Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2316580121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377204

RESUMO

Achieving high-performance materials with superior mechanical properties and electrical conductivity, especially in large-sized bulk forms, has always been the goal. However, it remains a grand challenge due to the inherent trade-off between these properties. Herein, by employing nanodiamonds as precursors, centimeter-sized diamond/graphene composites were synthesized under moderate pressure and temperature conditions (12 GPa and 1,300 to 1,500 °C), and the composites consisted of ultrafine diamond grains and few-layer graphene domains interconnected through covalently bonded interfaces. The composites exhibit a remarkable electrical conductivity of 2.0 × 104 S m-1 at room temperature, a Vickers hardness of up to ~55.8 GPa, and a toughness of 10.8 to 19.8 MPa m1/2. Theoretical calculations indicate that the transformation energy barrier for the graphitization of diamond surface is lower than that for diamond growth directly from conventional sp2 carbon materials, allowing the synthesis of such diamond composites under mild conditions. The above results pave the way for realizing large-sized diamond-based materials with ultrahigh electrical conductivity and superior mechanical properties simultaneously under moderate synthesis conditions, which will facilitate their large-scale applications in a variety of fields.

2.
Phys Chem Chem Phys ; 26(23): 16459-16465, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832399

RESUMO

Developing high-loading spin-polarized p-block-element-based single-atom catalysts (p-SACs) upon defect-free substrates for various chemical reactions wherein spin selection matters is generally considered a formidable challenge because of the difficulty of creating high densities of underpinning stable defects and the delocalized electronic features of p-block elements. Here our first-principles calculations establish that the defect-free rutile TiO2(110) wide-bandgap semiconducting anchoring support can stabilize and localize the wavefunctions of p-block metal elements (Sb and Bi) via strong ionic bonding, forming spin-polarized p-SACs. Cooperated by the underlying d-block Ti atoms via a delicate spin donation-back-donation mechanism, the p-block single-atom reactive center Sb(Bi) exhibits excellent catalysis for spin-triplet O2 activation and CO oxidation in alignment with Wigner's spin selection rule, with a low rate-limiting reaction barrier of ∼0.6 eV. This work is crucial in establishing high-loading reactive centers of high-performance p-SACs for various important physical processes and chemical reactions, especially wherein the spin degree of freedom matters, i.e., spin catalysis.

3.
Nano Lett ; 23(9): 4023-4031, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37104145

RESUMO

With the introduction of single atoms in photocatalysis, a small change in the electronic and geometric structure of the substrate can result in higher energy conversion efficiency, whereas the underlying microscopic dynamics are rarely illustrated. Here, employing real-time time-dependent density functional theory, we explore the ultrafast electronic and structural dynamics of single-atom photocatalysts (SAPCs) in water splitting at the microscopic scale. The results demonstrate that a single-atom Pt loaded on graphitic carbon nitride greatly promotes photogenerated carriers compared to traditional photocatalysts, and effectively separates the excited electrons from holes, prolonging the lifetime of the excited carriers. The flexible oxidation state (Pt2+, Pt0, or Pt3+) renders the single atom as an active site to adsorb the reactant and to catalyze the reactions as a charge transfer bridge at different stages during the photoreaction process. Our results offer deep insights into the single-atom photocatalytic reactions and benefit the design of high-efficiency SAPCs.

4.
Sensors (Basel) ; 23(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299899

RESUMO

The search efficiency of a rapidly exploring random tree (RRT) can be improved by introducing a high-probability goal bias strategy. In the case of multiple complex obstacles, the high-probability goal bias strategy with a fixed step size will fall into a local optimum, which reduces search efficiency. Herein, a bidirectional potential field probabilistic step size rapidly exploring random tree (BPFPS-RRT) was proposed for the path planning of a dual manipulator by introducing a search strategy of a step size with a target angle and random value. The artificial potential field method was introduced, combining the search features with the bidirectional goal bias and the concept of greedy path optimization. According to simulations, taking the main manipulator as an example, compared with goal bias RRT, variable step size RRT, and goal bias bidirectional RRT, the proposed algorithm reduces the search time by 23.53%, 15.45%, and 43.78% and decreases the path length by 19.35%, 18.83%, and 21.38%, respectively. Moreover, taking the slave manipulator as another example, the proposed algorithm reduces the search time by 6.71%, 1.49%, and 46.88% and decreases the path length by 19.88%, 19.39%, and 20.83%, respectively. The proposed algorithm can be adopted to effectively achieve path planning for the dual manipulator.

5.
Nano Lett ; 22(9): 3744-3750, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35437988

RESUMO

Deciphering the precise physical mechanism of interaction between an adsorbed species and a reactive site in heterogeneous catalysis is crucial for predictive design of highly efficient catalysts. Here, using first-principles calculations we identify that the two-dimensional ferromagnetic metal organic framework of Mn2C18H12 can serve as a highly efficient single-atom catalyst for spin-triplet O2 activation and CO oxidation. The underlying mechanism is via "concerted charge-spin catalysis", involving a delicate synergetic process of charge transfer, provided by the hosting Mn atom, and spin selection, preserved through active participation of its nearest neighboring Mn atoms for the crucial step of O2 activation. The synergetic mechanism is further found to be broadly applicable in O2 adsorption on magnetic X2C18H12 (X = Mn, Fe, Co, and Ni) with a well-defined linear scaling dependence between the chemical activity and spin excitation energy. The present findings provide new insights into chemical reactions wherein spin selection plays a vital role.

6.
Phys Chem Chem Phys ; 24(29): 17832-17840, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35851386

RESUMO

Hydrogen energy is considered to be one of the most promising clean energy sources. The development of highly active, low-cost catalysts, and good stability is essential for hydrogen production. Herein, the catalytic activity of a two-dimensional ß-Sb surface doped with main-group elements (N, P, As, O, S, Se, and Te) for the hydrogen evolution reaction (HER) was investigated by density functional theory, and the catalytic activity of the ß-Sb monolayer can be improved by doping group VIA atoms. The catalytic activity of Se@Sb and O@Sb structures at the doping concentration of 2.78% and the S@Sb structure at the doping concentration of 5.56% may be as good as the Pt(111) surface, while keeping energetically stable. In addition, the catalytic performance could be optimized under biaxial strain. Further analysis suggests that the activity is caused by hole states in the lone pair electrons, which are created by the group VIA atom dopants. And our work also reveals that the density of states at the Fermi level could be an appropriate descriptor of the hydrogenation Gibbs free energy. This work not only proposes a novel non-platinum HER catalyst but also provides physical foundations for further application on antimonene-based catalysts.

7.
J Am Chem Soc ; 141(37): 14505-14509, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31423775

RESUMO

Silver cluster-assembled materials (SCAMs), by virtue of their tunable structure, accessible surface area and excellent stability, hold great promise as highly efficient catalysts. Herein, we report a new SCAM [Ag12(StBu)6(CF3COO)3(TPyP)]n (denoted as Ag12TPyP) composed of a Ag12 chalcogenolate cluster core stabilized by porphyrinic ligands. Ag12TPyP showed superior sulfur mustard simulant (2-chloroethyl ethyl sulfide, CEES) degradation efficiency and achieved a half lifetime (t1/2) of 1.5 min with 100% selectivity. The experimental results demonstrated that synergistic effects between the silver cluster and photosensitizer ligand promote the efficiency of the generation of singlet oxygen (1O2), which accelerates the decontamination rate. Additionally, benefiting from strong affinity between the silver cluster and CEES, Ag12TPyP exhibits a CEES uptake of 74.2 mg g-1. This work demonstrates that SCAMs offer a new route to the rational design of novel materials for the detoxification of mustard gas.

8.
Phys Chem Chem Phys ; 20(23): 16151-16158, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29855031

RESUMO

Ternary oxide nano-clusters compared to unary metallic and binary ones potentially exhibit more remarkable properties due to their higher stoichiometric flexibility in addition to cluster size variations. Herein, by combining with the structural searching scheme CALYPSO, we have built a series of Mn-mullite oxide clusters (SmxMnyOz)n {(xyz) = (125); (115); n = 1-4, 8} prior to investigation of their geometric and electronic structures via first-principles calculations. In small size regime (n < 4), (SmxMnyOz)n prefer nonstoichiometric (Sm1Mn1O5)n phases composed of nonmagnetic MnO4 tetrahedrons. When n ≧ 4, the clusters tend to develop as stoichiometric (Sm1Mn2O5)n species, including magnetic MnOn polyhedrons and Mn-Mn dimers, which contribute 3d-orbitals (dz2 and/or dx2-y2) around the Fermi levels. The different magnetic behaviors of nonstoichiometric and stoichiometric species originate from the distinct couplings of MnOn polyhedronal units, wherein Mn atoms experience different ligand fields and thus display different spin states. Such findings enable the tuning of electronic properties and potential applications in heterogeneous catalysis, electrochemical catalysis, and the related fields via engineering cluster size and stoichiometry.

9.
Phys Chem Chem Phys ; 20(18): 12916-12922, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29701208

RESUMO

Based on first-principles calculations, we present a systematic investigation of the electronic and magnetic properties of armchair phosphorene nanoribbons (APNRs) functionalized by 3d transition metal (TM) atoms. We found that the central hollow site is the most favorable adsorption site for Mn, Co and Ni, while Fe preferentially occupies the edge hollow site. All of the TM atoms bind to the adjacent P and their adsorption energies are in the range of -4.29 eV to -1.59 eV. Meanwhile, the large ratio of the adsorption energy to the cohesive energy of the metal bulk phase indicates that TM atoms have a preferred 2D growth mode on the edge hydrogenated armchair phosphorene nanoribbons (H-APNRs). The magnetic moments reduce by about 2-4 µB, relative to their free atom states, depending on whether the TM atom is in the high-spin or low-spin state. This reduction is mainly attributed to the electrons transferring from the high-level TM 4s shell to the low-lying 3d shell. Our results demonstrate that TM atom adsorption is a feasible approach to functionalizing the H-APNRs chemically, which results in peculiar electronic and magnetic properties for potential applications in nano-electronics and spintronics.

10.
Phys Chem Chem Phys ; 20(19): 13473-13477, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29726863

RESUMO

Motivated by recent experimental developments of graphitic-CN (g-CN) sheets, we investigate the suitability of hydrogen storage on Li decorated g-CN via first-principles calculations. We find that the binding energies of Li atoms are very large, ranging from 2.70 to 4.73 eV, which are significantly higher than the cohesive energy of bulk Li. Lithium atoms therefore tend to form 2D rather than 3D patterns on g-CN, promoting reversible hydrogen adsorption and desorption. Remarkably, the average adsorption energy of H2 molecules falls in the 0.14-0.23 eV range, and the Li decorated CN shows a high theoretical gravimetric density of 10.81 wt%, which is favorable for massive hydrogen storage. Our results suggest that the Li decorated CN could be a promising hydrogen storage material under realistic conditions.

11.
Phys Chem Chem Phys ; 18(36): 24872-9, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27545326

RESUMO

Exploration of the catalytic activity of low-dimensional transition metal (TM) or noble metal catalysts is a vital subject of modern materials science because of their instrumental role in numerous industrial applications. Recent experimental advances have demonstrated the utilization of single atoms on different substrates as effective catalysts, which exhibit amazing catalytic properties such as more efficient catalytic performance and higher selectivity in chemical reactions as compared to their nanostructured counterparts; however, the underlying microscopic mechanisms operative in these single atom catalysts still remain elusive. Based on first-principles calculations, herein, we present a comparative study of the key kinetic rate processes involved in CO oxidation using a monomer or dimer of two representative TMs (Pd and Ni) on defective TiO2(110) substrates (TMn@TiO2(110), n = 1, 2) to elucidate the underlying mechanism of single-atom catalysis. We reveal that the O2 activation rates of the single atom TM catalysts deposited on TiO2(110) are governed cooperatively by the classic spin-selection rule and the well-known frontier orbital theory (or generalized d-band picture) that emphasizes the energy gap between the frontier orbitals of the TM catalysts and O2 molecule. We further illuminate that the subsequent CO oxidation reactions proceed via the Langmuir-Hinshelwood mechanism with contrasting reaction barriers for the Pd monomer and dimer catalysts. These findings not only provide an explanation for existing observations of distinctly different catalytic activities of Pd@TiO2(110) and Pd2@TiO2(110) [Kaden et al., Science, 2009, 326, 826-829] but also shed new insights into future utilization and optimization of single-atom catalysis.

12.
Phys Chem Chem Phys ; 17(45): 30270-8, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26257125

RESUMO

Sub-surface alloying (SSA) can be an effective approach to tuning surface functionalities. Focusing on Rh(111) as a typical substrate for graphene nucleation, we show strong modulation by SSA atoms of both the energetics and kinetics of graphene nucleation simulated by first-principles calculations. Counter-intuitively, when the sub-surface atoms are replaced by more active solute metal elements to the left of Rh in the periodic table, such as the early transition metals (TMs), Ru and Tc, the binding between a C atom and the substrate is weakened and two C atoms favor dimerization. Alternatively, when the alloying elements are the late TMs to the right of Rh, such as the relatively inert Pd and Ag, the repulsion between the two C atoms is enhanced. Such distinct results can be well addressed by the delicately modulated activities of the surface host atoms in the framework of the d-band theory. More specifically, we establish a very simple selection rule for optimizing the metal substrate for high quality graphene growth: the introduction of an early (late) solute TM in the SSA lowers (raises) the d-band center and the activity of the top-most host metal atoms, weakening (strengthening) the C-substrate binding, meanwhile both energetically and kinetically facilitating (hindering) the graphene nucleation, and simultaneously promoting (suppressing) the orientation disordering the graphene domains. Importantly, our preliminary theoretical results also show that such a simple rule is also proposed to be operative for graphene growth on the widely invoked Cu(111) catalytic substrate.

13.
Adv Sci (Weinh) ; 11(23): e2308337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572504

RESUMO

Physical unclonable functions (PUFs) have emerged as a promising encryption technology, utilizing intrinsic physical identifiers that offer enhanced security and tamper resistance. Multi-level PUFs boost system complexity, thereby improving system reliability and fault tolerance. However, crosstalk-free multi-level PUFs remain a persistent challenge. In this study, a hierarchical PUF system that harnesses the spontaneous phase separation of silk fibroin /PVA blend and the random distribution of silicon-vacancy diamonds within the blend is presented. The thermodynamic instability of phase separation and inherent unpredictability of diamond dispersion gives rise to intricate random patterns at two distinct scales, enabling time-efficient hierarchical authentication for cryptographic keys. These patterns are complementary yet independent, inherently resistant to replication and damage thus affording robust security and reliability to the proposed system. Furthermore, customized authentication algorithms are constructed: visual PUFs authentication utilizes neural network combined structural similarity index measure, while spectral PUFs authentication employs Hamming distance and cross-correlation bit operation. This hierarchical PUF system attains a high recognition rate without interscale crosstalk. Additionally, the coding capacity is exponentially enhanced using M-ary encoding to reinforce multi-level encryption. Hierarchical PUFs hold significant potential for immediate application, offering unprecedented data protection and cryptographic key authentication capabilities.

14.
Adv Sci (Weinh) ; 11(24): e2309126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477425

RESUMO

Along with the increasing integration density and decreased feature size of current semiconductor technology, heterointegration of the Si-based devices with diamond has acted as a promising strategy to relieve the existing heat dissipation problem. As one of the heterointegration methods, the microwave plasma chemical vapor deposition (MPCVD) method is utilized to synthesize large-scale diamond films on a Si substrate, while distinct structures appear at the Si-diamond interface. Investigation of the formation mechanisms and modulation strategies of the interface is crucial to optimize the heat dissipation behaviors. By taking advantage of electron microscopy, the formation of the epitaxial ß-SiC interlayer is found to be caused by the interaction between the anisotropically sputtered Si and the deposited amorphous carbon. Compared with the randomly oriented ß-SiC interlayer, larger diamond grain sizes can be obtained on the epitaxial ß-SiC interlayer under the same synthesis condition. Moreover, due to the competitive interfacial reactions, the epitaxial ß-SiC interlayer thickness can be reduced by increasing the CH4/H2 ratio (from 3% to 10%), while further increase in the ratio (to 20%) can lead to the broken of the epitaxial relationship. The above findings are expected to provide interfacial design strategies for multiple large-scale diamond applications.

15.
J Phys Chem Lett ; 14(38): 8421-8427, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37712525

RESUMO

Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO-LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2δ- species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.

16.
Nanomaterials (Basel) ; 13(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839119

RESUMO

Constructing a heterogeneous interface using different components is one of the effective measures to achieve the bifunctionality of nanocatalysts, while synergistic interactions between multiple interfaces can further optimize the performance of single-interface nanocatalysts. The non-precious metal nanocatalysts MoS2/NiSe2/reduced graphene oxide (rGO) bilayer sandwich-like nanostructure with multiple well-defined interfaces is prepared by a simple hydrothermal method. MoS2 and rGO are layered nanostructures with clear boundaries, and the NiSe2 nanoparticles with uniform size are sandwiched between both layered nanostructures. This multiple-interfaced sandwich-like nanostructure is prominent in catalytic water splitting with low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) and almost no degradation in performance after a 20 h long-term reaction. In order to simulate the actual overall water splitting process, the prepared nanostructures are assembled into MoS2/NiSe2/rGO||MoS2/NiSe2/rGO modified two-electrode system, whose overpotential is only 1.52 mV, even exceeded that of noble metal nanocatalyst (Pt/C||RuO2~1.63 mV). This work provides a feasible idea for constructing multi-interface bifunctional electrocatalysts using nanoparticle-doped bilayer-like nanostructures.

17.
Adv Mater ; 35(2): e2206508, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36281798

RESUMO

Pt nanocatalysts play a critical role in direct methanol fuel cells (DMFCs) due to their appropriate adsorption/desorption energy, yet suffer from an unbalanced relationship between size-dependent activity and stability. Herein, mixed-dimensional Pt-Ni alloy polyhedral nanochains (Pt-Ni PNCs) with an ordered assembly of a nanopolyhedra-nanowire-nanopolyhedra architecture are fabricated as bifunctional electrocatalysts for DMFCs, effectively alleviating the size effect. The Pt-Ni PNCs exhibit 7.23 times higher mass activity for the anodic methanol oxidation reaction (MOR) than that of commercial Pt/C. In situ Fourier transform infrared spectroscopy and CO stripping measurements demonstrate the prominent stability of the Pt-Ni PNCs to resist CO poisoning. For the cathodic oxygen reduction reaction (ORR), a positive half-wave potential exceeding Pt/C is achieved by the Pt-Ni PNCs, and it can be well maintained for 10 000 cycles with negligible activity decay. The designed nanostructure can alleviate the agglomeration and dissolution problems of 0D small-sized Pt-Ni alloy nanocrystals and enrich surface atom steps and active facets of 1D chain-like nanostructures. This work provides a proposed strategy to improve the catalytic performance of Pt-based nanocatalysts by constructing novel interfacial relationships in mixed dimensions to alleviate the imbalance between catalytic activity and catalytic stability caused by size effects.

18.
Adv Sci (Weinh) ; 9(2): e2103443, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34761558

RESUMO

At the macroscopic scale, the friction force (f) is found to increase with the normal load (N), according to the classic law of Da Vinci-Amontons, namely, f = µN, with a positive definite friction coefficient (µ). Here, first-principles calculations are employed to predict that, the static force f, measured by the corrugation in the sliding potential energy barrier, is lowered upon increasing the normal load applied on one layer of the recently discovered ferroelectric In2 Se3 over another commensurate layer of In2 Se3 . That is, a negative differential friction coefficient µ can be realized, which thus simultaneously breaking the classic Da Vinci-Amontons law. Such a striking and counterintuitive observation can be rationalized by the delicate interplay of the interfacial van der Waals repulsive interactions and the electrostatic energy reduction due to the enhancement of the intralayer SeIn ionic bonding via charge redistribution under load. The present findings are expected to play an instrumental role in design of high-performance solid lubricants and mechanical-electronic nanodevices.

19.
Adv Sci (Weinh) ; 9(2): e2102978, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766740

RESUMO

Understanding hot carrier dynamics between plasmonic nanomaterials and its adsorbate is of great importance for plasmon-enhanced photoelectronic processes such as photocatalysis, optical sensing and spectroscopic analysis. However, it is often challenging to identify specific dominant mechanisms for a given process because of the complex pathways and ultrafast interactive dynamics of the photoelectrons. Here, using CO2 reduction as an example, the underlying mechanisms of plasmon-driven catalysis at the single-molecule level using time-dependent density functional theory calculations is clearly probed. The CO2 molecule adsorbed on two typical nanoclusters, Ag20 and Ag147 , is photoreduced by optically excited plasmon, accompanied by the excitation of asymmetric stretching and bending modes of CO2 . A nonlinear relationship has been identified between laser intensity and reaction rate, demonstrating a synergic interplay and transition from indirect hot-electron transfer to direct charge transfer, enacted by strong localized surface plasmons. These findings offer new insights for CO2 photoreduction and for the design of effective pathways toward highly efficient plasmon-mediated photocatalysis.

20.
Front Chem ; 9: 742794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760868

RESUMO

A promising route to realize solar-to-chemical energy conversion resorts to water splitting using plasmon photocatalysis. However, the ultrafast carrier dynamics and underlying mechanism in such processes has seldom been investigated, especially when the single-atom catalyst is introduced. Here, from the perspective of quantum dynamics at the atomic length scale and femtosecond time scale, we probe the carrier and structural dynamics of plasmon-assisted water splitting on an Ag-alloyed Pt single-atom catalyst, represented by the Ag19Pt nanocluster. The substitution of an Ag atom by the Pt atom at the tip of the tetrahedron Ag20 enhances the interaction between water and the nanoparticle. The excitation of localized surface plasmons in the Ag19Pt cluster strengthens the charge separation and electron transfer upon illumination. These facts cooperatively turn on more than one charge transfer channels and give rise to enhanced charge transfer from the metal nanoparticle to the water molecule, resulting in rapid plasmon-induced water splitting. These results provide atomistic insights and guidelines for the design of efficient single-atom photocatalysts for plasmon-assisted water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA