Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(7): 5627-5637, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36727641

RESUMO

One of the challenging problems in the research field of polymer nanocomposites is how to prepare nanocomposites with high grafting density and strong ability of dispersion at the same time. For nanocomposites composed of bimodal bidisperse polymer chains and nanoparticles, the above requirements can be met by rationally adjusting the ratio of long and short polymer chains. In this study, the process of grafting bimodal bidisperse polymer chains onto the surface of nanoparticles in a grafting-to manner was investigated via computer simulation and theoretical methods. Three grafting strategies were designed: first short then long (SL) system, both short and long (Both) system and first long then short (LS) system. An abnormal phenomenon for the Both system was found by analyzing the grafting density of long and short polymer chains on the surface of nanoparticles. We speculate that the reason for this anomalous phenomenon is the "depletion effect" brought about by the long chains in the Both system. We employ the Polymer Reference Interaction Site Model (PRISM) theory to investigate this anomaly in-depth. By comparing the radial distribution function (RDF) predicted by the PRISM theory with the RDF results obtained by the molecular dynamics (MD) simulation, we found that with the increase of the number of long chains in the system, the grafting density of short polymer chains on the nanoparticle surface showed an obvious upward trend. The "depletion effect" brought by long chains was the main reason for higher short chains' grafting density of the Both system compared to the SL system. Our findings provide effective guidance for the design of nanoparticle-grafted bimodal bidisperse polymer chains and provide a theoretical basis for experimentation and production of polymer nanocomposites with better performance.

2.
Macromol Rapid Commun ; 41(24): e1900655, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32134543

RESUMO

Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by intramolecular crosslinking of isolated single polymer chains. Syntheses of such SCNPs usually need to be performed in a dilute solution. In such a condition, the bonding probability of the two active crosslinking units at a short contour distance along the chain backbone is much higher than those which are far away from each other. Such a reaction condition often results in local spheroidization and, therefore, the formation of loosely packed structures. How to inhibit the local spheroidization and improve the compactness of SCNPs is thus a major challenge for the syntheses of SCNPs. In this study, computer simulations are performed and the fact that a precollapse of the polymer chain conformation in a cosolvent condition can largely improve the probability of the crosslinking reactions at large contour distances is demonstrated, favoring the formations of closely packed globular structures. As a result, the formed SCNPs can be more spherical and have higher compactness than those fabricated in ultradilute good solvent solution in a conventional way. It is believed this simulation work can provide a insight into the effective syntheses of SCNPs with spherical conformations and high compactness.


Assuntos
Nanopartículas , Polímeros , Simulação por Computador , Solventes
3.
Soft Matter ; 15(22): 4476-4485, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31111851

RESUMO

In polymer/nanoparticle composite (PNC) thin films, polymer chains experience strong confinement effects not only at the free surface area but also from nanoparticles (NPs). In this work, the influence of NP-polymer interaction and NP distribution on the polymer segmental dynamics and the glass transition behavior of PNC free-standing films are investigated through molecular dynamics simulations. We demonstrate that NPs will migrate to the film surface area and form an NP-concentrated layer when NP-polymer interactions are weak, while NPs are well dispersed in the bulk region when NP-polymer interactions are strong. In both cases, we find increases in the glass transition temperature Tg compared with the pure film without NPs, although with a different degree. The weakly interacting system has the same Tg as the pure bulk system without NPs. The NP layer formed at the surface area reduces both the mobility of the surface polymer beads and the mobility gradient in the film normal direction (MGFND), therefore resulting in an increase in the Tg which highlights the vital role of the mobile surface layer. In contrast, the NPs in the bulk region enlarge the MGFND. NPs have opposite influences on the polymer bead dynamic anisotropy when they interact weakly or strongly with polymers, weakened for the former and enhanced for the latter. These findings offer a clear picture of the segmental dynamics and glass transition behavior in free-standing PNC films with different NP-polymer interaction strengths. We hope these results will be helpful for the property design of related materials.

4.
Phys Chem Chem Phys ; 21(28): 15888-15898, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31287116

RESUMO

Dynamic heterogeneity (DH) is a universal property of glass transition phenomena. In this work, we perform a comparative analysis of DH for pure polymer and polymer/nanoparticle composite systems in both film and bulk states via molecular dynamics simulations. We find that the dynamic gradient and the faster average dynamics due to the presence of a free surface are two leading factors, resulting from a nanoconfinement effect, which influence different parts of DH in a film system. The dynamic gradient results from differences in dynamics at different distances from the mobile surface, which induces a large deviation from the Gaussian distribution for the displacement distribution in the film. At the same time, the maximum string size which describes the region size for cooperative motion (dynamic correlation) can also be influenced by the dynamic gradient, although this influence is much weaker than that on the displacement distribution. On the other hand, reflecting temporal fluctuations of dynamics or temporal parts of DH, characteristic peak times of the non-Gaussian parameter and string size, and the ratio between persistent times and exchange times which describe the dynamic exchange properties, are mainly influenced by the faster dynamics on average. Our results demonstrate that measuring different properties (dynamic distribution, dynamic correlation or dynamic exchange) place an emphasis on distinct temporal and spatial parts of DH. It is necessary to use combinational measurements of these properties to give a complete picture of DH in nanoconfinement environments.

5.
Phys Chem Chem Phys ; 21(24): 13258-13267, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31183479

RESUMO

Vitrimers with dynamic covalent bonds make thermosetting materials plastic, recyclable and self-repairing, and have broad application prospects. However, due to the complex composition of vitrimers and the dynamic bond exchange reactions (BERs), the mechanism behind their unique dynamic behavior is not fully understood. We used the hybrid molecular dynamics-Monte Carlo (MD-MC) algorithm to establish a molecular dynamics model that can accurately reflect BERs, and reveal the intrinsic mechanism of the dynamic behavior of the vitrimer system. The simulation results show that BERs change the diffusion mode of the vitrimer's constituent molecules, which in turn affects the BER and other relaxation dynamics. This provides a theoretical basis and a specific method for the rational design of the rheological properties of vitrimers.

6.
Phys Chem Chem Phys ; 20(32): 20996-21007, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30070283

RESUMO

The dynamics of nanorods (NRs) in complex liquids is important, not only for new material design and for understanding complex phenomena in biological systems, but also for the development of fundamental theories. In this work, the translational and rotational dynamics of a single rigid ultra-thin nanorod probe particle in linear polymer melts are investigated using coarse-grained molecular dynamics (CG-MD) simulations. Our results indicate that the translational motion of an ultra-thin NR, which has a diameter equal to the polymer monomer size, is not affected by the polymer chain length N in entangled polymer melts. This finding verifies de Gennes' theoretical prediction for the first time. However, the rotational dynamics of a NR with rod length L = 21, which is larger than the polymer tube diameter dt, is weakly coupled with polymer entanglement strands, revealing a different N-dependence for translational and rotational dynamics. The results for NRs with different lengths L also show that the size ratio between L and the polymer characteristic size is the dominant factor for NR dynamics, especially for rotational dynamics in entangled melts.

7.
ACS Nano ; 15(3): 5725-5734, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33710849

RESUMO

Polymer graftings (PGs) are widely employed in antifouling surfaces and drug delivery systems to regulate the interaction with a foreign environment. Through molecular dynamics simulations and scaling theory analysis, we investigate the physical antifouling properties of PGs via their collision behaviors. Compared with mushroom-like PGs with low grafting density, we find brush-like PGs with high grafting density could generate large deformation-induced entropic repulsive force during a collision, revealing a microscopic mechanism for the hop motions of polymer-grafted nanoparticles for drug delivery observed in experiment. In addition, the collision elasticity of PGs is found to decay with the collision velocity by a power law, i.e., a concise dynamic scaling despite the complex process involved, which is beyond expectation. These results elucidate the dynamic interacting mechanism of PGs, which are of immediate interest for a fundamental understanding of the antifouling performance of PGs and the rational design of PG-coated nanoparticles in nanomedicine for drug delivery.

8.
Phys Rev E ; 93(1): 012613, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26871128

RESUMO

It is well known that the polymer glass transition temperature T_{g} is dependent on molecular weight, but the role of molecular-weight polydispersity on T_{g} is unclear. Using molecular-dynamics simulations, we clarify that for polymers with the same number-average molecular weight, the molecular-weight distribution profile (either in Schulz-Zimm form or in bimodal form) has very little influence on the glass transition temperature T_{g}, the average segment dynamics (monomer motion, bond orientation relaxation, and torsion transition), and the relaxation-time spectrum, which are related to the local nature of the glass transition. By analyzing monomer motions in different chains, we find that the motion distribution of monomers is altered by molecular-weight polydispersity. Molecular-weight polydispersity dramatically enhances the dynamic heterogeneity of monomer diffusive motions after breaking out of the "cage," but it has a weak influence on the dynamic heterogeneity of the short time scales and the transient spatial correlation between temporarily localized monomers. The stringlike cooperative motion is also not influenced by molecular-weight polydispersity, supporting the idea that stringlike collective motion is not strongly correlated with chain connectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA