Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Cardiol ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123832

RESUMO

To assess the value of parameters of myocardial work for dynamic monitoring of myocardial injury after neonatal asphyxia. Fifty-three neonates with asphyxia admitted within 24 h after delivery were divided into a mild asphyxia group (n = 40) and severe asphyxia group (n = 13). Echocardiography was performed within 24 h post-birth, within 72 h post-birth (48 h after first echo), and during recovery. The left ventricular ejection fraction on M-mode echocardiography and by Simpson's biplane method (LVEF and Bi-EF, respectively), stroke volume (SV), cardiac output (CO), cardiac index (CI), global longitudinal strain (GLS), global work index (GWI), global constructive work (GCW), and other parameters were measured. Echocardiographic indicators were compared between groups and over time. GWI was significantly increased at 72 h in the mild asphyxia group (P < 0.05) but showed no significant change over time in the severe asphyxia group (P > 0.05). While GCW increased significantly over time in both groups (P < 0.05), it increased earlier in the mild asphyxia group. Time and grouping factors had independent effects on GWI and GCW (P > 0.05). The characteristics of differences in GWI and GCW between the two groups were different from those for LVEF, Bi-EF, SV, CO, CI, and GLS and their change characteristics with improvement from treatment. GWI and GCW changed significantly during recovery from neonatal asphyxia, and their change characteristics differed between mild and severe asphyxia cases. Myocardial work parameters can be used as valuable supplements to traditional indicators of left ventricular function to dynamically monitor the recovery from myocardial injury after neonatal asphyxia.

2.
J Hazard Mater ; 470: 134204, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579586

RESUMO

Selenium (Se) plays a critical role in diverse biological processes and is widely used across manufacturing industries. However, the contamination of Se oxyanions also poses a major public health concern. Microbial transformation is a promising approach to detoxify Se oxyanions and produce elemental selenium nanoparticles (SeNPs) with versatile industrial potential. Yeast-like fungi are an important group of environmental microorganisms, but their mechanisms for Se oxyanions reduction remain unknown. In this study, we found that Aureobasidium melanogenum I15 can reduce 1.0 mM selenite by over 90% within 48 h and efficiently form intracellular or extracellular spherical SeNPs. Metabolomic and proteomic analyses disclosed that A. melanogenum I15 evolves a complicated selenite reduction mechanism involving multiple metabolic pathways, including the glutathione/glutathione reductase pathway, the thioredoxin/thioredoxin reductase pathway, the siderophore-mediated pathway, and multiple oxidoreductase-mediated pathways. This study provides the first report on the mechanism of selenite reduction and SeNPs biogenesis in yeast-like fungi and paves an alternative avenue for the bioremediation of selenite contamination and the production of functional organic selenium compounds.


Assuntos
Ascomicetos , Ácido Selenioso , Selênio , Ácido Selenioso/metabolismo , Selênio/metabolismo , Ascomicetos/metabolismo , Oxirredução , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas Metálicas/química , Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Proteômica
3.
Bioresour Technol ; 407: 131146, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047799

RESUMO

The utilization of lignocellulosic substrates for microbial oil production by oleaginous yeasts has been evidenced as an economically viable process for industrial-scale biodiesel preparation. Efficient sugar utilization and tolerance to inhibitors are critical for lipid production from lignocellulosic substrates. This study investigated the lignocellulosic sugar utilization and inhibitor tolerance characteristics of Rhodotorula toruloides C23. The results demonstrated that C23 exhibited robust glucose and xylose assimilation irrespective of their ratios, yielding over 21 g/L of lipids and 11 mg/L of carotenoids. Furthermore, C23 exhibited high resistance and efficiently degradation towards toxic inhibitors commonly found in lignocellulosic hydrolysates. The potential molecular mechanism underlying xylose metabolism in C23 was explored, with several key enzymes and signal regulation pathways identified as potentially contributing to its superior lipid synthesis performance. The study highlights R. toruloides C23 as a promising candidate for robust biofuel and carotenoid production through direct utilization of non-detoxified lignocellulosic hydrolysates.


Assuntos
Carotenoides , Lignina , Lipídeos , Rhodotorula , Rhodotorula/metabolismo , Rhodotorula/efeitos dos fármacos , Lignina/metabolismo , Carotenoides/metabolismo , Glucose/metabolismo , Xilose/metabolismo , Biocombustíveis
4.
Front Pediatr ; 12: 1388921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725987

RESUMO

Objectives: To develop a predictive model for patent ductus arteriosus (PDA) in preterm infants at seven days postpartum. The model employs ultrasound measurements of the ductus arteriosus (DA) intimal thickness (IT) obtained within 24 h after birth. Methods: One hundred and five preterm infants with gestational ages ranging from 27.0 to 36.7 weeks admitted within 24 h following birth were prospectively enrolled. Echocardiographic assessments were performed to measure DA IT within 24 h after birth, and DA status was evaluated through echocardiography on the seventh day postpartum. Potential predictors were considered, including traditional clinical risk factors, M-mode ultrasound parameters, lumen diameter of the DA (LD), and DA flow metrics. A final prediction model was formulated through bidirectional stepwise regression analysis and subsequently subjected to internal validation. The model's discriminative ability, calibration, and clinical applicability were also assessed. Results: The final predictive model included birth weight, application of mechanical ventilation, left ventricular end-diastolic diameter (LVEDd), LD, and the logarithm of IT (logIT). The receiver operating characteristic (ROC) curve for the model, predicated on logIT, exhibited excellent discriminative power with an area under the curve (AUC) of 0.985 (95% CI: 0.966-1.000), sensitivity of 1.000, and specificity of 0.909. Moreover, the model demonstrated robust calibration and goodness-of-fit (χ2 value = 0.560, p > 0.05), as well as strong reproducibility (accuracy: 0.935, Kappa: 0.773), as evidenced by 10-fold cross-validation. A decision curve analysis confirmed the model's broad clinical utility. Conclusions: Our study successfully establishes a predictive model for PDA in preterm infants at seven days postpartum, leveraging the measurement of DA IT. This model enables identifying, within the first 24 h of life, infants who are likely to benefit from timely DA closure, thereby informing treatment decisions.

5.
Biol. Res ; 55: 5-5, 2022. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1383910

RESUMO

BACKGROUND: G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. METHODS: The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund's Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and down-regulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. RESULTS: Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. CONCLUSION: The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain.


Assuntos
Animais , Camundongos , Eletroacupuntura , Microglia/fisiologia , Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Manejo da Dor , Dor/induzido quimicamente , Inflamação/induzido quimicamente , Inflamação/terapia , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA