Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(18): 6863-6869, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656177

RESUMO

The undergraduate analytical chemistry curriculum serves to equip students with the knowledge and skills for work outside of classroom training. As such, instructors face a challenging task in deciding the breadth and depth of topics for their courses to ensure their syllabi can remain up-to-date with today's needs. We propose that instructors consider covering capillary electrophoresis (CE) and lab-on-a-chip (LOC) technologies in their analytical chemistry courses. Past surveys of the curriculum show a noticeable lack of emphasis on these topics, which we feel is a missed opportunity and one that holds potential for the collective benefit of instructors and students. CE and LOCs are utilized in a diverse array of fields like biochemistry, pharmaceutical production, materials science, and environmental analysis, and their applications are becoming increasingly important amidst the growing movement toward environmentally sustainable practices and green chemistry. They are also more accessible in the analytical chemistry classroom compared with typical benchtop instruments due to the flexibility of their size and cost. This makes them easier to obtain, maintain, and transport for use and demonstration purposes. Additionally, interwoven in these topics are core concepts that are fundamental to analytical chemistry; thus, covering them will inherently reinforce students' understanding of fundamental knowledge. Therefore, we believe increased coverage of CE and LOCs can better prepare undergraduates for modern analytical chemistry work in various industries and fields of research.

2.
Environ Sci Technol ; 57(34): 12760-12770, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37594125

RESUMO

Understanding plant uptake and translocation of nanomaterials is crucial for ensuring the successful and sustainable applications of seed nanotreatment. Here, we collect a dataset with 280 instances from experiments for predicting the relative metal/metalloid concentration (RMC) in maize seedlings after seed priming by various metal and metalloid oxide nanoparticles. To obtain unbiased predictions and explanations on small datasets, we present an averaging strategy and add a dimension for interpretable machine learning. The findings in post-hoc interpretations of sophisticated LightGBM models demonstrate that solubility is highly correlated with model performance. Surface area, concentration, zeta potential, and hydrodynamic diameter of nanoparticles and seedling part and relative weight of plants are dominant factors affecting RMC, and their effects and interactions are explained. Furthermore, self-interpretable models using the RuleFit algorithm are established to successfully predict RMC only based on six important features identified by post-hoc explanations. We then develop a visualization tool called RuleGrid to depict feature effects and interactions in numerous generated rules. Consistent parameter-RMC relationships are obtained by different methods. This study offers a promising interpretable data-driven approach to expand the knowledge of nanoparticle fate in plants and may profoundly contribute to the safety-by-design of nanomaterials in agricultural and environmental applications.


Assuntos
Metaloides , Sementes , Transporte Biológico , Agricultura , Aprendizado de Máquina , Plântula
3.
Bioorg Med Chem ; 79: 117167, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682225

RESUMO

Pseudomonas aeruginosa is widely attributed as the leading cause of hospital-acquired infections. Due to intrinsic antibiotic resistance mechanisms and the ability to form biofilms, P. aeruginosa infections are challenging to treat. P. aeruginosa employs multiple virulence mechanisms to establish infections, many of which are controlled by the global virulence regulator Vfr. An attractive strategy to combat P. aeruginosa infections is thus the use of anti-virulence compounds. Here, we report the discovery that FDA-approved drug auranofin attenuates virulence pathways in P. aeruginosa, including quorum sensing (QS) and Type IV pili (TFP). We show that auranofin acts via multiple targets, one of which being Vfr. Consistent with inhibition of QS and TFP expression, we show that auranofin attenuates biofilm maturation, and when used in combination with colistin, displays strong synergy in eradicating P. aeruginosa biofilms. Auranofin may have immediate applications as an anti-virulence drug against P. aeruginosa infections.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Auranofina/farmacologia , Auranofina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fatores de Virulência/metabolismo , Fatores de Virulência/farmacologia , Fatores de Virulência/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Biofilmes , Percepção de Quorum , Proteínas de Bactérias/farmacologia
4.
J Proteome Res ; 21(3): 643-653, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35073107

RESUMO

Bioinformatics and machine learning tools have made it possible to integrate data across different -omics platforms for novel multiomic insights into diseases. To synergistically process -omics data in an integrative manner, analyte extractions for each -omics type need to be done on the same set of clinical samples. Therefore, we introduce a simultaneous dual extraction method for generating both metabolomic (polar metabolites only) and glycomic (protein-derived N-glycans only) profiles from one sample with good extraction efficiency and reproducibility. As proof of the usefulness of the extraction and joint-omics workflow, we applied it on platelet samples obtained from a cohort study comprising 66 coronary heart disease (CHD) patients and 34 matched healthy community-dwelling controls. The metabolomics and N-glycomics data sets were subjected to block partial least-squares-discriminant analysis (block-PLS-DA) based on sparse generalized canonical correlation analysis (CCA) for identifying relevant mechanistic interactions between metabolites and glycans. This joint-omics investigation revealed intermodulative roles that protein-bound carbohydrates or glycoproteins and amino acids have in metabolic pathways and through intermediate protein dysregulations. It also suggested a protective role of the glyco-redox network in CHD, demonstrating proof-of-principle for a joint-omics analysis in providing new insights into disease mechanisms, as enabled by a simultaneous polar metabolite and protein-derived N-glycan extraction workflow.


Assuntos
Glicômica , Metabolômica , Estudos de Coortes , Glicômica/métodos , Humanos , Metabolômica/métodos , Polissacarídeos , Reprodutibilidade dos Testes , Fluxo de Trabalho
5.
Glycobiology ; 32(6): 469-482, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-34939124

RESUMO

Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. Diagnostic challenges remain in this highly time-sensitive condition. Using capillary electrophoresis-laser-induced fluorescence, we analyzed the blood plasma N-glycan profile in a cohort study comprising 103 patients with AMI and 69 controls. Subsequently, the data generated was subjected to classification modeling to identify potential AMI biomarkers. An area under the Receiving Operating Characteristic curve (AUCROC) of 0.81 was obtained when discriminating AMI vs. non-MI patients. We postulate that the glycan profile involves a switch from a pro- to an anti-inflammatory state in the AMI pathophysiology. This was supported by significantly decreased levels in galactosylation, alongside increased levels in sialylation, afucosylation and GlcNAc bisection levels in the blood plasma of AMI patients. By substantiating the glycomics analysis with immunoglobulin G (IgG) protein measurements, robustness of the glycan-based classifiers was demonstrated. Changes in AMI-related IgG activities were also confirmed to be associated with alterations at the glycosylation level. Additionally, a glycan-biomarker panel derived from glycan features and current clinical biomarkers performed remarkably (AUCROC = 0.90, sensitivity = 0.579 at 5% false positive rate) when discriminating between patients with ST-segment elevation MI (n = 84) and non-ST-segment elevation MI (n = 19). Moreover, by applying the model trained using glycomics information, AMI and controls can still be discriminated at 1 and 6 months after baseline. Thus, glycomics biomarkers could potentially serve as a valuable complementary test to current diagnostic biomarkers. Additional research on their utility and associated biomechanisms via a large-scale study is recommended.


Assuntos
Infarto do Miocárdio , Biomarcadores , Estudos de Coortes , Glicômica , Humanos , Imunoglobulina G/metabolismo , Infarto do Miocárdio/diagnóstico
6.
Curr Issues Mol Biol ; 43(3): 1876-1888, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34889896

RESUMO

The present work demonstrated and compared the anti-inflammatory effects of celery leaf (CLE) and stem (CSE) extracts. LC-MS-based metabolomics were an effective approach to achieve the biomarker identification and pathway elucidation associated with the reduction in inflammatory responses. The celery extracts suppressed LPS-induced NO production in RAW 264.7 cells, and CLE was five times more effective than CSE. Distinct differences were revealed between the control and celery-treated samples among the 24 characteristic metabolites that were identified. In celery-treated LPS cells, reversals of intracellular (citrulline, proline, creatine) and extracellular (citrulline, lysine) metabolites revealed that the therapeutic outcomes were closely linked to arginine metabolism. Reversals of metabolites when treated with CLE (aspartate, proline) indicated targeted effects on the TCA and urea cycles, while, in the case of CSE (histidine, glucose), the glycolysis and the pentose phosphate pathways were implicated. Subsequently, apigenin and bergapten in CLE were identified as potential biomarkers mediating the anti-inflammatory response.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Apium/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Cromatografia Líquida , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Metaboloma , Metabolômica/métodos , Camundongos , Óxido Nítrico/metabolismo , Folhas de Planta/química , Caules de Planta/química , Células RAW 264.7 , Espectrometria de Massas em Tandem
7.
Anal Bioanal Chem ; 412(27): 7525-7533, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32829439

RESUMO

Detection of lead(II) (Pb2+) ions in water is important for the protection of human health and environment. The growing demand for onsite detection still faces challenges for sensitive and easy-to-use methods. In this work, a novel surface plasmon resonance (SPR) biosensor based on GR-5 DNAzyme and gold nanoparticles (AuNPs) was developed. Thiolated DNAzyme was immobilized on the gold surface of the sensor chip followed by anchoring the substrate-functionalized AuNPs through the DNAzyme-substrate hybridization. The coupling between the localized surface plasmon (LSP) of AuNPs and the surface plasmon polaritons (SPP) on the gold sensor surface was used to improve the sensitivity. The substrate cleavage in the presence of Pb2+ ions was catalyzed by DNAzyme, leading to the removal of AuNPs and the diminished LSP-SPP coupling. The optimal detection limit was 80 pM for the sensor fabricated with 1 µM DNAzyme, corresponding to two or three orders of magnitude lower than the toxicity levels of Pb2+ in drinking water defined by WHO and USEPA. By tuning the surface coverage of DNAzyme, the sensitivity and dynamic range could be controlled. This sensor also featured high selectivity to Pb2+ ions and simple detection procedure. Successful detection of Pb2+ ions in groundwater indicates that this method has the prospect in the onsite detection of Pb2+ ions in water. Given the variety of AuNPs and metal-specific DNAzymes, this detection strategy would lead to the development of more sensitive and versatile heavy metal sensors. Graphical abstract.


Assuntos
DNA Catalítico/química , Ouro/química , Chumbo/análise , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Poluentes Químicos da Água/análise , Cátions Bivalentes/análise , Ácidos Nucleicos Imobilizados/química , Limite de Detecção
8.
Environ Geochem Health ; 41(1): 81-91, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29633054

RESUMO

A bioelectrochemical sensor (BES) was constructed for toxicity assessment of copper in contaminated domestic sewage. Electrochemically active bacteria (EAB), whose growth was supported by the bioenergy generated from an in situ metallurgical process, functioned as the sensing elements. The external resistance of metallurgical BES was optimized based on linear sweep voltammetry analysis. The stabilized BES was utilized to monitor the copper toxicity in real wastewater. During the less than 1-h sensing period, copper concentration ranging from 1 to 5 mg L-1 could be detected. A power output of around 100 Wh (kg Cu)-1 and metallic copper resource were obtained simultaneously. This study demonstrated that the highly active EAB species enriched in metallurgical BES could be a promising candidate for rapid and reliable evaluation of copper toxicity in real domestic wastewater.


Assuntos
Bactérias/metabolismo , Cobre/análise , Esgotos/análise , Águas Residuárias/análise , Eletrodos
9.
Molecules ; 22(2)2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28212342

RESUMO

Amentoflavone (C30H18O10) is a well-known biflavonoid occurring in many natural plants. This polyphenolic compound has been discovered to have some important bioactivities, including anti-inflammation, anti-oxidation, anti-diabetes, and anti-senescence effects on many important reactions in the cardiovascular and central nervous system, etc. Over 120 plants have been found to contain this bioactive component, such as Selaginellaceae, Cupressaceae, Euphorbiaceae, Podocarpaceae, and Calophyllaceae plant families. This review paper aims to profile amentoflavone on its plant sources, natural derivatives, pharmacology, and pharmacokinetics, and to highlight some existing issues and perspectives in the future.


Assuntos
Biflavonoides/química , Biflavonoides/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Biflavonoides/isolamento & purificação , Humanos , Estrutura Molecular , Extratos Vegetais/isolamento & purificação
10.
Molecules ; 22(10)2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28994736

RESUMO

Iridoid glycosides are natural products occurring widely in many herbal plants. Geniposide (C17H24O10) is a well-known one, present in nearly 40 species belonging to various families, especially the Rubiaceae. Along with this herbal component, dozens of its natural derivatives have also been isolated and characterized by researchers. Furthermore, a large body of pharmacological evidence has proved the various biological activities of geniposide, such as anti-inflammatory, anti-oxidative, anti-diabetic, neuroprotective, hepatoprotective, cholagogic effects and so on. However, there have been some research articles on its toxicity in recent years. Therefore, this review paper aims to provide the researchers with a comprehensive profile of geniposide on its phytochemistry, pharmacology, pharmacokinetics and toxicology in order to highlight some present issues and future perspectives as well as to help us develop and utilize this iridoid glycoside more efficiently and safely.


Assuntos
Iridoides/química , Iridoides/farmacocinética , Rubiaceae/química , Animais , Humanos , Iridoides/efeitos adversos , Iridoides/uso terapêutico , Estrutura Molecular , Fitoterapia , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Extratos Vegetais/uso terapêutico
11.
Electrophoresis ; 37(10): 1270-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26935773

RESUMO

Many protein extraction methods have been developed for plant proteome analysis but information is limited on the optimal protein extraction method from algae species. This study evaluated four protein extraction methods, i.e. direct lysis buffer method, TCA-acetone method, phenol method, and phenol/TCA-acetone method, using green algae Chlorella vulgaris for proteome analysis. The data presented showed that phenol/TCA-acetone method was superior to the other three tested methods with regards to shotgun proteomics. Proteins identified using shotgun proteomics were validated using sequential window acquisition of all theoretical fragment-ion spectra (SWATH) technique. Additionally, SWATH provides protein quantitation information from different methods and protein abundance using different protein extraction methods was evaluated. These results highlight the importance of green algae protein extraction method for subsequent MS analysis and identification.


Assuntos
Chlorella vulgaris/química , Proteínas de Plantas/análise , Proteômica/métodos , Acetona/química , Soluções Tampão , Chlorella vulgaris/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida/métodos , Espectrometria de Massas , Fenol/química , Proteínas de Plantas/isolamento & purificação
12.
Nanotechnology ; 27(42): 425101, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27631870

RESUMO

To obtain suitable T 1 contrast agents for magnetic resonance imaging (MRI) application, aqueous Gd2O3 nanoparticles (NPs) with high longitudinal relativity (r 1) are demanded. High quality Gd2O3 NPs are usually synthesized through a non-hydrolytic route which requires post-synthetic modification to render the NPs water soluble. The current challenge is to obtain aqueous Gd2O3 NPs with high colloidal stability and enhanced r 1 relaxivity. To overcome this challenge, fluorescence-tagged amphiphilic brush copolymer (AFCP) encapsulated Gd2O3 NPs were proposed as suitable T 1 contrast agents. Such a coating layer provided (i) superior aqueous stability, (ii) biocompatibility, as well as (iii) multi-modality (conjugation with fluorescence dye). The polymeric coating layer thickness was simply adjusted by varying the phase-transfer parameters. By reducing the coating thickness, i.e. the distance between the paramagnetic centre and surrounding water protons, the r 1 relaxivity could be enhanced. In contrast, a thicker polymeric layer coating prevents Gd(3+) ions leakage, thus improving its biocompatibility. Therefore, it is important to strike a balance between the biocompatibility and the r 1 relaxivity behaviour. Lastly, by conjugating fluorescence moiety, an additional imaging modality was enabled, as demonstrated from the cell-labelling experiment.


Assuntos
Gadolínio/química , Meios de Contraste , Fluorescência , Imageamento por Ressonância Magnética , Nanopartículas , Polímeros
13.
Rapid Commun Mass Spectrom ; 29(23): 2211-8, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26522312

RESUMO

RATIONALE: Electrochemically active bacteria (EAB) that are capable of producing electricity from renewable biomass and organic wastes have been of particular interest in recent years. Methods for selective enrichment, accurate identification and easy acquisition of EAB fingerprints for phylogenetic characterization would facilitate utilization of these bioenergy-producing species in practical environmental engineering applications. METHODS: Electricigens/exoelectrogens were selectively enriched from domestic wastewater in a microbial fuel cell (MFC). Whole EAB cell-derived mass spectra were obtained with simple agar incubation for 24 h and subsequent release of proteins by 25% formic acid (FA) and ultrasonication. Mass fingerprints of EAB were obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) and species-specific analyses were completed by using the Spectral ARchive and Microbial Identification System (SARAMIS). RESULTS: EAB could be discriminated by clustering of MALDI-TOF/TOF-MS results. Different species in mixtures originating from domestic sewage could be identified unambiguously at 99.90% confidence. Five species, namely Klebsiella oxytoca (K. oxytoca), Comamonas testosterone (C. testosterone), Pseudomonas putida (P. putida), Klebsiella pneumonia (K. pneumonia) and Raoultella ornithinolytica (R. ornithinolytica), that are known to be of clinical significance, were found to be enriched in MFCs and determined as high power-producing species. By using an agglomerative clustering algorithm to compute spectral similarity and diversity, a dendrogram was constructed to illustrate the phylogenetic relationships for EAB on the basis of mass spectral analyses. CONCLUSIONS: An integrated method based on MFC-enrichment, agar-cultivation and MALDI-TOF/TOF-MS identification of whole-cell-extracted proteins has been proved to be a simple, rapid and reliable approach for rapid identification and routine inspection of EAB. Mixed phyla can be analyzed at species level to provide phylogenetic information on the highly efficient bacteria generating electricity from domestic wastewater.


Assuntos
Bactérias/química , Fontes de Energia Bioelétrica/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana/métodos , Desenho de Equipamento
14.
Environ Sci Technol ; 49(24): 14249-56, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26512952

RESUMO

Pathogenic microorganisms are responsible for many infectious diseases, and pathogen monitoring is important and necessary for water quality control. This study for the first time explored a multiplex quantitative real-time PCR (qPCR) technique combined with propidium monoazide (PMA) to simultaneously detect viable Legionella pneumophila, Salmonella typhimurium, and Staphylococcus aureus in one reaction from water samples. Sodium lauroyl sarcosinate (sarkosyl) was applied to enhance the dead bacterial permeability of PMA. The sensitivity of the multiplex PMA-qPCR assay achieved two colony-forming units (CFU) per reaction for L. pneumophila and three CFU per reaction for S. typhimurium and S. aureus. No PCR products were amplified from all nontarget control samples. Significantly, with comparable specificity and sensitivity, this newly invented multiplex PMA-qPCR assay took a much shorter time than did conventional culture assays when testing water samples with spiked bacteria and simulated environmental water treatment. The viable multiplex PMA-qPCR assay was further successfully applied to pathogen detection from rivers, canals, and tap water samples after simple water pretreatment.


Assuntos
Azidas/química , Legionella pneumophila/isolamento & purificação , Propídio/análogos & derivados , Reação em Cadeia da Polimerase em Tempo Real/métodos , Salmonella typhimurium/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Microbiologia da Água , Reagentes de Ligações Cruzadas/química , Legionella pneumophila/genética , Viabilidade Microbiana , Propídio/química , Padrões de Referência , Reprodutibilidade dos Testes , Salmonella typhimurium/genética , Sarcosina/análogos & derivados , Sarcosina/química , Staphylococcus aureus/genética , Água
15.
Rapid Commun Mass Spectrom ; 28(12): 1387-400, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24797951

RESUMO

RATIONALE: Edible bird's nest (EBN) is a renowned food item in the Chinese community due to the therapeutic effects claimed to be brought about by its consumption. However, very little scientific information has been revealed to support these claims. Thus, metabolite profiling was performed to identify the metabolites and to relate them to the medicinal properties of EBN. The study also aims to further extend the results to determine any possible differences when the EBNs are classified according to their coloration, countries or production sites. METHODS: Extraction of the metabolites was performed via sonication of EBN with methanol and chloroform. Two analytical platforms, namely gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS), were utilized to detect the metabolites. This multi-analytical platform would provide a comprehensive coverage of the metabolites in EBN. GC/MS analysis was conducted in scan mode from m/z 50-650. On the other hand, LC/MS analysis was operated in both positive and negative ion mode from m/z 150-1000. RESULTS: Metabolites were identified and their relationships with the medicinal properties of EBN were deduced. Classification with chemometrics illustrates that EBNs could be differentiated according to their coloration, countries and production sites. This differentiation was due to the environment where the EBNs are produced. Furthermore, GC/MS was demonstrated to be more suitable for classification as the processing methods of the EBNs did not cause a significant variation in the metabolites detected by GC/MS. CONCLUSIONS: The overall findings suggest that the novel approach of metabolite profiling offers new insights to understanding EBN and provided evidence to support the medicinal properties of EBN. In addition, the success of classification of EBNs with metabolite profiling combining with chemometrics represents a paradigm shift in the quality control of this food item.


Assuntos
Aves/metabolismo , Análise de Alimentos , Animais , Cromatografia Gasosa , Espectrometria de Massas , Controle de Qualidade
16.
Water Sci Technol ; 70(10): 1610-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25429448

RESUMO

Polyelectrolyte-single wall carbon nanotube (SCNT) composites are prepared by a solution-based method and used as metal-free cathode catalysts for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). In this study, two types of polyelectrolytes, polydiallyldimethylammonium chloride (PDDA) and poly[bis(2-chloroethyl)ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] (PEPU) are applied to decorate the SCNTs and the resulting catalysts exhibit remarkable catalytic ability toward ORR in MFC applications. The enhanced catalytic ability could be attributed to the positively charged quaternary ammonium sites of polyelectrolytes, which increase the oxygen affinity of SCNTs and reduce activation energy in the oxygen reduction process. It is also found that PEPU-SCNT composite-based MFCs show efficient performance with maximum power density of 270.1 mW m(-2), comparable to MFCs with the benchmark Pt/C catalyst (375.3 mW m(-2)), while PDDA-SCNT composite-based MFCs produce 188.9 mW m(-2). These results indicate that PEPU-SCNT and PDDA-SCNT catalysts are promising candidates as metal-free cathode catalysts for ORR in MFCs and could facilitate MFC scaling up and commercialization.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Catálise , Eletrodos , Nanotubos de Carbono/química , Oxirredução , Oxigênio/química , Polietilenos/química , Compostos de Amônio Quaternário/química
17.
Polymers (Basel) ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475334

RESUMO

In this work, the development of a novel method for the detection of mercury (II) ions in wastewater using a mercury ion-imprinted polymer (IIP) combined with a quartz crystal microbalance (QCM) is described. The IIP was successfully synthesized via the polymerization of a of a novel fluorescein- and 2-aminophenol-functionalized methacrylic acid monomer, which was noted to have high binding affinity to mercury (II) ions. This polymer was subsequently coated on a QCM chip to create an IIP-QCM sensor. This sensor was established to have high selectivity and good sensitivity to mercury (II) ions, and had a limit of detection (LOD) of 14.17 ppb, a limit of quantification (LOQ) of 42.94 ppb, a signal-to-noise ratio (S/N) of 4.29, good repeatability, and a working range of 42.94 ppb to 2 ppm. The sensor was also able to analyze tap water and wastewater samples. The IIP-QCM is, therefore, promising as a highly selective, cost-effective, and rapid mercury ion sensor for applications involving the detection of mercury in wastewater.

18.
Heliyon ; 10(15): e35139, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170182

RESUMO

This study explores the bioactive secondary metabolite profiles of the peels of three major cultivars of bananas (Musa acuminata and Musa balbisiana). These cultivars are primarily grown in Southeast Asia and are widely consumed due to their rich nutritional and fiber content. The research utilizes advanced analytical techniques, specifically HPLC-DAD-q-TOF-MS/MS, in conjunction with both univariate and multivariate statistical analyses, to analyze the ethanolic extracts of the banana peels. This study identifies phenolic acids, flavonoids, and proanthocyanidins as significant contributors to the differentiation of the cultivars. The secondary metabolites rutin, chlorogenic acid, and gentisic acid are pinpointed as the key discriminants. Moreover, the research demonstrates a synergistic contribution of certain phytochemicals to the antioxidant and antibacterial properties of the banana peel extracts. The fingerprint profiling tools introduced in this study offer a reliable method for identifying metabolite biomarkers for the discrimination of banana cultivars.

19.
Anal Bioanal Chem ; 405(21): 6853-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23842900

RESUMO

Aptamers are single-stranded oligonucleotides that are capable of binding wide classes of targets with high affinity and specificity. Their unique three-dimensional structures present numerous possibilities for recognizing virtually any class of target molecules, making them a promising alternative to antibodies used as molecular probes in biomedical analysis and clinical diagnosis. In recent years, cell-systematic evolution of ligands by exponential enrichment (SELEX) has been used extensively to select aptamers for various cell targets. However, aptamers that have evolved from cell-SELEX to distinguish the "stimulus-response cell" have not previously been reported. Moreover, a number of cumbersome and time-consuming steps involved in conventional cell-SELEX reduce the efficiency and efficacy of the aptamer selection. Here, we report a "two-step" methodology of cell-SELEX that successfully selected DNA aptamers specifically against "inflamed" endothelial cells. This has been termed as stimulus-response cell-SELEX (SRC-SELEX). The SRC-SELEX enables the selection of aptamers to distinguish the cells activated by stimulus of healthy cells or cells isolated from diseased tissue. We report a promising aptamer, N55, selected by SRC-SELEX, which can bind specifically to inflamed endothelial cells both in cell culture and atherosclerotic plaque tissue. This aptamer probe was demonstrated as a potential molecular probe for magnetic resonance imaging to target inflamed endothelial cells and atherosclerotic plaque detection.


Assuntos
Aortite/metabolismo , Aortite/patologia , Aptâmeros de Nucleotídeos/metabolismo , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/metabolismo , Células Endoteliais/metabolismo , Aptâmeros de Nucleotídeos/síntese química , Células Cultivadas , Células Endoteliais/patologia , Estudos de Viabilidade , Humanos , Técnicas de Sonda Molecular , Técnica de Seleção de Aptâmeros
20.
J Hazard Mater ; 455: 131600, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37182467

RESUMO

Sewage sludge (SS) is a hazardous by-product of wastewater treatment processes that requires careful management for minimal environmental impacts and effective resource recovery. Through thermochemical processes such as pyrolysis, clean energy is recovered from SS in the form of bio-oil, biogas, and biochar. To improve the yield and quality of products, the co-pyrolysis of more than two materials is increasingly gaining interest. Here, the thermal behaviour, kinetics, and synergistic interactions during the co-pyrolysis of SS with polypropylene (PP) and high-density polyethylene (HDPE) were comparatively evaluated with thermogravimetric analysis at different mixing ratios and heat rates. Activation energies and reaction mechanisms were determined through iso-conversional model-free methods and master plot analysis. Evolved gases were monitored with thermogravimetric-mass spectrometry. Increased volatile conversion and degradation rates, and reduced activation energies during co-pyrolysis were mediated by synergistic interactions between H-radicals of PP/HDPE and oxygenated intermediates of SS. Contrary to the pyrolysis of SS, PP and HDPE, the co-pyrolysis processes are predominantly diffusion-controlled. Insights into the co-pyrolysis processes of SS/PP and SS/HDPE gained from this work provide the theoretical support for subsequent investigation, facilitate design of waste-to-energy reactor, and aid the adoption of the technology to harness the bioenergy potential of the feedstocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA