFR deficiency, correlate with age of disease onset. Providing a powerful tool for understanding structure-function relationships, the atlas suggests a role for a disordered loop in retaining cofactor at the active site and identifies variants that enable escape of inhibition by S-adenosylmethionine. Thus, a model based on eight MTHFR variant effect maps illustrates how shifting landscapes of environment- and genetic-background-dependent missense variation can inform our clinical, structural, and functional understanding of MTHFR deficiency.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Análise Mutacional de DNA , Diploide , Biblioteca Gênica , Genótipo , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/fisiologia , Saccharomyces cerevisiae/genética
3.
Bioinformatics ; 36(12): 3938-3940, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251504

RESUMO

SUMMARY: Fully realizing the promise of personalized medicine will require rapid and accurate classification of pathogenic human variation. Multiplexed assays of variant effect (MAVEs) can experimentally test nearly all possible variants in selected gene targets. Planning a MAVE study involves identifying target genes with clinical impact, and identifying scalable functional assays for that target. Here, we describe MaveQuest, a web-based resource enabling systematic variant effect mapping studies by identifying potential functional assays, disease phenotypes and clinical relevance for nearly all human protein-coding genes. AVAILABILITY AND IMPLEMENTATION: MaveQuest service: https://mavequest.varianteffect.org/. MaveQuest source code: https://github.com/kvnkuang/mavequest-front-end/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Humanos , Fenótipo
5.
Genome Biol ; 25(1): 172, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951922

RESUMO

BACKGROUND: Computational variant effect predictors offer a scalable and increasingly reliable means of interpreting human genetic variation, but concerns of circularity and bias have limited previous methods for evaluating and comparing predictors. Population-level cohorts of genotyped and phenotyped participants that have not been used in predictor training can facilitate an unbiased benchmarking of available methods. Using a curated set of human gene-trait associations with a reported rare-variant burden association, we evaluate the correlations of 24 computational variant effect predictors with associated human traits in the UK Biobank and All of Us cohorts. RESULTS: AlphaMissense outperformed all other predictors in inferring human traits based on rare missense variants in UK Biobank and All of Us participants. The overall rankings of computational variant effect predictors in these two cohorts showed a significant positive correlation. CONCLUSION: We describe a method to assess computational variant effect predictors that sidesteps the limitations of previous evaluations. This approach is generalizable to future predictors and could continue to inform predictor choice for personal and clinical genetics.


Assuntos
Benchmarking , Variação Genética , Humanos , Fenótipo , Biologia Computacional/métodos , Genótipo
6.
Genome Biol ; 24(1): 97, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101203

RESUMO

BACKGROUND: Glucokinase (GCK) regulates insulin secretion to maintain appropriate blood glucose levels. Sequence variants can alter GCK activity to cause hyperinsulinemic hypoglycemia or hyperglycemia associated with GCK-maturity-onset diabetes of the young (GCK-MODY), collectively affecting up to 10 million people worldwide. Patients with GCK-MODY are frequently misdiagnosed and treated unnecessarily. Genetic testing can prevent this but is hampered by the challenge of interpreting novel missense variants. RESULT: Here, we exploit a multiplexed yeast complementation assay to measure both hyper- and hypoactive GCK variation, capturing 97% of all possible missense and nonsense variants. Activity scores correlate with in vitro catalytic efficiency, fasting glucose levels in carriers of GCK variants and with evolutionary conservation. Hypoactive variants are concentrated at buried positions, near the active site, and at a region of known importance for GCK conformational dynamics. Some hyperactive variants shift the conformational equilibrium towards the active state through a relative destabilization of the inactive conformation. CONCLUSION: Our comprehensive assessment of GCK variant activity promises to facilitate variant interpretation and diagnosis, expand our mechanistic understanding of hyperactive variants, and inform development of therapeutics targeting GCK.


Assuntos
Diabetes Mellitus Tipo 2 , Glucoquinase , Humanos , Glucoquinase/genética , Glucoquinase/química , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Mutação de Sentido Incorreto , Testes Genéticos , Mutação
7.
Nat Commun ; 14(1): 2162, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061542

RESUMO

Generating reference maps of interactome networks illuminates genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. We apply state-of-the-art methods to identify binary protein-protein interactions (PPIs) for Drosophila melanogaster. Four all-by-all yeast two-hybrid (Y2H) screens of > 10,000 Drosophila proteins result in the 'FlyBi' dataset of 8723 PPIs among 2939 proteins. Testing subsets of data from FlyBi and previous PPI studies using an orthogonal assay allows for normalization of data quality; subsequent integration of FlyBi and previous data results in an expanded binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6511 proteins. We use FlyBi data to generate an autophagy network, then validate in vivo using autophagy-related assays. The deformed wings (dwg) gene encodes a protein that is both a regulator and a target of autophagy. Altogether, these resources provide a foundation for building new hypotheses regarding protein networks and function.


Assuntos
Proteínas de Drosophila , Mapas de Interação de Proteínas , Animais , Mapas de Interação de Proteínas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mapeamento de Interação de Proteínas/métodos , Técnicas do Sistema de Duplo-Híbrido
8.
Nat Biotechnol ; 41(1): 140-149, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36217029

RESUMO

Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions. We find that host proteins genetically associated with comorbidities of severe illness and long COVID are enriched in SARS-CoV-2 targeted network communities. Evaluating contactome-derived hypotheses, we demonstrate that viral NSP14 activates nuclear factor κB (NF-κB)-dependent transcription, even in the presence of cytokine signaling. Moreover, for several tested host proteins, genetic knock-down substantially reduces viral replication. Additionally, we show for USP25 that this effect is phenocopied by the small-molecule inhibitor AZ1. Our results connect viral proteins to human genetic architecture for COVID-19 severity and offer potential therapeutic targets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Proteoma/genética , Síndrome de COVID-19 Pós-Aguda , Replicação Viral/genética , Ubiquitina Tiolesterase/farmacologia
9.
Nat Commun ; 11(1): 731, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024834

RESUMO

The type and genomic context of cancer mutations depend on their causes. These causes have been characterized using signatures that represent mutation types that co-occur in the same tumours. However, it remains unclear how mutation processes change during cancer evolution due to the lack of reliable methods to reconstruct evolutionary trajectories of mutational signature activity. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we present TrackSig, a new method that reconstructs these trajectories using optimal, joint segmentation and deconvolution of mutation type and allele frequencies from a single tumour sample. In simulations, we find TrackSig has a 3-5% activity reconstruction error, and 12% false detection rate. It outperforms an aggressive baseline in situations with branching evolution, CNA gain, and neutral mutations. Applied to data from 2658 tumours and 38 cancer types, TrackSig permits pan-cancer insight into evolutionary changes in mutational processes.


Assuntos
Biologia Computacional/métodos , Mutação , Neoplasias/genética , Simulação por Computador , Evolução Molecular , Frequência do Gene , Genoma Humano , Humanos , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
10.
G3 (Bethesda) ; 10(9): 3399-3402, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32763951

RESUMO

The world is facing a global pandemic of COVID-19 caused by the SARS-CoV-2 coronavirus. Here we describe a collection of codon-optimized coding sequences for SARS-CoV-2 cloned into Gateway-compatible entry vectors, which enable rapid transfer into a variety of expression and tagging vectors. The collection is freely available. We hope that widespread availability of this SARS-CoV-2 resource will enable many subsequent molecular studies to better understand the viral life cycle and how to block it.


Assuntos
Betacoronavirus/genética , Fases de Leitura Aberta/genética , Betacoronavirus/isolamento & purificação , COVID-19 , Clonagem Molecular , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Escherichia coli/metabolismo , Humanos , Pandemias , Plasmídeos/genética , Plasmídeos/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Potyvirus/genética , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA