Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(5): 232, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658486

RESUMO

Ibuprofen (IBU) and naproxen (NPX), as widely prescribed non-steroidal anti-inflammatory drugs (NSAIDs), are largely produced and consumed globally, leading to frequent and ubiquitous detection in various aqueous environments. Previously, the microbial transformation of them has been given a little attention, especially with the isolated fungus. A yeast-like Apiotrichum sp. IB-1 has been isolated and identified, which could simultaneously transform IBU (5 mg/L) and NPX (2.5 mg/L) with maximum efficiencies of 95.77% and 88.31%, respectively. For mono-substrate, the transformation efficiency of IB-1 was comparable to that of co-removal conditions, higher than most of isolates so far. IBU was oxidized mainly through hydroxylation (m/z of 221, 253) and NPX was detoxified mainly via demethylation (m/z of 215) as shown by UPLC-MS/MS results. Based on transcriptome analysis, the addition of IBU stimulated the basic metabolism like TCA cycle. The transporters and respiration related genes were also up-regulated accompanied with higher expression of several dehydrogenase, carboxylesterase, dioxygenase and oxidoreductase encoding genes, which may be involved in the transformation of IBU. The main functional genes responsible for IBU and NPX transformation for IB-1 should be similar in view of previous studies, which needs further confirmation. This fungus would be useful for potential bioremediation of NSAIDs pollution and accelerate the discovery of functional oxidative genes and enzymes different from those of bacteria.


Assuntos
Anti-Inflamatórios não Esteroides , Biotransformação , Ibuprofeno , Naproxeno , Ibuprofeno/metabolismo , Naproxeno/metabolismo , Anti-Inflamatórios não Esteroides/metabolismo , Biodegradação Ambiental
2.
Ecotoxicol Environ Saf ; 270: 115922, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171106

RESUMO

Bisphenol A (BPA), an environmental endocrine disruptor (EDC), has been implicated in impairing intestinal and male reproductive dysfunction. The efficacy of gut microbiota modulation for BPA-exposed testicular dysfunction has yet to be verified through research. Therefore, this study explored the potential of mixed probiotics in restoring spermatogenesis damage through the gut-testis axis under BPA exposure. We selected two probiotics strains (Lactobacillus rhamnosus and Lactobacillus plantarum) with BPA removal properties in vitro and the BPA-exposed male mice model was established. The probiotics mixture effectively reduced BPA residue in the gut, serum, and testis in mice. Through 16 S rDNA-seq and metabolomics sequencing, we uncovered that vitamin D metabolism and bile acid levels in the gut was abolished under BPA exposure. This perturbation was linked to an increased abundance of Faecalibaculum and decreased abundance of Lachnospiraceae_NK4A136_group and Ligilactobacillus. The probiotics mixture restored this balance, enhancing intestinal barrier function and reducing oxidative stress. This improvement was accompanied by a restored balance of short-chain fatty acids (SCFAs). Remarkably, the probiotics ameliorated testicular dysfunction by repairing structures of seminiferous tubules and reversing arrested spermiogenesis. Further, the probiotics mixture enhanced testosterone-driven increases in spermatogonial stem cells and all stages of sperm cells. Testicular transcriptome profiling linked these improvements to fatty acid degradation and peroxisome pathways. These findings suggest a significant interplay between spermatogenesis and gut microbiota, demonstrating that probiotic intake could be a viable strategy for combating male subfertility issues caused by BPA exposure.


Assuntos
Microbioma Gastrointestinal , Fenóis , Probióticos , Masculino , Camundongos , Animais , Sêmen , Espermatogênese , Compostos Benzidrílicos/toxicidade , Probióticos/farmacologia
3.
Bioorg Chem ; 137: 106583, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37163810

RESUMO

Prostate cancer is the second most common cause of cancer-related deaths in men and is common in most developed countries. Androgen deprivation therapy (ADT) that uses abiraterone acetate (AA) is an effective second-line treatment for prostate cancer. However, approximately 20-40% of patients develop primary resistance to abiraterone post-treatment. In this study, we aimed to understand the molecular mechanisms underlying the development of abiraterone resistance in prostate cancer cells and the potential use of black phosphorus nanosheets (BPNS) for treating abiraterone-resistant prostate cancer. We first established abiraterone-resistant prostate cancer PC-3 cells and found that these cells have higher migration ability than normal prostate cancer cells. Using comparative transcriptomic and bioinformatics analyses between abiraterone-sensitive PC-3 and abiraterone-resistant PC-3 cells, we highlighted the differentially expressed genes (DEGs) involved in the biological processes related to prostate gland morphogenesis, drug response, immune response, angiogenesis. We further studied the therapeutic effects of BPNS. Our results show that BPNS reduced the proliferation and migration of abiraterone-resistant PC-3 cells. Bioinformatics analysis, including gene ontology, Kyoto encyclopedia of genes and genomes enrichment analysis, and ingenuity pathway analysis (IPA) of the DEGs, suggested that BPNS treatment controlled cancer cell proliferation, metastasis, and oncogenic signaling pathways. Furthermore, the IPA gene network highlighted the involvement of the MMP family, ATF, and notch families in the anti-prostate cancer function of BPNS. Our findings suggest that BPNS may have a chemotherapeutic function in treating abiraterone-resistant prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Antagonistas de Androgênios , Fosfatos/uso terapêutico , Resultado do Tratamento , Doxorrubicina , Perfilação da Expressão Gênica
4.
Environ Res ; 221: 115245, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640939

RESUMO

nanofiltration membrane concentrate (NMC) is an emerging type of wastewater with significant environmental concerns. which can be treated efficiently by an integrated method. In this study, magnetic biochar (MBC) pretreatment integrated with anaerobic digestion (AD) (MBC + AD) was used to treat NMC. Results showed that under the optimal MBC + AD conditions, 79%, 69.4%, 52.9%, and 86.5% of COD, total nitrogen (TN), chromaticity, and light absorbing substances were reduced. For heavy metals removal, 18.3%, 70.0%, 96.4%, 43.8% and 97.5% of Cr (VI), Cd, Pb, Cu and Zn were removed, respectively. LC-MS analysis indicated that p-nitrophenol (4-NP) diethyl and phthalate (DEP) were the main organic pollutants in NMC with a removal rate of 60% and 90%. Compared with single AD, in MBC + AD samples, bacterial activity was improved, and genus DMER64 (23.2%) was dominant. The predominant archaea were Methanocorpusculum (53.3%) and Methanosarcina (25.3%), with microbial restructuring and slight methane generation. Additionally, metabolic pathway prediction revealed that both bacterial and archaeal metabolism were significantly enhanced, contributing to the central functional pathways, namely microbial activity metabolism and biodegradation metabolism. In addition, the significantly increased genera Syner-01, Vulcanibacillus, Methanocorpusculum, and Norank_c_Bathyarchaeia were significantly positively related to metabolic function. This finding demonstrated that MBC + AD enhanced contaminant removal, mainly by regulating bacterial diversity and activity. Moreover, the toxicity of NMC decreased after MBC + AD treatment. This study provides a potential biological strategy for the treatment of membrane concentrates and water recovery.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Anaerobiose , Bactérias/metabolismo , Archaea/metabolismo , Fenômenos Magnéticos , Reatores Biológicos/microbiologia , Metano
5.
Environ Res ; 223: 115186, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36586709

RESUMO

The presence of heavy metals (HMs) in aquatic ecosystems is a universal concern due to their tendency to accumulate in aquatic organisms. HMs accumulation has been found to cause toxic effects in aquatic organisms. The common HMs-induced toxicities are growth inhibition, reduced survival, oxidative stress, tissue damage, respiratory problems, and gut microbial dysbiosis. The application of dietary probiotics has been evolving as a potential approach to bind and remove HMs from the gut, which is called "Gut remediation". The toxic effects of HMs in fish, mice, and humans with the potential of probiotics in removing HMs have been discussed previously. However, the toxic effects of HMs and protective strategies of probiotics on the organisms of each trophic level have not been comprehensively reviewed yet. Thus, this review summarizes the toxic effects caused by HMs in the organisms (at each trophic level) of the aquatic food chain, with a special reference to gut microbiota. The potential of bacterial probiotics in toxicity alleviation and their protective strategies to prevent toxicities caused by HMs in them are also explained. The dietary probiotics are capable of removing HMs (50-90%) primarily from the gut of the organisms. Specifically, probiotics have been reported to reduce the absorption of HMs in the intestinal tract via the enhancement of intestinal HM sequestration, detoxification of HMs, changing the expression of metal transporter proteins, and maintaining the gut barrier function. The probiotic is recommended as a novel strategy to minimize aquaculture HMs toxicity and safe human health.


Assuntos
Microbioma Gastrointestinal , Metais Pesados , Probióticos , Humanos , Animais , Camundongos , Ecossistema , Metais Pesados/toxicidade , Metais Pesados/análise , Poluição Ambiental
6.
Biodegradation ; 34(1): 21-41, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36369603

RESUMO

The ability of Pseudomonas turukhanskensis GEEL-01 to degrade the phenanthrene (PHE) was optimized by response surface methodology (RSM). Three factors as independent variables (including temperature, pH, and inoculum) were studied at 600 mg/L PHE where the highest growth of P. turukhanskensis GEEL-01 was observed. The optimum operating conditions were evaluated through the fit summary analysis, model summary statistics, fit statistics, ANOVA analysis, and model graphs. The degradation of PHE was monitored by high-performance liquid chromatography (HPLC) and the metabolites were identified by gas chromatography-mass spectrometry (GC-MS). The results showed that the correlation among independent variables with experimental and predicted responses was significant (p < 0.0001). The optimal temperature, pH, and inoculum were 30 ℃, 8, and 6 mL respectively. The HPLC peaks exhibited a reduction in PHE concentration from 600 mg/L to 4.97 mg/L with 99% degradation efficiency. The GC-MS peaks indicated that the major end products of PHE degradation were 1-Hydroxy-2-naphthoic acid, salicylic acid, phthalic acid, and catechol. This study demonstrated that the optimized parameters by RSM for P. turukhanskensis GEEL-01 could degrade PHE by phthalic and salicylic acid pathways.


Assuntos
Fenantrenos , Fenantrenos/metabolismo , Biodegradação Ambiental , Pseudomonas/metabolismo
7.
Altern Ther Health Med ; 29(5): 278-283, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37083649

RESUMO

Background and Objective: miR-22-3p functions as a tumor suppressor by targeting a variety of downstream genes, while its role and downstream targets in gastric cancer (GC) remain to be determined. We aimed to explore the role of miR-22-3p in gastric cancer and the potential mechanism. Methods: miR-22-3p mimic and inhibitor were used to overexpress or knockdown the expression of miR-22-3p separately. Quantitative real-time PCR (RT-qPCR) and Western blot were used to analyse the abundance of mRNA or protein level respectively. CCK-8 assay, cell colony formation assay, and flow cytometry were implemented to investigate the effect of miR-22-3p on gastric cancer cell proliferation and apoptosis. Luciferase assay was used to evaluate the role of miR-22-3p on the expression of glycolytic enzyme enolase 1 (ENO1). Results: In this study, we found that miR-22-3p was downregulated in GC cells. By transfecting the cells with miR-22-3p inhibitors or mimics, we showed that miR-22-3p suppressed GC cell proliferation and migration, as well as triggered cell death. In addition, we discovered that miR-22-3p was engaged in glycolysis by controlling the generation of lactate as well as the consumption of glucose. TargetScan database suggested that the ENO1 may be a target of the miR-22-3p, and the luciferase experiment verified this hypothesis. Recovery assays showed that the proliferation and migration of GC cells suppressed by miR-22-3p could be rescued by overexpression of ENO1. Conclusion: Collectively, we identified a new axis of miR-22-3p/ENO1 for GC development, which could be investigated as a therapeutic target for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Fosfopiruvato Hidratase/genética , Proteínas de Ligação a DNA , Biomarcadores Tumorais , Proteínas Supressoras de Tumor/genética
8.
Ecotoxicol Environ Saf ; 267: 115643, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944462

RESUMO

Biochar is a by-product of thermochemical conversion of biomass or other carbonaceous materials. Recently, it has garnered extensive attention for its high application potential in microbial fuel cell (MFC) systems owing to its high conductivity and low cost. However, the effects of biochar on MFC system performance have not been comprehensively reviewed, thereby necessitating the evaluation of the efficacy of biochar application in MFCs. In this review, biochar characteristics were outlined based on recent publications. Subsequently, various applications of biochar in the MFC systems and their probable processes were summarized. Finally, proposals for future applications of biochar in MFCs were explored along with its perspectives and an environmental evaluation in the context of a circular economy. The purpose of this review is to gain comprehensive insights into the application of biochar in the MFC systems, offering important viewpoints on the effective and steady utilization of biochar in MFCs for practical application.


Assuntos
Fontes de Energia Bioelétrica , Elétrons , Eletrodos , Transporte de Elétrons
9.
J Environ Manage ; 331: 117278, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634423

RESUMO

Methane production through anaerobic digestion (AD) of municipal sludge is economic and eco-friendly, which is commonly affected by temperature and pollutants residues. However, little is known about methanogenesis in psychrophilic AD (PAD) with temperature variations that simulating seasonal variations and with antibiotic stress. Here, two groups of AD systems with oxytetracycline (OTC) were operated with temperature maintained at 35 °C and 15 °C or variation to explore the influence to methanogenesis. The acetic acid was noticeably accumulated in OTC groups initially (P < 0.001). Methane production was noticeably inhibited initially in PAD with OTC, but had been stimulated later at 35 °C. The dominant acetoclastic methanogens Methanosaeta gradually decreased to 15.48% and was replaced by methylotrophic Methanomethylovorans (73.43%) in PAD with OTC. Correspondingly, the abundances of functional genes related to methylotrophic methanogenesis were also higher in these groups. Besides, genes involving in methane oxidation had over 50 times higher abundances in PAD with OTC groups in the second phase. Further investigation is essential to understand the main dynamics of methanogenesis in PAD and to clear the related molecular mechanism for future methane production regulation in sludge systems.


Assuntos
Oxitetraciclina , Esgotos , Esgotos/química , Antibacterianos , Anaerobiose , Reatores Biológicos , Metano
10.
Fish Shellfish Immunol ; 120: 190-201, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34848303

RESUMO

Heavy metals (HMs) contaminated fish is a threat to humans when consumed. Dietary probiotics have evolved as a successful HMs removal approach. In this study, probiotics Enterococcus (EC) sp. and Lactococcus (LC) sp. were evaluated for toxicity alleviation and gut microbiota maintenance in Cyprinus carpio (single and combined approach) on Cr, Cd, and Cu mixture (0.8 mg/L and 1.6 mg/L) exposure (28 days). HMs removal, oxidative stress, cytokines response, histology, and gut microbiota were investigated. LC alone showed remarkable HMs removal for Cr (62.28%-87.57%), Cd (89%-90.42%), and Cu (72%-88%) than LC + EC. Probiotics up-regulated superoxide dismutase and total protein levels, while decreased the activity of malondialdehyde than the control. Pro-inflammatory cytokine (TNF-α) and chemokine (IL-8) expressions were higher at 1.6 mg/L concentration, whereas anti-inflammatory cytokine (IL-10) was higher in the 0.8 mg/L group. LC mitigated the histological alterations of gills, kidneys, and intestines, particularly at the lower concentration. Sequencing results revealed that Proteobacteria (44%-61%) was the most dominant phylum in all groups, followed by Fusobacteria (34%-36%) at 0.8 mg/L and Firmicutes (19%-34%) at 1.6 mg/L. The current study presented LC and EC potential separately and in combination to countermeasure HMs mixture induced toxicity and gut microbial dysbiosis, in which the conjoint group was less effective.


Assuntos
Carpas , Microbioma Gastrointestinal , Lactococcus lactis , Metais Pesados , Probióticos , Animais , Cádmio , Citocinas , Dieta/veterinária , Metais Pesados/toxicidade
11.
Environ Res ; 204(Pt B): 112089, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571032

RESUMO

Lack of process control between the two stages of a combined microbial fuel cell-membrane bioreactor (MFC-MBR) system limits its application in wastewater treatment due to membrane fouling and high energy consumption. In this study, a two-stage MFC-MBR integrated system was established to investigate the impact of incorporating process control on petroleum refinery wastewater treatment. The results showed that chemical oxygen demand (COD) removal exhibits a linear relationship with the MFC voltage output (R2 = 0.9821); therefore, the MFC was used as a biosensor to control the combined system. The removal efficiencies of COD, ammonium nitrogen (NH4+-N), and total nitrogen (TN) were 96.3%, 92.4%, and 86.6%, respectively, in the MFC-MBR biosensor, whereas those in the control system were 74.7%, 71.2%, and 64.7% respectively. Furthermore,using the biosensor control system yielded a 50% reduction in the transmembrane pressure (1.01 kPa day-1) and decreased membrane fouling in wastewater treatment. The maximum energy recovery of the biosensor system (0.00258 kWh m-3) was five times higher than that of the control system, as determined by calculating the mass balance of the system. Thus, this study indicates that using the MFC as a biosensor for process control in an MFC-MBR system can improve overall system performance.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Purificação da Água , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Membranas Artificiais , Águas Residuárias
12.
Environ Res ; 212(Pt B): 113214, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35405128

RESUMO

Existing studies reported higher altitudes reduce the COVID-19 infection rate in the United States, Colombia, and Peru. However, the underlying reasons for this phenomenon remain unclear. In this study, regression analysis and mediating effect model were used in a combination to explore the altitudes relation with the pattern of transmission under their correlation factors. The preliminary linear regression analysis indicated a negative correlation between altitudes and COVID-19 infection in China. In contrast to environmental factors from low-altitude regions (<1500 m), high-altitude regions (>1500 m) exhibited lower PM2.5, average temperature (AT), and mobility, accompanied by high SO2 and absolute humidity (AH). Non-linear regression analysis further revealed that COVID-19 confirmed cases had a positive correlation with mobility, AH, and AT, whereas negatively correlated with SO2, CO, and DTR. Subsequent mediating effect model with altitude-correlated factors, such as mobility, AT, AH, DTR and SO2, suffice to discriminate the COVID-19 infection rate between low- and high-altitude regions. The mentioned evidence advance our understanding of the altitude-mediated COVID-19 transmission mechanism.


Assuntos
COVID-19 , Altitude , COVID-19/epidemiologia , China/epidemiologia , Colômbia , Humanos , Conceitos Meteorológicos , Meteorologia
13.
Ecotoxicol Environ Saf ; 231: 113216, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35065503

RESUMO

Procambarus clarkii (crayfish) accumulates a high concentration of Arsenic (As) from the aquatic environment and causes considerable human health risks. In this study, Limosilactobacillus fermentum GR-3 strain was isolated from "Jiangshui" and applied for As(III) adsorption and antioxidant abilities. Strain GR-3 removed 50.67% of 50 mg/L As(III) and exhibited the high antioxidant potential of DPPH (1,1-Diphenyl-2-picrylhydrazyl) (87.63%) and hydroxyl radical (74.51%) scavenging rate in vitro. P. clarkii was feed with strain GR-3, the results showed that As(III) concentration reduced, and residual level in hepatopancreas was decreased by 36%, compared to As(III)-exposed group (control). Gut microbial sequencing showed that strain GR-3 restores gut microbiota dysbiosis caused by As(III) exposure. Further application in the field scale was performed and revealed a decrease in As(III) accumulation and increasing 50% aquaculture production of the total output. In summary, feed-additive probiotic is recommended as a novel strategy to minimize aquaculture foods toxicity and safe human health.


Assuntos
Arsênio , Limosilactobacillus fermentum , Animais , Arsênio/metabolismo , Arsênio/toxicidade , Astacoidea , Hepatopâncreas/metabolismo , Humanos , Estresse Oxidativo
14.
Aquac Nutr ; 2022: 2355274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860440

RESUMO

Carbohydrate is the cheapest source of energy among the three major nutrient groups, an appropriate amount of carbohydrates can reduce feed cost and improve growth performance, but carnivorous aquatic animals cannot effectively utilize carbohydrates. The objectives of the present study are aimed at exploring the effects of dietary corn starch levels on glucose loading capacity, insulin-mediated glycemic responses, and glucose homeostasis for Portunus trituberculatus. After two weeks of feeding trial, swimming crabs were starved and sampled at 0, 1, 2, 3, 4, 5, 6, 12, and 24 hours, respectively. The results indicated that crabs fed diet with 0% corn starch exhibited lower glucose concentration in hemolymph than those fed with the other diets, and glucose concentration in hemolymph remained low with the extension of sampling time. The glucose concentration in hemolymph of crabs fed with 6% and 12% corn starch diets reached the peak after 2 hours of feeding; however, the glucose concentration in hemolymph of crabs fed with 24% corn starch attained the highest value after 3 hours of feeding, and the hyperglycemia lasted for 3 hours and decreased rapidly after 6 hours of feeding. Enzyme activities in hemolymph related to glucose metabolism such as pyruvate kinase (PK), glucokinase (GK), and phosphoenolpyruvate carboxykinase (PEPCK) were significantly influenced by dietary corn starch levels and sampling time. Glycogen content in hepatopancreas of crabs fed with 6% and 12% corn starch first increased and then decreased; however, the glycogen content in hepatopancreas of crabs fed with 24% corn starch significantly increased with the prolongation of feeding time. In the 24% corn starch diet, insulin-like peptide (ILP) in hemolymph reached a peak after 1 hour of feeding and then significantly decreased, whereas crustacean hyperglycemia hormone (CHH) was not significantly influenced by dietary corn starch levels and sampling time. ATP content in hepatopancreas peaked at 1 h after feeding and then decreased significantly in different corn starch feeding groups, while the opposite trend was observed in NADH. The activities of mitochondrial respiratory chain complexes I, II, III, and V of crabs fed with different corn starch diets significantly increased first and then decreased. In addition, relative expressions of genes related to glycolysis, gluconeogenesis, glucose transport, glycogen synthesis, insulin signaling pathway, and energy metabolism were significantly affected by dietary corn starch levels and sampling time. In conclusion, the results of the present study reveal glucose metabolic responses were regulated by different corn starch levels at different time points and play an important role in clearing glucose through increased activity of insulin, glycolysis, and glycogenesis, along with gluconeogenesis suppression.

15.
Environ Microbiol ; 23(1): 415-430, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33201569

RESUMO

Cu(II)-enhanced microbial Cr(VI) reduction is common in the environment, yet its mechanism is unknown. The specific activity of chromate reductase, NfoR, from Staphylococcus aureus sp. LZ-01 was augmented 1.5-fold by Cu(II). Isothermal titration calorimetry and spectral data show that Cu(II) binds to NfoR nonspecifically. Further, Cu(II) stimulates the nitrobenzene reduction of NfoR, indicating that Cu(II) promotes electron transfer. The crystal structure of NfoR in complex with CuSO4 (1.46 Å) was determined. The overall structure of NfoR-Cu(II) complex is a dimer that covalently binds with FMN and Cu(II)-binding pocket is located at the interface of the NfoR dimer. Structural superposition revealed that NfoR resembles the structure of class II chromate reductase. Site-directed mutagenesis revealed that Leu46 and Phe123 were involved in NADH binding, whereas Trp70 and Ser45 were the key residues for nitrobenzene binding. Furthermore, His100 and Asp171 were preferential affinity sites for Cu(II) and that Cys163 is an active site for FMN binding. Attenuation reductase activity in C163S can be partially restored to 54% wild type by increasing Cu(II) concentration. Partial restoration indicates dual-channel electron transfer of NfoR via Cu(II) and FMN. We propose a catalytic mechanism for Cu(II)-enhanced NfoR activity in which Cu(I) is formed transiently. Together, the current results provide an insight on Cu (II)-induced enhancement and benefit of Cr(VI) bioremediation.


Assuntos
Proteínas de Bactérias/metabolismo , Cromo/metabolismo , Cobre/metabolismo , Oxirredutases/metabolismo , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Biodegradação Ambiental , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
16.
Biotechnol Bioeng ; 118(1): 210-222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32915455

RESUMO

Copper pollution poses a serious threat to the aquatic environment; however, in situ analytical methods for copper monitoring are still scarce. In the current study, Escherichia coli Rosetta was genetically modified to express OprF and ribB with promoter Pt7 and PcusC , respectively, which could synthesize porin and senses Cu2+ to produce riboflavin. The cell membrane permeability of this engineered strain was increased and its riboflavin production (1.45-3.56 µM) was positively correlated to Cu2+ (0-0.5 mM). The biosynthetic strain was then employed in microbial fuel cell (MFC) based biosensor. Under optimal operating parameters of pH 7.1 and 37°C, the maximum voltage (248, 295, 333, 352, and 407 mV) of the constructed MFC biosensor showed a linear correlation with Cu2+ concentration (0.1, 0.2, 0.3, 0.4, 0.5 mM, respectively; R2 = 0.977). The continuous mode testing demonstrated that the MFC biosensor specifically senses Cu2+ with calculated detection limit of 28 µM, which conforms to the common Cu2+ safety standard (32 µM). The results obtained with the developed biosensor system were consistent with the existing analytical methods such as colorimetry, flame atomic absorption spectrometry, and inductively coupled plasma optical emission spectrometry. In conclusion, this MFC-based biosensor overcomes the signal conversion and transmission problems of conventional approaches, providing a fast and economic analytical alternative for in situ monitoring of Cu2+ in water.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Cobre/análise , Escherichia coli , Microrganismos Geneticamente Modificados , Riboflavina/biossíntese , Cobre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Riboflavina/genética
17.
Arch Microbiol ; 204(1): 78, 2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-34954813

RESUMO

We evaluated the variations of bacterial communities in six heavy metal contaminated soils sampled from Yanzi Bian (YZB) and Shanping Cun (SPC) tailings located in northwestern China. Statistical analysis showed that both the heavy metals and soil chemical properties could affect the structure and diversity of the bacterial communities in the tailing soils. Cd, Cu, Zn, Cr, Pb, pH, SOM (soil organic matters), TP (total phosphorus) and TN (total nitrogen) were the main driving factors of the bacterial community variations. As a consequence, the relative abundances of certain bacterial phyla including Proteobacteria, Chloroflexi, Firmicutes, Nitrospirota and Bacteroidota were significantly increased in the tailing soils. Further, we found that the abundance increasement of these phyla were mainly contributed by certain species, such as s__unclassified_g__Thiobacillus (Proteobacteria), s__unclassified_g__Sulfobacillus (Firmicutes) and Leptospirillum ferriphilum (Nitrospirota). Thus, these species were considered to be strongly heavy metal tolerant. Together, our findings will provide a useful insight for further bioremediations of these contaminated areas.


Assuntos
Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Bactérias/classificação , China , Monitoramento Ambiental , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Zinco
18.
Ecotoxicology ; 30(8): 1527-1537, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33123966

RESUMO

Heavy metals have been severely polluting the environment. However, the response mechanism of microbial communities to short-term heavy metals stress remains unclear. In this study, metagenomics (MG) and metatranscriptomics (MT) was performed to observe the microbial response to short-term Cr(VI) stress. MG data showed that 99.1% of species were similar in the control and Cr(VI) treated groups. However, MT data demonstrated that 83% of the microbes were active in which 58.7% increased, while the relative abundance of 41.3% decreased after short-term Cr(VI) incubation. The MT results also revealed 9% of microbes were dormant in samples. Genes associated with oxidative stress, Cr(VI) transport, resistance, and reduction, as well as genes with unknown functions were 2-10 times upregulated after Cr(VI) treatment. To further confirm the function of unknown genes, two genes (314 and 494) were selected to detect the Cr(VI) resistance and reduction ability. The results showed that these genes significantly increased the Cr(VI) remediation ability of Escherichia coli. MT results also revealed an increase in the expression of some rare genera (at least two times) after Cr(VI) treatment, indicating these rare species played a crucial role in microbial response to short-term Cr(VI) stress. In summary, MT is an efficient way to understand the role of active and dormant microbes in specific environmental conditions.


Assuntos
Metais Pesados , Microbiota , Cromo/toxicidade , Metagenômica
19.
J Environ Manage ; 287: 112252, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714043

RESUMO

The provision of sanitation services for fast-growing urban populations is one of the world's urgent challenges. Hutong neighborhoods in Beijing, capital of China, cannot be rebuilt due to the protection of historical heritage, while residents still need to keep the habit of defecating in public toilets. One hundred public toilets with non-sewered sanitation in the Hutong neighborhoods of Beijing were visited to investigate the actual operating status in response to the "toilet revolution" campaign. The fault tree approach was used to identify the barriers toward a decent and environment-friendly public toilet and evaluate potential risks from the malfunction of various components. Four subsystems are defined and elaborated to calculate the fault possibility. These subsystems are environment- and user-friendly, regarded as ancillary facilities, and used for fecal sludge (FS) management. Statistical analysis of targeted cases indicated that fault probabilities of environmental considerations, user-friendly considerations, ancillary facilities, FS management are calculated as 0.79, 0.96, 0.96, and 0, respectively. The subsystems were weighted using a Delphi method concept. Results showed that the well operation ratio of Beijing Hutong public toilets is only 32%, and the sanitation service value chain can be further optimized. This study also provides references for other countries, which are dedicated to promoting urban sanitation and public health.


Assuntos
Aparelho Sanitário , Pequim , China , Humanos , Saneamento , Banheiros
20.
Crit Rev Biotechnol ; 40(6): 733-749, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32441144

RESUMO

Recently, lipidic wastes have been reported to enhance biomethane production through anaerobic co-digestion (ACD). These lipidic wastes were of animal and plant origins. The comparison of animal and plant lipidic wastes with the microbial communities involved in lipid degradation have not been given adequate attention in pervious reviews. However, there is need to demonstrate the differences between these wastes in terms of their long-chain fatty acids (LCFAs) composition, nature, and availability. This review discusses the characterization and comparison of animal and plant lipidic wastes as co-substrates, while summarizing the potential of biomethane production in the laboratory, as well as pilot and full-scale operations. The degradation kinetics of LCFAs existing in animal and plant lipidic wastes were also highlighted during the operation process, along with the challenges (such as inhibition by LCFAs, sludge washout, sludge flotation, and foaming). Discussion on the use of the next gene sequencing (NGS) for the microbial community in the ACD of lipidic wastes was considered to understand the interspecies interactions among various microbes. The economic feasibility of lipidic wastes in the ACD along with biogas yield has also been evaluated. The use of lipids (animal and plant based) in anaerobic digestion with the application of combined pretreatment or an acclimatized microbial consortium could be a potential approach for maximum energy recovery from the waste in terms of biomethane production.


Assuntos
Biocombustíveis , Reatores Biológicos/microbiologia , Ácidos Graxos , Eliminação de Resíduos/métodos , Anaerobiose , Animais , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Resíduos Industriais , Cinética , Microbiota/fisiologia , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA