Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nature ; 627(8005): 890-897, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448592

RESUMO

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Assuntos
Cromatina , Replicação do DNA , Epistasia Genética , Histonas , Saccharomyces cerevisiae , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Microscopia Crioeletrônica , Replicação do DNA/genética , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , Epistasia Genética/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
2.
Mol Cell ; 81(12): 2669-2681.e9, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33894155

RESUMO

Posttranslational modification (PTM), through the recruitment of effector proteins (i.e., "readers") that signal downstream events, plays key roles in regulating a variety of cellular processes. To understand how a PTM is recognized, it is necessary to find its readers and, importantly, the location of the binding pockets responsible for PTM recognition. Although various methods have been developed to identify PTM readers, it remains a challenge to directly map the PTM-binding regions, especially for intrinsically disordered domains. Here, we demonstrate a photo-crosslinkable, clickable, and cleavable tri-functional amino acid, ADdis-Cys, that when coupled with mass spectrometry (ADdis-Cys-MS) can not only identify PTM readers from complex proteomes but also simultaneously map their PTM-recognition modules. Using ADdis-Cys-MS, we successfully identify the binding sites of several reader-PTM interactions, among which we discover human C1QBP as a histone chaperone. This robust method should find wide applications in examining other histone or non-histone PTM-mediated protein-protein interactions.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Aminoácidos/genética , Sítios de Ligação , Química Click/métodos , Reagentes de Ligações Cruzadas , Cisteína/análogos & derivados , Cisteína/síntese química , Cisteína/química , Histonas/metabolismo , Humanos , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteoma/metabolismo , Proteômica/métodos
3.
Mol Cell ; 76(4): 660-675.e9, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31542297

RESUMO

Histone posttranslational modifications (PTMs) regulate chromatin structure and dynamics during various DNA-associated processes. Here, we report that lysine glutarylation (Kglu) occurs at 27 lysine residues on human core histones. Using semi-synthetic glutarylated histones, we show that an evolutionarily conserved Kglu at histone H4K91 destabilizes nucleosome in vitro. In Saccharomyces cerevisiae, the replacement of H4K91 by glutamate that mimics Kglu influences chromatin structure and thereby results in a global upregulation of transcription and defects in cell-cycle progression, DNA damage repair, and telomere silencing. In mammalian cells, H4K91glu is mainly enriched at promoter regions of highly expressed genes. A downregulation of H4K91glu is tightly associated with chromatin condensation during mitosis and in response to DNA damage. The cellular dynamics of H4K91glu is controlled by Sirt7 as a deglutarylase and KAT2A as a glutaryltransferase. This study designates a new histone mark (Kglu) as a new regulatory mechanism for chromatin dynamics.


Assuntos
Montagem e Desmontagem da Cromatina , Dano ao DNA , Glutaratos/metabolismo , Histonas/metabolismo , Mitose , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Células HEK293 , Células HL-60 , Células HeLa , Células Hep G2 , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Lisina , Camundongos , Nucleossomos/genética , Células RAW 264.7 , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 121(21): e2319060121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753516

RESUMO

Multicellular organisms are composed of many tissue types that have distinct morphologies and functions, which are largely driven by specialized proteomes and interactomes. To define the proteome and interactome of a specific type of tissue in an intact animal, we developed a localized proteomics approach called Methionine Analog-based Cell-Specific Proteomics and Interactomics (MACSPI). This method uses the tissue-specific expression of an engineered methionyl-tRNA synthetase to label proteins with a bifunctional amino acid 2-amino-5-diazirinylnonynoic acid in selected cells. We applied MACSPI in Caenorhabditis elegans, a model multicellular organism, to selectively label, capture, and profile the proteomes of the body wall muscle and the nervous system, which led to the identification of tissue-specific proteins. Using the photo-cross-linker, we successfully profiled HSP90 interactors in muscles and neurons and identified tissue-specific interactors and stress-related interactors. Our study demonstrates that MACSPI can be used to profile tissue-specific proteomes and interactomes in intact multicellular organisms.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteoma , Proteômica , Animais , Caenorhabditis elegans/metabolismo , Proteômica/métodos , Proteínas de Caenorhabditis elegans/metabolismo , Proteoma/metabolismo , Metionina tRNA Ligase/metabolismo , Metionina tRNA Ligase/genética , Proteínas de Choque Térmico HSP90/metabolismo , Especificidade de Órgãos , Músculos/metabolismo , Neurônios/metabolismo
5.
Nat Chem Biol ; 19(5): 614-623, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702958

RESUMO

Bacterial pathogens rapidly change and adapt their proteome to cope with the environment in host cells and secrete effector proteins to hijack host targets and ensure their survival and proliferation during infection. Excessive host proteins make it difficult to profile pathogens' proteome dynamics by conventional proteomics. It is even more challenging to map pathogen-host protein-protein interactions in real time, given the low abundance of bacterial effectors and weak and transient interactions in which they may be involved. Here we report a method for selectively labeling bacterial proteomes using a bifunctional amino acid, photo-ANA, equipped with a bio-orthogonal handle and a photoreactive warhead, which enables simultaneous analysis of bacterial proteome reprogramming and pathogen-host protein interactions of Salmonella enterica serovar Typhimurium (S. Typhimurium) during infection. Using photo-ANA, we identified FLOT1/2 as host interactors of S. Typhimurium effector PipB2 in late-stage infection and globally profiled the extensive interactions between host proteins and pathogens during infection.


Assuntos
Proteínas de Bactérias , Proteoma , Proteoma/metabolismo , Proteínas de Bactérias/metabolismo , Salmonella typhimurium/metabolismo , Interações Hospedeiro-Patógeno
6.
Nucleic Acids Res ; 49(17): 9755-9767, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34403482

RESUMO

Pericentromeric DNA, consisting of high-copy-number tandem repeats and transposable elements, is normally silenced through DNA methylation and histone modifications to maintain chromosomal integrity and stability. Although histone deacetylase 6 (HDA6) has been known to participate in pericentromeric silencing, the mechanism is still yet unclear. Here, using whole genome bisulfite sequencing (WGBS) and chromatin immunoprecipitation-sequencing (ChIP-Seq), we mapped the genome-wide patterns of differential DNA methylation and histone H3 lysine 18 acetylation (H3K18ac) in wild-type and hda6 mutant strains. Results show pericentromeric CHG hypomethylation in hda6 mutants was mediated by DNA demethylases, not by DNA methyltransferases as previously thought. DNA demethylases can recognize H3K18ac mark and then be recruited to the chromatin. Using biochemical assays, we found that HDA6 could function as an 'eraser' enzyme for H3K18ac mark to prevent DNA demethylation. Oxford Nanopore Technology Direct RNA Sequencing (ONT DRS) also revealed that hda6 mutants with H3K18ac accumulation and CHG hypomethylation were shown to have transcriptionally active pericentromeric DNA.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Código das Histonas , Histona Desacetilases/metabolismo , Acetilação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Centrômero , Cromatina , Metilação de DNA , Inativação Gênica , Histona Desacetilases/genética , Histona Desacetilases/fisiologia , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Mutação
7.
Angew Chem Int Ed Engl ; 62(1): e202214053, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36344442

RESUMO

Chemical synthesis of proteins bearing base-labile post-translational modifications (PTMs) is a challenging task. For instance, O-acetylation and S-palmitoylation PTMs cannot survive Fmoc removal conditions during Fmoc-solid phase peptide synthesis (SPPS). In this work, we developed a new Boc-SPPS-based strategy for the synthesis of peptide C-terminal salicylaldehyde (SAL) esters, which are the key reaction partner in Ser/Thr ligation and Cys/Pen ligation. The strategy utilized the semicarbazone-modified aminomethyl (AM) resin, which could support the Boc-SPPS and release the peptide SAL ester upon treatment with TFA/H2 O and pyruvic acid. The non-oxidative aldehyde regeneration was fully compatible with all the canonical amino acids. Armed with this strategy, we finished the syntheses of the O-acetylated protein histone H3(S10ac, T22ac) and the hydrophobic S-palmitoylated peptide derived from caveolin-1.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Aldeídos , Ésteres/química
8.
J Am Chem Soc ; 144(46): 20979-20997, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346429

RESUMO

Covalent modifications of DNA and histones are key cellular epigenetic marks to regulate gene functions. Most of these epigenetic marks are added or removed by corresponding enzymes known as writers and erasers, whose catalytic activities normally rely on the presence of cellular metabolites as cofactors. Epigenetic marks can either directly alter the chromatin structure and dynamics through changing the intra-/internucleosomal histone-histone and histone-DNA interactions or recruit readers that further bring in other proteins with chromatin-modifying/remodeling activities to reshape the local and regional chromatin organization. In these two ways, epigenetic modifications modulate diverse DNA-templated processes, such as gene transcription, DNA replication, and DNA damage repair. Therefore, elucidation of the regulatory mechanisms and biological significance of epigenetic marks requires the identification and characterization of the protein-protein, protein-nucleic acid, and protein-small molecule interactions that control the underlying epigenetic processes. Here, we review the recent advances in using photo-cross-linking strategies to interrogate the epigenetic interactome, focusing on the protein-protein interactions mediated by epigenetic marks in histone tails. We also discuss future directions of developing photo-cross-linking-based tools and methods toward the investigation of the binding events in nucleosomal/chromatinic contexts, and toward the in situ capture of the epigenetic interactome in live cells or even organisms.


Assuntos
Epigênese Genética , Histonas , Histonas/química , Cromatina , Nucleossomos , DNA/metabolismo , Processamento de Proteína Pós-Traducional
9.
Acc Chem Res ; 54(19): 3734-3747, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34553920

RESUMO

The hereditary blueprint of a eukaryotic cell is encoded in its genomic DNA that is tightly compacted into chromatin together with histone proteins. The basic repeating units of chromatin fibers are nucleosomes, in which approximately 1.7 turns of DNA wrap around a proteinaceous octamer consisting of two copies of histones H2A, H2B, H3, and H4. Histones are extensively decorated by a variety of posttranslational modifications (PTMs, e.g., methylation, acetylation, ubiquitylation, phosphorylation, etc.), serving as one of the cellular mechanisms that regulates DNA-templated processes, including but not limited to gene transcription, DNA replication, and DNA damage repair. Most of the histone PTMs exist in dynamic fluctuations, and their on and off states are exquisitely regulated by enzymes known as "writers" and "erasers", respectively. When installed at certain sites, histone PTMs can change the local physicochemical environment and thereby directly influence the nucleosome and chromatin structures. Alternatively, histone PTMs can recruit effectors (or "readers") to signal the downstream events. A "histone code" hypothesis has been proposed in which the combinatory actions of different histone PTMs orchestrate the epigenetic landscape of cells, modulating the activity of the underlying DNA and maintaining the genome stability between generations. Accumulating evidence also suggests that malfunctions of histone PTMs are associated with the pathogenesis of human diseases, such as cancer. It is therefore important to fully decipher the histone code, namely, to dissect the regulatory mechanisms and biological functions of histone PTMs.Owing to the advances in state-of-the-art mass spectrometry, dozens of novel histone modifications have been archived during the past decade. However, most of these newly identified histone PTMs remain poorly explored. To unravel the roles played by these PTMs in histone code, key questions that have driven our study are (i) how to detect the novel histone PTMs; (ii) how to identify the enzymes that catalyze the addition (writers) and removal (erasers) of the histone PTMs along with the regulating mechanisms; (iii) what is the biological significance of the histone PTMs and how do they function, by affecting the nucleosome and chromatin dynamics or by recruiting readers; and (iv) how to develop chemical probes to interrogate the histone PTMs or even serve as potential leads for the drug discovery campaigns to treat diseases caused by abnormalities in the regulation of histone PTMs.This Account focuses on our efforts in developing and applying chemical tools and methods to answer the above questions. Specifically, we review the detection of negatively charged histone acylations by developing and applying chemical reporters; preparing homogeneous nucleosomes carrying negatively charged acylations by protein chemistry approaches and the in vitro biophysical analyses of the effects of the acylations on nucleosome structures; investigating the negatively charged acylations' influence on chromatin dynamics in vivo using yeast genetic approaches; identifying and characterizing protein-protein interactions (PPIs) mediated by histone PTMs in different biological contexts (i.e., to identify the readers and erasers) by establishing a chemical proteomics platform that is enabled by photo-cross-linking chemistry and quantitative proteomics strategies; and manipulating PTM-mediated PPIs by the structure-guided design of inhibitors. We also discuss possible future directions in our journey to fully decipher the histone code.


Assuntos
Histonas/genética , Código das Histonas/genética , Histonas/química , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional/genética
10.
Nucleic Acids Res ; 48(17): 9538-9549, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32766790

RESUMO

Posttranslational modifications (PTMs) of histones represent a crucial regulatory mechanism of nucleosome and chromatin dynamics in various of DNA-based cellular processes, such as replication, transcription and DNA damage repair. Lysine succinylation (Ksucc) is a newly identified histone PTM, but its regulation and function in chromatin remain poorly understood. Here, we utilized an expressed protein ligation (EPL) strategy to synthesize histone H4 with site-specific succinylation at K77 residue (H4K77succ), an evolutionarily conserved succinylation site at the nucleosomal DNA-histone interface. We then assembled mononucleosomes with the semisynthetic H4K77succ in vitro. We demonstrated that this succinylation impacts nucleosome dynamics and promotes DNA unwrapping from the histone surface, which allows proteins such as transcription factors to rapidly access buried regions of the nucleosomal DNA. In budding yeast, a lysine-to-glutamic acid mutation, which mimics Ksucc, at the H4K77 site reduced nucleosome stability and led to defects in DNA damage repair and telomere silencing in vivo. Our findings revealed this uncharacterized histone modification has important roles in nucleosome and chromatin dynamics.


Assuntos
DNA/metabolismo , Histonas/síntese química , Histonas/metabolismo , Lisina/metabolismo , Nucleossomos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatina/química , Cromatina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Histonas/genética , Lisina/química , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
11.
Bioorg Med Chem ; 45: 116342, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364221

RESUMO

YEATS domains, which are newly identified epigenetic readers of histone lysine acetylation and crotonylation, have emerged as promising anti-cancer drug targets. We recently developed AF9 YEATS domain-selective cyclopeptide inhibitors. However, the cumbersome and time-consuming synthesis of the cyclopeptides limited further structural derivatisation and applications. Here, we reported a concise method for the solid-phase synthesis of the cyclopeptides, which substantially reduced the amount of time required for the preparation of the cyclopeptides and led to a higher overall yield. Moreover, this new synthetic route also allowed further derivatisation of the cyclopeptides with various functional modules, including fluorescent dye and cell-penetrating peptide. We demonstrated that the conjugation of the cyclopeptide with cell-penetrating peptide TAT led to a significantly increased cellular uptake.


Assuntos
Peptídeos Cíclicos/farmacocinética , Técnicas de Síntese em Fase Sólida , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Domínios Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
J Biol Chem ; 294(16): 6214-6226, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782848

RESUMO

Lysophospholipids (LPLs) are important lipid-signaling molecules in plants, of which lysophosphatidylcholine (lysoPC) is one of the most well-characterized LPLs, having important roles in plant stress responses. It is broken down by lysophospholipases, but the molecular mechanism involved in lysoPC degradation is unclear. Recombinant Arabidopsis thaliana ACYL-CoA-BINDING PROTEIN2 (AtACBP2) has been reported to bind lysoPC via its acyl-CoA-binding domain and also LYSOPHOSPHOLIPASE 2 (AtLYSOPL2) via its ankyrin repeats in vitro To investigate the interactions of AtACBP2 with AtLYSOPL2 and lysoPC in more detail, we conducted isothermal titration calorimetry with AtACBP270-354, an AtACBP2 derivative consisting of amino acids 70-354, containing both the acyl-CoA-binding domain and ankyrin repeats. We observed that the interactions of AtACBP270-354 with AtLYSOPL2 and lysoPC were both endothermic, favored by solvation entropy and opposed by enthalpy, with dissociation constants in the micromolar range. Of note, three AtLYSOPL2 catalytic triad mutant proteins (S147A, D268A, and H298A) bound lysoPC only weakly, with an exothermic burst and dissociation constants in the millimolar range. Furthermore, the binding affinity of lysoPC-premixed AtACBP270-354 to AtLYSOPL2 was 10-fold higher than that of AtACBP270-354 alone to AtLYSOPL2. We conclude that AtACBP2 may play a role in facilitating a direct interaction between AtLYSOPL2 and lysoPC. Our results suggest that AtACBP270-354 probably binds to lysoPC through a hydrophobic interface that enhances a hydrotropic interaction of AtACBP270-354 with AtLYSOPL2 and thereby facilitates AtLYSOPL2's lysophospholipase function.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Proteínas de Transporte/química , Lisofosfatidilcolinas/química , Lisofosfolipase/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Entropia , Interações Hidrofóbicas e Hidrofílicas , Lisofosfatidilcolinas/genética , Lisofosfatidilcolinas/metabolismo , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Ligação Proteica , Transdução de Sinais
13.
J Am Chem Soc ; 142(51): 21450-21459, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33306911

RESUMO

YEATS domains are newly identified epigenetic "readers" of histone lysine acetylation (Kac) and crotonylation (Kcr). The malfunction of YEATS-Kac/Kcr interactions has been found to be involved in the pathogenesis of human diseases, such as cancer. These discoveries suggest that the YEATS domains are promising novel drug targets. We and others recently reported the development of YEATS domain inhibitors. Although these inhibitors have a general preference toward the AF9 and ENL YEATS domains, selective inhibitors targeting either YEATS domain are challenging to develop as these two proteins share a high structural similarity. In this study, we identified a proximal site outside the acyllysine-binding pocket that can differentiate AF9 YEATS from ENL YEATS. Combinatorial targeting of both the acyllysine pocket and this additional site by conformationally preorganized cyclopeptides enabled the selective inhibition of the AF9 YEATS domain. The most selective inhibitor, JYX-3, showed a 38-fold higher binding affinity toward AF9 YEATS over ENL YEATS. Further investigations indicated that JYX-3 could engage with AF9 in living cells, disrupt the YEATS-dependent chromatin recruitment of AF9, and suppress the transcription of AF9 target genes.


Assuntos
Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Peptídeos Cíclicos/farmacologia , Acetilação , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Peptídeos Cíclicos/química , Domínios Proteicos/efeitos dos fármacos
14.
Nat Chem Biol ; 14(12): 1140-1149, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374167

RESUMO

Chemical probes of epigenetic 'readers' of histone post-translational modifications (PTMs) have become powerful tools for mechanistic and functional studies of their target proteins in normal physiology and disease pathogenesis. Here we report the development of the first class of chemical probes of YEATS domains, newly identified 'readers' of histone lysine acetylation (Kac) and crotonylation (Kcr). Guided by the structural analysis of a YEATS-Kcr complex, we developed a series of peptide-based inhibitors of YEATS domains by targeting a unique π-π-π stacking interaction at the proteins' Kcr recognition site. Further structure optimization resulted in the selective inhibitors preferentially binding to individual YEATS-containing proteins including AF9 and ENL with submicromolar affinities. We demonstrate that one of the ENL YEATS-selective inhibitors, XL-13m, engages with endogenous ENL, perturbs the recruitment of ENL onto chromatin, and synergizes the BET and DOT1L inhibition-induced downregulation of oncogenes in MLL-rearranged acute leukemia.


Assuntos
Desenho de Fármacos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Peptídeos/farmacologia , Fatores de Elongação da Transcrição/antagonistas & inibidores , Azepinas/farmacologia , Linhagem Celular , Cromatina/metabolismo , Cristalografia por Raios X , Regulação da Expressão Gênica/efeitos dos fármacos , Histona-Lisina N-Metiltransferase , Humanos , Lisina/metabolismo , Metiltransferases/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Peptídeos/química , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Triazóis/farmacologia
15.
J Am Chem Soc ; 141(29): 11497-11505, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31246451

RESUMO

Bromodomains, epigenetic "readers" of lysine acetylation marks, exist in different nuclear proteins with diverse biological functions in chromatin biology. Malfunctions of bromodomains are associated with the pathogenesis of human diseases, such as cancer. Bromodomains have therefore emerged as therapeutic targets for drug discovery. Given the high structural similarity of bromodomains, a critical step in the development of bromodomain inhibitors is the evaluation of their selectivity to avoid off-target effects. While numerous bromodomain inhibitors have been identified, new methods to evaluate the inhibitor selectivity toward endogenous bromodomains in living cells remain needed. Here we report the development of a photoaffinity probe, photo-bromosporine (photo-BS), that enables the wide-spectrum profiling of bromodomain inhibitors in living cells. Photo-BS allowed light-induced cross-linking of recombinant bromodomains and endogenous bromodomain-containing proteins (BCPs) both in vitro and in living cells. The photo-BS-induced labeling of the bromodomains was selectively competed by the corresponding bromodomain inhibitors. Proteomics analysis revealed that photo-BS captured 28 out of the 42 known BCPs from the living cells. Assessment of the two bromodomain inhibitors, bromosporine and GSK6853, resulted in the identification of known as well as previously uncharacterized bromodomain targets. Collectively, we established a chemical proteomics platform to comprehensively evaluate bromodomain inhibitors in terms of their selectivity against endogenous BCPs in living cells.


Assuntos
Carbamatos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Marcadores de Fotoafinidade/química , Domínios Proteicos , Proteínas/química , Proteômica/métodos , Piridazinas/química , Triazóis/química , Carbamatos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Reagentes de Ligações Cruzadas/química , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Piridazinas/farmacologia , Proteínas Recombinantes/química , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Triazóis/farmacologia
16.
J Biol Chem ; 292(29): 12296-12310, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28559280

RESUMO

o-Succinylbenzoyl-CoA (OSB-CoA) synthetase (MenE) is an essential enzyme in bacterial vitamin K biosynthesis and an important target in the development of new antibiotics. It is a member of the adenylating enzymes (ANL) family, which reconfigure their active site in two different active conformations, one for the adenylation half-reaction and the other for a thioesterification half-reaction, in a domain-alternation catalytic mechanism. Although several aspects of the adenylating mechanism in MenE have recently been uncovered, its thioesterification conformation remains elusive. Here, using a catalytically competent Bacillus subtilis mutant protein complexed with an OSB-CoA analogue, we determined MenE high-resolution structures to 1.76 and 1.90 Å resolution in a thioester-forming conformation. By comparison with the adenylation conformation, we found that MenE's C-domain rotates around the Ser-384 hinge by 139.5° during domain-alternation catalysis. The structures also revealed a thioesterification active site specifically conserved among MenE orthologues and a substrate-binding mode distinct from those of many other acyl/aryl-CoA synthetases. Of note, using site-directed mutagenesis, we identified several residues that specifically contribute to the thioesterification half-reaction without affecting the adenylation half-reaction. Moreover, we observed a substantial movement of the activated succinyl group in the thioesterification half-reaction. These findings provide new insights into the domain-alternation catalysis of a bacterial enzyme essential for vitamin K biosynthesis and of its adenylating homologues in the ANL enzyme family.


Assuntos
Acil Coenzima A/metabolismo , Monofosfato de Adenosina/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Succinato-CoA Ligases/metabolismo , Acil Coenzima A/química , Monofosfato de Adenosina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Dimerização , Esterificação , Ligantes , Mutagênese Sítio-Dirigida , Mutação Puntual , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Succinato-CoA Ligases/química , Succinato-CoA Ligases/genética
17.
J Am Chem Soc ; 140(46): 15859-15867, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30412395

RESUMO

Dynamic combinatorial library (DCL) has emerged as an efficient tool for ligand discovery and become an important discovery modality in biomedical research. However, the applications of DCLs have been significantly hampered by low library diversity and limited analytical methods capable of processing large libraries. Here, we report a strategy that has addressed this limitation and can select cooperatively binding small-molecule pairs from large-scale dynamic libraries. Our approach is based on DNA-mediated dynamic hybridization, DNA-encoding, and a photo-cross-linking-based decoding scheme. To demonstrate the generality and performance of this approach, a 10 000-member DNA-encoded dynamic library has been prepared and selected against six protein targets. Specific binders have been identified for each target, and we have validated the biological activities of selected ligands for the targets that are implicated in important cellular functions including protein deacetylation and sumoylation. Notably, a series of novel and selective sirtuin-3 inhibitors have been developed. Our study has circumvented a major obstacle in DCL and may provide a broadly applicable method for ligand discovery against biological targets.


Assuntos
DNA/química , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/química , Ligantes , Conformação Molecular
18.
Nat Chem Biol ; 12(2): 70-2, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26689789

RESUMO

Post-translational modifications (PTMs) have key roles in regulating protein-protein interactions in living cells. However, it remains a challenge to identify these PTM-mediated interactions. Here we develop a new lysine-based photo-reactive amino acid, termed photo-lysine. We demonstrate that photo-lysine, which is readily incorporated into proteins by native mammalian translation machinery, can be used to capture and identify proteins that recognize lysine PTMs, including 'readers' and 'erasers' of histone modifications.


Assuntos
Diazometano/análogos & derivados , Luz , Lisina/análogos & derivados , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Química Click , Diazometano/química , Diazometano/metabolismo , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Lisina/química , Lisina/genética , Modelos Moleculares , Estrutura Molecular , Ligação Proteica
19.
J Am Chem Soc ; 139(19): 6522-6525, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28459554

RESUMO

Posttranslational modifications (PTMs) of lysine are crucial histone marks that regulate diverse biological processes. The functional roles and regulation mechanism of many newly identified lysine PTMs, however, remain yet to be understood. Here we report a photoaffinity crotonyl lysine (Kcr) analogue that can be genetically and site-specifically incorporated into histone proteins. This, in conjunction with the genetically encoded photo-lysine as a "control probe", enables the capture and identification of enzymatic machinery and/or effector proteins for histone lysine crotonylation.


Assuntos
Histonas/química , Histonas/genética , Lisina/química , Marcadores de Fotoafinidade/química , Código Genético , Histonas/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Conformação Molecular , Marcadores de Fotoafinidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA