Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Aquac Nutr ; 2024: 3147505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38374819

RESUMO

This study developed a recombinant Bacillus subtilis to carry the LGSPDVIVIR peptide (cmP4) isolated from the hydrolyzed products of cottonseed meal with excellent antioxidant and immune-enhancing properties in vitro. It was carried as a tandem of five cmP4 peptides (cmP4') to be stably expressed on a large scale. Then, its effectiveness was evaluated in Chinese mitten crab (Eriocheir sinensis) based on growth performance, redox defense, and innate immunity. A total of 280 crabs (mean body weight: 41.40 ± 0.14) were randomly assigned to seven diets including a control one (without B. subtilis) and six experimental ones with different doses (107,108, and 109 CFU/kg) of unmodified and recombinant B. subtilis, respectively, for 12 weeks. Each diet was tested in four tanks of crabs (10/tank). In terms of bacterial dosages, the final weight (FW), weight gain (WG), hemolymph and hepatopancreatic activities of superoxide dismutase (SOD), catalase (CAT), lysosome (LZM), acid phosphatase (ACP) and alkaline phosphatase (AKP), and hepatopancreatic transcriptions of cat, mitochondrial manganese superoxide dismutase (mtmnsod), thioredoxin-1 (trx1), and prophenoloxidase (propo) all increased significantly with increasing B. subtilis dosages, while hemolymph and hepatopancreatic malondialdehyde (MDA) content and the transcriptions of toll like receptors (tlrs), NF-κB-like transcription factor (relish), and lipopolysaccharide-induced TNF-α factor (litaf) all decreased remarkably. In terms of bacterial species, the recombinant B. subtilis group obtained significantly high values of FW, WG, hemolymph, and hepatopancreatic activities of SOD, CAT, LZM, ACP, and AKP, and the transcriptions of mtmnsod, peroxiredoxin 6 (prx6), and propo compared with the unmodified B. subtilis, while opposite results were noted in hemolymph and hepatopancreatic MDA content and the transcriptions of tlrs, relish, and litaf. These results indicated that dietary supplementation with 109 CFU/kg of recombinant B. subtilis can improve the growth performance, redox defense, and nonspecific immunity of E. sinensis.

2.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 480-492, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38014877

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) is a sensor of cellular energy changes and controls food intake. This study investigates the effect of a high-calorie diet (high fat diet [HFD], high carbohydrate diet [HCD] and high energy diet [HED]) on appetite and central AMPK in blunt snout bream. In the present study, fish (average initial weight 45.84 ± 0.07 g) were fed the control, HFD, HCD and HED in four replicates for 12 weeks. At the end of the feeding trial, the result showed that body mass index, specific growth rate, feed efficiency ratio and feed intake were not affected (p > 0.05) by dietary treatment. However, fish fed the HFD obtained a significantly higher (p < 0.05) lipid productive value, lipid gain and lipid intake than those fed the control diet, but no significant difference was attributed to others. Also, a significantly higher (p < 0.05) energy intake content was found in fish-fed HFD, HCD and HED than those given the control diet. Long-term HFD and HCD feeding significantly increased (p < 0.05) plasma glucose, glycated serum protein, advanced glycation end product, insulin and leptin content levels than the control group. Moreover, a significantly lower (p < 0.05) complex 1, 2 and 3 content was found in fish-fed HFD and HCD than in the control, but no differences (p > 0.05) were attributed to those in HED. Fish-fed HED significantly upregulated (p < 0.05) hypothalamic ampα 1 and ampα 2 expression, whereas the opposite trend was observed in the hypothalamic mammalian target of rapamycin than those in HFD and HCD compared to the control. However, hypothalamic neuropeptide y, peroxisome proliferator-activated receptor α (pparα), acetyl-coa oxidase and carnitine palmitoyltransferase 1 were significantly upregulated (p < 0.05) in the HCD group, while the opposite was seen in cholecystokinin expression compared to those in the control group. Our findings indicated that the central AMPK signal pathway and appetite were modulated according to the diet's energy level to regulate nutritional status and maintain energy homoeostasis in fish.


Assuntos
Proteínas Quinases Ativadas por AMP , Cyprinidae , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Regulação do Apetite , Carboidratos , Cyprinidae/metabolismo , Dieta/veterinária , Dieta Hiperlipídica , Hipotálamo/metabolismo , Lipídeos , Mamíferos/metabolismo
3.
Fish Shellfish Immunol ; 141: 108996, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579810

RESUMO

This investigation looks at the impact of oral bovine serum albumin (BSA) on antioxidants, immune responses, and inflammation signals in blunt snout bream fed a high-calorie diet. 480 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet, a high-fat diet (HFD), a high carbohydrate diet (HCD), and a high-energy diet (HED) in six replicates for 12 weeks. After the feeding trial, fish were orally administered with 10% BSA for 10 h, then blood and liver samples from five fish were randomly obtained after 10 h to determine plasma inflammatory markers and inorganic components. Also, the leftover fish were injected with thioacetamide, blood and liver samples were simultaneously obtained at 12, 48, and 96 h, respectively, to determine antioxidant, immune, and inflammatory signals, with survival rates recorded at the same time interval. After 10 h, plasma inflammatory markers such as tumour necrosis factors (TNF-α), interleukin 6 (IL6), nitric oxide (NO), Monocyte chemoattractant protein-1(MCP-1), and cortisol were significantly improved in fish fed HCD and HED as compared to the control. After thioacetamide stress, plasma lysozyme (LYM), complement 3, myeloperoxidase (MPO), and alkaline phosphatase activities, as well as immunoglobulin M, levels all increased significantly (P < 0.05) with increasing time with maximum value attained at 96 h, but shows no difference among dietary treatment. Similar results were observed in liver superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and malondialdehyde (MDA) content, but tended to reduce at 96 h. nf-kb, tnf-α, and mcp-1 tend to decrease with the minimum value attained at 48 h and gradually decrease with increasing time at 96 h. After 96 h of the thioacetamide (TAA) challenge, the survival rate of blunt snout bream fed with an HFD and HCD was significantly lower (P < 0.05) at 48, and 96 h before the administration of BSA. However, no differences were observed among dietary treatments after the BSA administration. Overall, this study indicated that oral dietary administration of BSA might greatly enhance the antioxidant capability and innate immunity and mitigates inflammation signals after TAA stress in blunt snout bream fed high energy diet.


Assuntos
Cipriniformes , Soroalbumina Bovina , Animais , Ração Animal/análise , Antioxidantes , Dieta , Dieta Hiperlipídica , Imunidade Inata , Inflamação/induzido quimicamente , Inflamação/veterinária , Tioacetamida , Fator de Necrose Tumoral alfa
4.
Aquac Nutr ; 2023: 8347921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415969

RESUMO

Growth retardation and prolonged marketing cycle have been noticed in the practical aquaculture of Chinese mitten crab (Eriocheir sinensis) fed with artificial feed. Plant protein hydrolysates contain a large number of small peptides and free amino acids, which can improve the growth performance of aquatic animals. However, the potential mechanisms are still not well elucidated. In this research, the influences of cottonseed meal protein hydrolysate (CPH) on the growth, feed utilization, muscle growth, and molting performance were investigated in E. sinensis. A total of 240 crabs (mean body weight 37.32 ± 0.38 g) were individually randomly distributed to six diets supplemented with 0%, 0.2%, 0.4%, 0.8%, 1.6%, and 3.2% of CPH for 12 weeks. These findings indicated that the addition of CPH at 0.4% significantly increased the survival rate, body protein gain, apparent protein utilization, trypsin and pepsin activities, and the methyl farnesoate content. When the dose reached 0.8%, the weight growth ratio, meat yield, ecdysone concentration, and the transcription of the ecdysteroid receptor all significantly increased, while the transcriptions of both myostatin and molt-inhibiting hormone significantly decreased. When CPH was added at 1.6%-3.2%, the feed conversion ratio, body crude protein content, Na+/K+-ATPase activity, and the molting ratio were all significantly improved, while the opposite was true for the transcription of the transforming growth factor-ß type I receptor. The investigation results indicated that when added above 0.4%, CPH could stimulate the growth performance of E. sinensis and promote the muscle growth and molting performance.

5.
Fish Physiol Biochem ; 49(6): 1079-1095, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831370

RESUMO

The primary organ for absorbing dietary fat is the gut. High dietary lipid intake negatively affects health and absorption by causing fat deposition in the intestine. This research explores the effect of a high-fat diet (HFD) on intestinal microbiota and its connections with endoplasmic reticulum stress and inflammation. 60 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet (6% fat) and a high-fat diet (12 % fat) in four replicates for 12 weeks. From the result, hepatosomatic index (HSI), Visceralsomatic index (VSI), abdominal fat (ADF), Intestosomatic index (ISI), mesenteric fat (MFI), Triglycerides (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) content were substantially greater on HFD compared to the control diet. Moreover, fish provided the HFD significantly obtained lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. In contrast, an opposite result was seen in malondialdehyde (MDA) content in comparison to the control. HFD significantly altered intestinal microbiota in blunt snout bream, characterized by an increased abundance of Aeromonas, Plesiomonas proteobacteria, and firmicutes with a reduced abundance of Cetobacterium and ZOR0006. The transcriptional levels of glucose-regulated protein 78 (grp78), inositol requiring enzyme 1 (ire1), spliced X box-binding protein 1 (xbp1), DnaJ heat shock protein family (Hsp40) member B9 (dnajb9), tumor necrosis factor alpha (tnf-α), nuclear factor-kappa B (nf-κb), monocyte chemoattractant protein-1 (mcp-1), and interleukin-6 (il-6) in the intestine were markedly upregulated in fish fed HFD than the control group. Also, the outcome was similar in bax, caspases-3, and caspases-9, ZO-1, Occludin-1, and Occludin-2 expressions. In conclusion, HFD could alter microbiota and facilitate chronic inflammatory signals via activating endoplasmic reticulum stress.


Assuntos
Cyprinidae , Cipriniformes , Microbioma Gastrointestinal , Animais , Dieta Hiperlipídica , Ocludina/metabolismo , Ocludina/farmacologia , Cyprinidae/metabolismo , Inflamação , Antioxidantes/metabolismo , Cipriniformes/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Caspases/metabolismo , Caspases/farmacologia
6.
World J Microbiol Biotechnol ; 40(1): 8, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938463

RESUMO

Vitamin K2 (menaquinone, VK2, MK) is an essential lipid-soluble vitamin that plays critical roles in inhibiting cell ferroptosis, improving blood clotting, and preventing osteoporosis. The increased global demand for VK2 has inspired interest in novel production strategies. In this review, various novel metabolic regulation strategies, including static and dynamic metabolic regulation, are summarized and discussed. Furthermore, the advantages and disadvantages of both strategies are analyzed in-depth to highlight the bottlenecks facing microbial VK2 production on an industrial scale. Finally, advanced metabolic engineering biotechnology for future microbial VK2 production will also be discussed. In summary, this review provides in-depth information and offers an outlook on metabolic engineering strategies for VK2 production.


Assuntos
Biotecnologia , Engenharia Metabólica , Vitamina K 2
7.
Br J Nutr ; 127(3): 321-334, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33749571

RESUMO

A12-week experiment was conducted to evaluate the influences of thiamine ongrowth performance, and intestinal mitochondrial biogenesis and function of Megalobramaamblycephala fed a high-carbohydrate (HC) diet. Fish (24·73 (sem 0·45) g) were randomly assigned to one of four diets: two carbohydrate (CHO) levels (30 and 45 %) and two thiamine levels (0 and 1·5 mg/kg). HC diets significantly decreased DGC, GRMBW, FIMBW, intestinal activities of amylase, lipase, Na+, K+-ATPase, CK, complexes I, III and IV, intestinal ML, number of mitochondrial per field, ΔΨm, the P-AMPK: T-AMPK ratio, PGC-1ß protein expression as well as the transcriptions of AMPKα1, AMPKα2, PGC-1ß, mitochondrial transcription factor A, Opa-1, ND-1 and COX-1 and 2, while the opposite was true for ATP, AMP and reactive oxygen species, and the transcriptions of dynamin-related protein-1, fission-1 and mitochondrial fission factor. Dietarythiamine concentrations significantly increased DGC, GRMBW, intestinal activities of amylase, Na+, K+-ATPase, CK, complexes I and IV, intestinal ML, number of mitochondrial per field, ΔΨm, the P-AMPK:T-AMPK ratio, PGC-1ß protein expression as well as the transcriptions of AMPKα1, AMPKα2, PGC-1ß, Opa-1, ND-1, COX-1 and 2, SGLT-1 and GLUT-2. Furthermore, a significant interaction between dietary CHO and thiamine was observed in DGC, GRMBW, intestinal activities of amylase, CK, complexes I and IV, ΔΨm, the AMP:ATP ratio, the P-AMPK:T-AMPK ratio, PGC-1ß protein expression as well as the transcriptions of AMPKα1, AMPKα2, PGC-1ß, Opa-1, COX-1 and 2, SGLT-1 and GLUT-2. Overall, thiamine supplementation improved growth performance, and intestinal mitochondrial biogenesis and function of M. amblycephala fed HC diets.


Assuntos
Carboidratos da Dieta , Biogênese de Organelas , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Amilases/metabolismo , Animais , Carboidratos da Dieta/metabolismo , Carboidratos da Dieta/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Tiamina/farmacologia
8.
Appl Microbiol Biotechnol ; 106(2): 563-578, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34939133

RESUMO

ß-1,3-Glucans are well-known biological and health-promoting compounds in edible fungi. Our previous results characterized a glucan synthase gene (GFGLS) of Grifola frondosa for the first time to understand its role in mycelial growth and glucan biosynthesis. In the present study, we identified and functionally reannotated another glucan synthase gene, GFGLS2, based on our previous results. GFGLS2 had a full sequence of 5944 bp including 11 introns and 12 exons and a coding information for 1713 amino acids of a lower molecular weight (195.2 kDa) protein with different conserved domain sites than GFGLS (5927 bp with also 11 introns and a coding information for 1781 aa). Three dual-promoter RNA-silencing vectors, pAN7-iGFGLS-dual, pAN7-iGFGLS2-dual, and pAN7-CiGFGLS-dual, were constructed to downregulate GFGLS, GFGLS2, and GFGLS/GFGLS2 expression by targeting their unique exon sequence or conserved functional sequences. Silencing GFGLS2 resulted in higher downregulation efficiency than silencing GFGLS. Cosilencing GFGLS and GFGLS2 had a synergistic downregulation effect, with slower mycelial growth and glucan production by G. frondosa. These findings indicated that GFGLS2 plays major roles in mycelial growth and polysaccharide synthesis and provides a reference to understand the biosynthesis pathway of mushroom polysaccharides. KEY POINTS: • The 5944-bp glucan synthase gene GFGLS2 of G. frondosa was cloned and reannotated • GFGLS2 showed identity and significant differences with the previously identified GFGLS • GFGLS2 played a major role in fermentation and glucan biosynthesis.


Assuntos
Grifola , beta-Glucanas , Glucosiltransferases , Grifola/genética , Polissacarídeos
9.
Ecotoxicol Environ Saf ; 236: 113439, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367891

RESUMO

Global warming is favouring the incidence, intensity and duration of harmful cyanobacterial blooms. Microcystin-LR (MC-LR), a hepatotoxic agent, is produced during cyanobacterial blooms. To understand the molecular mechanisms of acute hepatotoxic effect of low doses of MC-LR in crab, we examined differentially expressed genes in samples of the hepatopancreas of Chinese mitten crab (Eriocheir sinensis) collected in 48 h after injections of MC-LR at doses of 0, 25, 50, and 75 µg/kg. The results revealed that MC-LR induced changes in corresponding gene led to the accumulation of triglycerides. MC-LR exposure affected sterol metabolism. Apoptosis-related genes such as Fas-L, Bcl-XL, Cytc, AiF, p53, PERK, calpain, CASP2, CASP7, α-tubulin, PARP, GF, G12, and PKC were upregulated. Conversely, expression levels of CASP10 and ASK1 were downregulated. Genes related to the regulation of actin cytoskeleton (Rho, ROCK, MLCP, MLC, PAK, and PFN) were upregulated. Further, expression levels of genes encoding fatty acid elongation-related enzymes were upregulated, but the expression of genes related to fatty acid synthesis was slightly down regulated. Taken together, these results demonstrated the hepatic toxicity and molecular mechanisms of changes in lipid metabolism, immune and apoptosis in Chinese mitten crab under the MC-LR-induced stress, which is the first report on crabs and performs a comprehensive analysis and a new insight of the molecular toxicological responses in crabs.


Assuntos
Hepatopâncreas , Transcriptoma , Animais , Apoptose , China , Ácidos Graxos/farmacologia , Metabolismo dos Lipídeos , Toxinas Marinhas , Microcistinas/toxicidade
10.
Aquac Nutr ; 2022: 8596427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860472

RESUMO

Niacin is indispensable for the growth and development of aquatic animals. However, the correlations between dietary niacin supplementations and the intermediary metabolism of crustaceans are still poorly elucidated. This study explored the effects of different dietary niacin levels on the growth, feed utilization, energy sensing, and glycolipid metabolism of oriental river prawn Macrobrachium nipponense. Prawns were fed with different experimental diets containing graded niacin levels (15.75, 37.62, 56.62, 97.78, 176.32, and 339.28 mg/kg, respectively) for 8 weeks. Weight gain, protein efficiency, feed intake, and hepatopancreas niacin contents all maximized in the 176.32 mg/kg group with significance noted with the control group (P <0.05), whereas the opposite was true for feed conversion ratio. Hepatopancreas niacin concentrations increased significantly (P < 0.05) as dietary niacin levels increased, and peaked at the 339.28 mg/kg group. Hemolymph glucose, total cholesterol, and triglyceride concentrations all maximized in the 37.62 mg/kg group, while total protein concentration reached the highest value in the 176.32 mg/kg group. The hepatopancreas mRNA expression of AMP-activated protein kinase α and sirtuin 1 peaked at the 97.78 and 56.62 mg/kg group, respectively, and then both decreased as dietary niacin levels increased furtherly (P < 0.05). Hepatopancreas transcriptions of the genes related to glucose transportation, glycolysis, glycogenesis, and lipogenesis all increased with increasing niacin levels up to 176.32 mg/kg, but decreased significantly (P < 0.05) as dietary niacin levels increased furtherly. However, the transcriptions of the genes related to gluconeogenesis and fatty acid ß-oxidation all decreased significantly (P < 0.05) as dietary niacin levels increased. Collectively, the optimum dietary niacin demand of oriental river prawn is 168.01-169.08 mg/kg. In addition, appropriate doses of niacin promoted the energy-sensing capability and glycolipid metabolism of this species.

11.
Aquac Nutr ; 2022: 7285851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860449

RESUMO

This research is aimed at evaluating the effects of leucine supplementation on muscle fibers growth and development of blunt snout bream through a feeding trial and a primary muscle cells treatment. An 8-week trial with diets containing 1.61% leucine (LL) or 2.15% leucine (HL) was conducted in blunt snout bream (mean initial weight = 56.56 ± 0.83 g). Results demonstrated that the specific gain rate and the condition factor of fish in the HL group were the highest. The essential amino acids content of fish fed HL diets was significantly higher than that fed LL diets. The texture (hardness, springiness, resilience, and chewiness), the small-sized fiber ratio, fibers density, and sarcomere lengths in fish all obtained the highest in the HL group. Additionally, the proteins expression related with the activation of the AMPK pathway (p-Ampk, Ampk, p-Ampk/Ampk, and Sirt1) and the expression of genes (myogenin (myog), myogenic regulatory factor 4 (mrf4) and myoblast determination protein (myod), and protein (Pax7) related to muscle fiber formation were significantly upregulated with increasing level of dietary leucine. In vitro, the muscle cells were treated with 0, 40 and 160 mg/L leucine for 24 h. The results showed that treated with 40 mg/L leucine significantly raised the protein expressions of BCKDHA, Ampk, p-Ampk, p-Ampk/Ampk, Sirt1, and Pax7 and the gene expressions of myog, mrf4, and myogenic factor 5 (myf5) in muscle cells. In summary, leucine supplementation promoted muscle fibers growth and development, which may be related to the activation of BCKDH and AMPK.

12.
J Anim Physiol Anim Nutr (Berl) ; 106(2): 403-418, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34957599

RESUMO

This study investigated the effects of xylooligosaccharide (XOS) supplementation on growth, intestinal enzyme, antioxidant and immune-related genes in common carp Cyprinus carpio fed a high-fat diet (HFD). One hundred and ninety two fish with an initial weight of 19.61 ± 0.96 g were allocated into 24 tanks (eight fish per tank in four replicate) and were fed the control diet, HFD, HFD with 0.5%, 1%, 2% and 3% XOS supplementation. From the result, fish offered HFD with 1% XOS supplementation significantly obtained a higher body mass index and feed efficiency ratio, whereas condition factor was higher in fish fed HFD supplemented with 2% XOS but no difference was attributed to other supplemented group compared to control group. Also, fish fed HFD supplemented with 1%-2% XOS significantly improved protease, lipase, creatine kinase and sodium/potassium ATPase activities compared to other groups. Fish offered HFD were significantly lower in superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX), myeloperoxidase, acid phosphatase, lysozyme activities and immunoglobulin content, but the opposite result was found for aspartate transaminase, alanine transaminase activities, malondialdehyde, protein carbonyl and cortisol content as compared with the control. However, this effect was reversed with HFD supplemented with XOS. Also, interleukin 1ß, interleukin 8, tumour necrosis factors, interferons, caspase-3 and caspase-9 in the intestine were all up-regulated in the HFD group, while the reverse pattern was found in SOD, GPX, lysozyme-C, complement 3 and mucin 5b (muc5b), than the control group. These effects were all enhanced by feeding the XOS diet, especially those fed 1%-3% supplementation. In conclusion, XOS inclusion can improve the growth, digestive enzymes, antioxidants and immune response of common carp fed HFD.


Assuntos
Carpas , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Carpas/metabolismo , Dieta/veterinária , Dieta Hiperlipídica , Suplementos Nutricionais , Glucuronatos , Intestinos , Oligossacarídeos , Prebióticos
13.
Fish Physiol Biochem ; 48(4): 1025-1038, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35802285

RESUMO

Nowadays, both pelleted feed (PF) and extruded feed (EF) have been widely adopted in the aquaculture industry. However, limited information is available comparing their utilization efficiencies and meanwhile interpreting the underlying mechanisms. This study aimed to compare the utilization efficiencies of both PF and EF by blunt snout bream (Megalobrama amblycephala) based on growth performance, digestive capacities, and endocrine functions. Two feeds with identical formulas were prepared and named PF and EF. Fish were randomly distributed into two groups, including one that fed the PF continuously, and one that offered the EF continuously. The whole feeding trail lasted 8 weeks. The results showed that the protein efficiency (PER), retention of nitrogen and energy (NRE and ERE), viscera index (VSI), apparent digestibility of dry matter, protein, carbohydrate, and gross energy, whole-body crude protein and energy contents, intestinal enzymatic activities of protease, amylase, and Na+,K+-ATPase, intestinal villi length, crypt depth, muscular layer thickness, and the transcriptions of leptin (LEP) and cholecystokinin (CCK) of the EF group were all significantly higher than those of the PF group, while the opposite was true for feed intake and feed conversion ratio. These findings suggested that compared with PF, EF could improve the feed utilization and nutrient retention of blunt snout bream by enhancing the intestinal digestive and absorptive functions but reduce the feed intake through the stimulation of both LEP and CCK.


Assuntos
Cyprinidae , Cipriniformes , Ração Animal/análise , Animais , Colecistocinina , Cyprinidae/fisiologia , Dieta/veterinária , Digestão/fisiologia , Nutrientes
14.
Fish Physiol Biochem ; 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525145

RESUMO

The purpose of this research is to explore the interaction between dietary leucine and isoleucine levels on whole-body composition, plasma and liver biochemical indexes, amino acids deposition in the liver, and amino acid metabolism of blunt snout bream (Megalobrama amblycephala). The test fish (average weight: 56.00 ± 0.55 g) were fed one of six diets at random containing two leucine levels (1.70% and 2.50%) and three isoleucine levels (1.00%, 1.20%, and 1.40%) for 8 weeks. The results showed that the final weight and weight gain rate were the highest in the fish fed low-level leucine and high-level isoleucine diets (P > 0.05). Furthermore, the crude lipid content was significantly adjusted by diets with diverse levels of leucine and isoleucine (P < 0.05). In addition, interactive effects of these two branched-chain amino acids (BCAAs) were found on plasma total protein, blood ammonia, and blood urea nitrogen of test fish (P < 0.05). Additionally, the liver amino acid profiles were significantly influenced by the interactive effects of the two BCAAs (P < 0.05). Moreover, interactive effects of dietary leucine and isoleucine were significantly observed in the expressions of amino acid metabolism-related genes (P < 0.05). These findings suggested that dietary leucine and isoleucine had interaction. Meanwhile, the interaction between them was more conducive to the growth and quality improvement of blunt snout bream when the dietary leucine level was 1.70% and isoleucine level was 1.40%.

15.
J Anim Physiol Anim Nutr (Berl) ; 105(6): 1203-1213, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33772885

RESUMO

The present study was conducted to evaluate the utilization of both pelleted feed (PF) and extruded feed (EF) by blunt snout bream Megalobrama amblycephala based on growth performance, stress responses, innate immunity and disease resistance. Both the PF and EF were prepared with the same formula. Fish were divided randomly into 2 groups, including one fed the PF continuously and one offered the EF continuously. The whole feeding trial lasted 8 weeks, after which fish were subjected to Aeromonas hydrophila infection. The results showed that the feed intake, feed conversion ratio, hepatic total superoxide dismutase activity and glutathione content, plasma complement 3 and complement 4 levels as well as myeloperoxidase activity of the EF group were all significantly lower than those of the PF group, while the opposite was true for the condition factor, the viscera index, the abdominal fat percentage, nitrogen and energy retention, hepatic malondialdehyde content, plasma levels of cortisol, glucose, lactate, total protein and globulin as well as the activities of plasma alanine aminotransferase and aspartate aminotransferase. In addition, the EF group also obtained relatively low activities of hepatic glutathione peroxidase and plasma acid phosphatase as well as high cumulative mortality rates at 24-96 h after Aeromonas hydrophila challenge. Furthermore, the feed cost of culturing this species with EF is lower than that with PF. These findings indicated that compared with PF, EF could increase the feed utilization and economic benefits of blunt snout bream, but reduce its anti-stress ability, non-specific immunity, A. hydrophila resistance and feed cost.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Cyprinidae , Aeromonas hydrophila , Ração Animal/análise , Animais , Antioxidantes , Resistência à Doença , Proteínas de Peixes , Nível de Saúde
16.
Fish Shellfish Immunol ; 105: 195-202, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32652298

RESUMO

A 10-week feeding trial was performed to investigate the effects of Streptococcus faecalis on the growth, intestinal microflora composition and expression of immune-related genes of blunt snout bream (Megalobrama amblycephala). Fish (46.32 ± 0.09 g) were fed four experimental diets containing 0 cfu/g (SF0, control), 1 × 105 cfu/g (SF1), 1 × 106 cfu/g (SF2) and 1 × 107 cfu/g (SF3) of S. faecalis, respectively. Results showed that daily growth index (DGI), feed efficiency ratio (FER), plasma glucose level, plasma contents of total protein and albumin as well as intestinal serous layer (SL), muscular layer (ML), submucous layer (SML), villi thickness (VT) and lamina propria (LP) were all no significant difference among all the treatments, whereas their (except plasma albumin content and intestinal ML) relatively high values were found in the SF2 group. Meanwhile, the intake of the SF2 diets significantly increased plasma globulin content and intestinal digestive enzymes activities, the opposite was true for the activities of plasma aspartate aminotransferase (AST) and alanine transaminase (ALT). In addition, the analysis of the intestinal microbiota showed that fish fed the SF2 diet have the highest values of intestinal alpha diversity and intestinal abundances of Actinobacteria, Chlamydiae, Firmicutes, Planctomycetes, Verrucomicrobia, Clostridium and Synechococcus, while the opposite was true for intestinal abundances of Acinetobacter, Anoxybacillus, Flavobacterium, Planctomyces, Plesiomonas, Pseudomonas, Staphylococcus and Clostridium perfringens. At the molecular level, the expression levels of tumour necrosis factor α (TNF α), interleukin 1ß (IL 1ß) and heat shock proteins 7 (HSP 70) in head kidney and spleen were all decreased significantly with the increasing S. faecalis levels up to 1 × 106 cfu/g, and then they were increased with further increasing S. faecalis levels. Overall, dietary supplementation of S. faecalis at 1 × 106 cfu/g could improve the intestinal health and innate immunity of blunt snout bream.


Assuntos
Cyprinidae/imunologia , Enterococcus faecalis/química , Microbioma Gastrointestinal/efeitos dos fármacos , Expressão Gênica/imunologia , Imunidade Inata/genética , Probióticos/metabolismo , Ração Animal/análise , Animais , Cyprinidae/genética , Cyprinidae/crescimento & desenvolvimento , Cyprinidae/microbiologia , Dieta/veterinária , Relação Dose-Resposta a Droga , Probióticos/administração & dosagem , Distribuição Aleatória
17.
Fish Physiol Biochem ; 46(2): 653-663, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31897860

RESUMO

An 8-week feeding trial was performed to test the effects of glycyrrhetinic acid (GA) on growth and some gene expression of hepatic lipid metabolism in channel catfish (initial body weight, 3.5 ± 0.02 g) fed high-fat diets. Fish were fed the control diet, high-fat diet (HFD), and HFD supplemented with 0.4, 0.8, and 1.2 mg/kg GA in 15 tanks at a stocking density of 21 fish/tank. Fish fed HFD were significantly lower in body weight gain and specific growth rate but higher in feed intake and feed conversion ratio in comparison to the control. Supplement of GA at 1.2 mg/kg remarkably improved these parameters as compared to the control diet. High levels of cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and low levels of high-density lipoprotein (HDL) in plasma were observed in fish fed HFD; the opposite was observed for fish fed HFD supplemented with GA. The transcription of fatty acid synthase (FAS), sterol regulatory element-binding protein-1 (SREBP1), liver X receptor alpha (LXRα), and hormone-sensitive lipase (HSL) was upregulated, while that of carnitine palmitoyltransferase I (CPT1), peroxisome proliferator-activated receptors alpha (PPARα), acyl-CoA oxidase (ACO), and microsomal triglyceride transfer protein (MTTP) mRNA expression were downregulated in fish fed HFD. The opposite was observed in fish fed HFD supplemented with GA as well as the control group. In conclusion, supplementing the HFD with GA at 1.2 mg/kg could improve the growth performance and lipid metabolism of channel catfish consuming HFD.


Assuntos
Dieta Hiperlipídica , Suplementos Nutricionais , Ácido Glicirretínico , Ictaluridae/fisiologia , Metabolismo dos Lipídeos/fisiologia , Animais , Metabolismo dos Lipídeos/genética
18.
Fish Shellfish Immunol ; 92: 637-648, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31271836

RESUMO

This study investigated the effects of restricted feeding on the growth performance, oxidative stress and inflammation of Megalobrama amblycephala fed high-carbohydrate (HC) diets. Fish (46.94 ±â€¯0.04 g) were randomly assigned to four groups containing the satiation of a control diet (30% carbohydrate) and three satiate levels (100% (HC1), 80% (HC2) and 60% (HC3)) of the HC diets (43% carbohydrate) for 8 weeks. Results showed that HC1 diet remarkably decreased final weight (FW), weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR), hepatic activities of total anti-oxidation capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT), the AMP/ATP ratio, the p-AMPKα/t-AMPKα ratio, sirtuin-1 (SIRT1) protein expression and hepatic transcriptions of AMPKα2, SIRT1, nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (CAT), manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1) and interleukin10 (IL 10) compared to the control group, whereas the opposite was true for protein efficiency ratio (PER), nitrogen retention efficiency (NRE), energy retention efficiency (ERE), plasma glucose levels, alanine transaminase (AST) and aspartate aminotransferase (ALT) activities, hepatic contents of malondialdehyde (MDA), tumour necrosis factor α (TNF α) and interleukin 1ß (IL 1ß), ATP and AMP contents and hepatic transcriptions of kelch-like ECH associating protein 1 (Keap1), IkB kinase α (IKK α), nuclear factor kappa B (NF-κB), TNF α, IL 1ß, interleukin 6 (IL 6) and transforming growth factor ß (TGF ß). As for the HC groups, fish fed the HC2 diet obtained relatively high values of SGR, PER, NRE, ERE, hepatic activities of T-AOC, SOD and CAT, the AMP/ATP ratio, the p-AMPKα/t-AMPKα ratio, SIRT1 protein expression and hepatic transcriptions of AMPKα2, Nrf2, CAT, copper/zinc superoxide dismutase (Cu/Zn-SOD), Mn-SOD, GPx1, glutathione S-transferase (GST) and interleukin10 (IL 10), while the opposite was true for hepatic content of IL 6 and transcription of IKK α. Overall, an 80% satiation improved the growth performance and alleviated the oxidative stress and inflammation of blunt snout bream fed HC diets via the activation of the AMPK-SIRT1 pathway and the up-regulation of the activities and transcriptions of Nrf2-modulated antioxidant enzymes coupled with the depression of the levels and transcriptions of the NF-κB-mediated pro-inflammatory cytokines.


Assuntos
Restrição Calórica/veterinária , Cyprinidae/imunologia , Carboidratos da Dieta/metabolismo , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Ração Animal/análise , Animais , Cyprinidae/metabolismo , Dieta/veterinária , Distribuição Aleatória , Sirtuína 1/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-30201543

RESUMO

This study aimed to investigate the effects of dietary non-protein energy adjustments on the mitochondrial biosynthesis and function of juvenile Megalobrama amblycephala. Fish (average weight: 37.98 ±â€¯0.07 g) were fed eight diets containing two dietary carbohydrate levels (30% and 43%) and four lipid sources (fish oil, soybean oil, palm oil and the mixed oil) for 11 weeks. Liver mitochondrial respiratory chain complex V activity and ATP (adenosine triphosphate) content both increased significantly with increasing dietary carbohydrate levels, whereas the opposite was true for the AMP (adenosine 5'-monophosphate)/ATP ratio, hepatic transcripts of AMP-activated protein kinase α1 (AMPKα1), AMPKα2, peroxisome proliferators γ-activated receptor coativator-1α (PGC-1α), NADH dehydrogenase 1 and cytochrome c oxidase 1 (COX1) as well as the activities of Na+-K+-ATPase, succinate dehydrogenase (SDH), citrate synthase (CS) and mitochondrial respiratory chain complex I, III and IV. Additionally, hepatic ATP content, the transcripts of AMPKα, COX1 and ATP6 and the activities of Na+-K+-ATPase, SDH, CS and mitochondrial respiratory chain complex III were all significantly affected by lipid sources. Furthermore, an interaction between dietary carbohydrate levels and lipid sources was also observed in the activities of liver mitochondrial Na+-K+-ATPase and respiratory chain complex III as well as the transcripts of ATP6 and PGC-1α. Overall, these findings suggested that dietary carbohydrate levels and lipid sources remarkably affected the mitochondrial biosynthesis and function of M. amblycephala. A diet containing 30% carbohydrate and FO could boost its mitochondrial biosynthesis, while that of 30% carbohydrate and SO could enhance the mitochondrial function.


Assuntos
Cyprinidae/metabolismo , Carboidratos da Dieta/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias Hepáticas/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Ração Animal , Animais , Transporte de Elétrons , Enzimas/genética , Enzimas/metabolismo , Proteínas de Peixes/metabolismo , Mitocôndrias Hepáticas/enzimologia
20.
Fish Physiol Biochem ; 45(1): 401-415, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30225750

RESUMO

This study aimed to characterize the full-length cDNA of glucose-6-phosphate dehydrogenase (G6PD) from Megalobrama amblycephala with its responses to dietary carbohydrate levels characterized. The cDNA obtained covered 2768 bp with an open reading frame of 1572 bp. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (77-97%) among most fish and other higher vertebrates. The highest transcription of G6PD was observed in kidney followed by liver, whereas relatively low abundance was detected in eye. Then, the transcriptions and activities of G6PD as well as lipid contents were determined in the liver, muscle, and the adipose tissue of fish fed two dietary carbohydrate levels (30 and 42%) for 12 weeks. Hepatic transcriptions of fatty acid synthetase (FAS), acetyl-CoA carboxylase α (ACCα), sterol regulatory element-binding protein-1 (SREBP1), and peroxisome proliferator-activated receptor γ (PPARγ) were also measured to corroborate the lipogenesis derived from carbohydrates. The G6PD expressions and activities in both liver and the adipose tissue as well as the lipid contents in whole-body, liver, and the adipose tissue all increased significantly after high-carbohydrate feeding. Hepatic transcriptions of FAS, ACCα, SREBP1, and PPARγ were also up-regulated remarkably by the intake of a high-carbohydrate diet. These results indicated that the G6PD of M. amblycephala shared a high similarity with that of other vertebrates. Its expressions and activities in tissues were both highly inducible by high-carbohydrate feeding, as also held true for the transcriptions of other enzymes and/or transcription factors involved in lipogenesis, evidencing an enhanced lipogenesis by high dietary carbohydrate levels.


Assuntos
Cyprinidae/metabolismo , Carboidratos da Dieta/farmacologia , Glucosefosfato Desidrogenase/metabolismo , Sequência de Aminoácidos , Ração Animal/análise , Animais , Sequência de Bases , DNA Complementar/química , Dieta , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucosefosfato Desidrogenase/genética , Filogenia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA