Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(5): e2300620, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38133122

RESUMO

This study investigates the effect of adding oligomers on the rheological properties of polymer nanocomposite melts with the goal of enhancing the processability of nanocomposites. The scaling analysis of plateau modulus (GN ) is used in understanding the complex mechanical behavior of entangled poly(methyl acrylate) (PMA) melts upon oligomer addition. Increasing the oligomer amount led to a decrease in GN and an apparent degree of entanglement (Z) in the neat polymer melt. The particle dispersion states at two particle loadings with oligomer addition are examined in transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The dilution exponent is found unchanged at 7 and 17 vol% particle loadings for the well-dispersed PMA-SiO2 nanocomposites compared to the neat PMA solution. These findings suggest that attractive particles with strong interfacial layers do not influence the tube dilution scaling of the polymer with the oligomer. To the contrary, composites with weak polymer-particle interfaces demonstrate phase separation of particles when oligomers are introduced and its exponent for tube dilution scaling reaches 4 at a particle loading of 17 vol%, potentially indicating that network-forming clusters influence chain entanglements in this scenario.


Assuntos
Nanocompostos , Polímeros , Dióxido de Silício , Espalhamento a Baixo Ângulo , Dilatação , Difração de Raios X
2.
Soft Matter ; 19(15): 2764-2770, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36988144

RESUMO

The entanglements of dynamically asymmetric polymer layers influence relaxations of nanoparticles in polymer nanocomposites. In this work, the dynamics of polymer-adsorbed and polymer-grafted nanoparticles in a poly(methyl acrylate) matrix polymer was investigated using X-ray photon correlation spectroscopy (XPCS) to understand the role of chain rigidity and chemical heterogeneities in particle dynamics. Locations of dynamic heterogeneities close to nanoparticles and away from particle surfaces were examined with the comparison of adsorbed and grafted nanoparticles. Our results show that the chemical heterogeneities around dispersed nanoparticles transitioned the particle dynamics from Brownian diffusion into hyperdiffusion, and moreover, the high rigidity of chains in the chemically heterogeneous interfacial layers slowed down the particle dynamics. The hyperdiffusion measured both in grafted particles and adsorbed particles was attributed to the dense interfacial mixing of dynamically heterogeneous chains.

3.
Chemphyschem ; 23(18): e202200219, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35676199

RESUMO

Ionic liquid mixed with poly(methyl methacrylate)-grafted Fe3 O4 nanoparticle aggregates at low particle concentrations was found to exhibit different dynamics and ionic conductivity than that of pure ionic liquid in our previous studies. In this work, we report on the quasi-elastic neutron scattering results of ionic liquid containing polymer-grafted Fe3 O4 nanoparticles at higher particle concentrations. The diffusivity of imidazolium (HMIM+ ) cations of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIM-TFSI) in the presence of poly(methyl methacrylate)-grafted Fe3 O4 nanoparticles is discussed through the confinement. Analysis of the elastic incoherent structure factor revealed that the confinement radius decreased with the addition of grafted particles in HMIM-TFSI/solvent mixture. We propose the confinement that is induced by the high concentration of grafted particles shrinks the HMIM-TFSI restricted volume. We further conjecture that this enhanced diffusivity occurs as a result of the local ordering of cations within aggregates of poly(methyl methacrylate)-grafted Fe3 O4 nanoparticles.


Assuntos
Líquidos Iônicos , Nanopartículas , Cátions , Imidas/química , Líquidos Iônicos/química , Polímeros/química , Polimetil Metacrilato
4.
Soft Matter ; 18(29): 5402-5409, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35815406

RESUMO

The use of ionic liquids as solvents for polymers or polymer-grafted nanoparticles provides an exciting feature to explore electrolyte-polymer interactions. 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIm-TFSI) can have specific interactions with the polymer through ion-dipole forces or hydrogen bonding. In this work, poly(methyl methacrylate)-b-poly(styrene sulfonate) (PMMA-b-PSS) copolymer-grafted Fe3O4 nanoparticles with different sulfonation levels (∼4.9 to 10.9 mol% SS) were synthesized, and their concentration dependent ionic conductivities were reported in acetonitrile and HMIm-TFSI/acetonitrile mixtures. We found that conductivity enhancement with the particle concentration in acetonitrile was due to the aggregation of grafted particles, resulting in sulfonic domain connectivity. The ionic conductivity was found to be related to the effective hopping transfer within ionic channels. On the contrary, the conductivity decreased or remained constant with increasing particle concentration in HMIm-TFSI/acetonitrile. This result was attributed to the ion coupling between ionic liquids and copolymer domains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA