Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 33(10): 1673-1689, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37884342

RESUMO

Ultraconserved elements (UCEs) are the most conserved regions among the genomes of evolutionarily distant species and are thought to play critical biological functions. However, some UCEs rapidly evolved in specific lineages, and whether they contributed to adaptive evolution is still controversial. Here, using an increased number of sequenced genomes with high taxonomic coverage, we identified 2191 mammalian UCEs and 5938 avian UCEs from 95 mammal and 94 bird genomes, respectively. Our results show that these UCEs are functionally constrained and that their adjacent genes are prone to widespread expression with low expression diversity across tissues. Functional enrichment of mammalian and avian UCEs shows different trends indicating that UCEs may contribute to adaptive evolution of taxa. Focusing on lineage-specific accelerated evolution, we discover that the proportion of fast-evolving UCEs in nine mammalian and 10 avian test lineages range from 0.19% to 13.2%. Notably, up to 62.1% of fast-evolving UCEs in test lineages are much more likely to result from GC-biased gene conversion (gBGC). A single cervid-specific gBGC region embracing the uc.359 allele significantly alters the expression of Nova1 and other neural-related genes in the rat brain. Combined with the altered regulatory activity of ancient gBGC-induced fast-evolving UCEs in eutherians, our results provide evidence that synergy between gBGC and selection shaped lineage-specific substitution patterns, even in the most constrained regulatory elements. In summary, our results show that gBGC played an important role in facilitating lineage-specific accelerated evolution of UCEs, and further support the idea that a combination of multiple evolutionary forces shapes adaptive evolution.


Assuntos
Conversão Gênica , Mamíferos , Animais , Ratos , Mamíferos/genética , Alelos , Aves/genética , Evolução Molecular , Antígeno Neuro-Oncológico Ventral
2.
Proc Natl Acad Sci U S A ; 119(40): e2204716119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161929

RESUMO

Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolution in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in placental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of pluripotency as well as species-specific modulation of the pluripotency-associated regulatory networks in mammals.


Assuntos
Elementos Facilitadores Genéticos , Células-Tronco Pluripotentes , Animais , Proteínas de Ciclo Celular/metabolismo , Elementos Facilitadores Genéticos/genética , Eutérios/genética , Feminino , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Placenta/metabolismo , Células-Tronco Pluripotentes/metabolismo , Gravidez , Suínos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
FASEB J ; 37(9): e23111, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531300

RESUMO

The post-transfer developmental capacity of bovine somatic cell nuclear transfer (SCNT) blastocysts is reduced, implying that abnormalities in gene expression regulation are present at blastocyst stage. Chromatin accessibility, as an indicator for transcriptional regulatory elements mediating gene transcription activity, has heretofore been largely unexplored in SCNT embryos, especially at blastocyst stage. In the present study, single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) of in vivo and SCNT blastocysts were conducted to segregate lineages and demonstrate the aberrant chromatin accessibility of transcription factors (TFs) related to inner cell mass (ICM) development in SCNT blastocysts. Pseudotime analysis of lineage segregation further reflected dysregulated chromatin accessibility dynamics of TFs in the ICM of SCNT blastocysts compared to their in vivo counterparts. ATAC- and ChIP-seq results of SCNT donor cells revealed that the aberrant chromatin accessibility in the ICM of SCNT blastocysts was due to the persistence of chromatin accessibility memory at corresponding loci in the donor cells, with strong enrichment of trimethylation of histone H3 at lysine 4 (H3K4me3) at these loci. Correction of the aberrant chromatin accessibility through demethylation of H3K4me3 by KDM5B diminished the expression of related genes (e.g., BCL11B) and significantly improved the ICM proliferation in SCNT blastocysts. This effect was confirmed by knocking down BCL11B in SCNT embryos to down-regulate p21 and alleviate the inhibition of ICM proliferation. These findings expand our understanding of the chromatin accessibility abnormalities in SCNT blastocysts and BCL11B may be a potential target to improve SCNT efficiency.


Assuntos
Cromatina , Técnicas de Transferência Nuclear , Animais , Bovinos , Cromatina/genética , Cromatina/metabolismo , Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
4.
Proc Biol Sci ; 290(1999): 20230538, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37253422

RESUMO

The muskox and reindeer are the only ruminants that have evolved to survive in harsh Arctic environments. However, the genetic basis of this Arctic adaptation remains largely unclear. Here, we compared a de novo assembled muskox genome with reindeer and other ruminant genomes to identify convergent amino acid substitutions, rapidly evolving genes and positively selected genes among the two Arctic ruminants. We found these candidate genes were mainly involved in brown adipose tissue (BAT) thermogenesis and circadian rhythm. Furthermore, by integrating transcriptomic data from goat adipose tissues (white and brown), we demonstrated that muskox and reindeer may have evolved modulating mitochondrion, lipid metabolism and angiogenesis pathways to enhance BAT thermogenesis. In addition, results from co-immunoprecipitation experiments prove that convergent amino acid substitution of the angiogenesis-related gene hypoxia-inducible factor 2alpha (HIF2A), resulting in weakening of its interaction with prolyl hydroxylase domain-containing protein 2 (PHD2), may increase angiogenesis of BAT. Altogether, our work provides new insights into the molecular mechanisms involved in Arctic adaptation.


Assuntos
Ritmo Circadiano , Ruminantes , Termogênese , Animais , Tecido Adiposo Marrom/metabolismo , Cabras , Rena/genética , Ruminantes/genética , Termogênese/genética , Regiões Árticas
5.
New Phytol ; 237(3): 840-854, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36305219

RESUMO

Light is a particularly important environmental cue that regulates a variety of diverse plant developmental processes, such as photomorphogenesis. Blue light promotes photomorphogenesis mainly through the activation of the photoreceptor cryptochrome 1 (CRY1). However, the mechanism underlying the CRY1-mediated regulation of growth is not fully understood. Here, we found that blue light induced N6 -methyladenosine (m6 A) RNA modification during photomorphogenesis partially via CRY1. Cryptochrome 1 mediates blue light-induced expression of FKBP12-interacting protein 37 (FIP37), which is a component of m6 A writer. Moreover, we showed that CRY1 physically interacted with FIP37 in vitro and in vivo, and mediated blue light activation of FIP37 binding to RNA. Furthermore, CRY1 and FIP37 modulated m6 A on photomorphogenesis-related genes PIF3, PIF4, and PIF5, thereby accelerating the decay of their transcripts. Genetically, FIP37 repressed hypocotyl elongation under blue light, and fip37 mutation could partially rescue the short-hypocotyl phenotype of CRY1-overexpressing plants. Together, our results provide a new insight into CRY1 signal in modulating m6 A methylation and stability of PIFs, and establish an essential molecular link between m6 A modification and determination of photomorphogenesis in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Luz , RNA/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Fatores de Transcrição/metabolismo
6.
Mol Breed ; 43(11): 80, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954030

RESUMO

Chlorophyll is one of the key factors for photosynthesis and plays an important role in plant growth and development. We previously isolated an EMS mutagenized rapeseed chlorophyll-reduced mutant (crm1), which had yellow leaf, reduced chlorophyll content and fewer thylakoid stacks. Here, we found that crm1 showed attenuated utilization efficiency of both light energy and CO2 but enhanced heat dissipation efficiency and greater tolerance to high-light intensity. BSA-Seq analysis identified a single nucleotide change (C to T) and (G to A) in the third exon of the BnaA01G0094500ZS and BnaC01G0116100ZS, respectively. These two genes encode the magnesium chelatase subunit I 1 (CHLI1) that catalyzes the insertion of magnesium into protoporphyrin IX, a pivotal step in chlorophyll synthesis. The mutation sites resulted in an amino acid substitution P144S and G128E within the AAA+ domain of the CHLI1 protein. Two KASP markers were developed and co-segregated with the yellow leaf phenotype in segregating F2 population. Loss of BnaA01.CHLI1 and BnaC01.CHLI1 by CRISPR/Cas9 gene editing recapitulated the mutant phenotype. BnaA01.CHLI1 and BnaC01.CHLI1 were located in chloroplast and highly expressed in the leaves. Furthermore, RNA-seq analyses revealed the expression of chlorophyll synthesis-related genes were upregulated in the crm1 mutant. These findings provide a new insight into the regulatory mechanism of chlorophyll synthesis in rapeseed and suggest a novel target for improving the photosynthetic efficiency and tolerance to high-light intensity in crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01429-6.

7.
Health Qual Life Outcomes ; 21(1): 92, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596629

RESUMO

BACKGROUND: Pharmaceutical care has the potential to improve hypertension control rates in young and middle-aged patients. Due the COVID-19 epidemic, standard intervention methods may not be applicable. We propose establishing an internet-based pharmaceutical care (IPC) route to improve blood pressure control in young and middle-aged patients with hypertension. An evaluation method based on Principal Component Analysis (PCA) and Orthogonal Partial Least-Discriminant Analysis (OPLS-DA) was established to evaluate the effect of the IPC method. METHODS: 1) Internet-based Pharmaceutical care (IPC) was provided by pharmacists mainly using Wechat software for one year after enrollment; 2) PCA and OPLS-DA were applied to analyze questionnaire reliability and data variability; 3) Markov cohort was used to evaluate the IPC effect. RESULTS: Ninety-seven young and middle-aged patients were enrolled. 96 patients received the IPC. 1) The blood pressure control rate increased to 71.88% after IPC in 96 patients. 2) After conducting PCA and OPLS-DA analysis, 10 questions in the questionnaire were significantly improved after the IPC. 3) Markov cohort results showed that patient survival after 28 cycles was 18.62 years and the quality-adjusted life year (QALY) was extended by 5.40 years. The cumulative cost-effectiveness ratio was ¥87.10 per QALY. CONCLUSIONS: The IPC method could significantly improve the blood pressure control rate of patients. The questionnaire analysis method based on PCA and OPLS-DA is an effective method to evaluate the effect of the IPC method. The Markov cohort showed that the IPC had an effect on blood pressure control rate changes. Patients had a strong willingness to pay for IPC.


Assuntos
COVID-19 , Hipertensão , Pessoa de Meia-Idade , Humanos , Análise de Componente Principal , COVID-19/epidemiologia , Pandemias , Reprodutibilidade dos Testes , Qualidade de Vida , Hipertensão/tratamento farmacológico , Internet
8.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674681

RESUMO

Convergent evolution provides powerful opportunities to investigate the genetic basis of complex traits. The Tibetan antelope (Pantholops hodgsonii) and Siberian ibex (Capra sibirica) belong to different subfamilies in Bovidae, but both have evolved similar superfine cashmere characteristics to meet the cold temperature in plateau environments. The cashmere traits of cashmere goats underwent strong artificial selection, and some traces of domestication also remained in the genome. Hence, we investigated the convergent genomic signatures of cashmere traits between natural and artificial selection. We compared the patterns of convergent molecular evolution between Tibetan antelope and Siberian ibex by testing positively selected genes, rapidly evolving genes and convergent amino acid substitutions. In addition, we analyzed the selected genomic features of cashmere goats under artificial selection using whole-genome resequencing data, and skin transcriptome data of cashmere goats were also used to focus on the genes involved in regulating cashmere traits. We found that molecular convergent events were very rare, but natural and artificial selection genes were convergent enriched in similar functional pathways (e.g., ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway) in a variety of gene sets. Type IV collagen family genes (COL4A2, COL4A4, COL4A5, COL6A5, COL6A6) and integrin family genes (ITGA2, ITGA4, ITGA9, ITGB8) may be important candidate genes for cashmere formation and development. Our results provide a comprehensive approach and perspective for exploring cashmere traits and offer a valuable reference for subsequent in-depth research on the molecular mechanisms regulating cashmere development and fineness.


Assuntos
Antílopes , Animais , Antílopes/genética , Fosfatidilinositol 3-Quinases/genética , Genoma/genética , Genômica , Cabras/genética
9.
Langmuir ; 38(21): 6752-6760, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35593034

RESUMO

The energy level mismatching between SnO2 and perovskite and the nonradiative recombination at SnO2-perovskite interface severely degrade the extraction of carriers, reducing the power conversion efficiency (PCE) and stability of planar perovskite solar cells (PSCs) based on SnO2 electron transfer layer (ETL). In the present work, a reinforced SnO2 ETL was successfully developed by embedding SnO2 thin shell protected Ag nanowires (Ag/SnO2 NWs) in traditional planar SnO2 film, which was proved to not only lower the conduction band of SnO2 to adjust the energy level matching, but also significantly reduce the interfacial carrier recombination. Moreover, Ag/SnO2 NWs improved the electrical conductivity of SnO2 ETL, and effectively promoted carrier transport. Benefiting from the use of Ag/SnO2 NWs, our newly designed PSC achieved a significantly increased champion PCE of 19.78%, which is 7% higher than the traditional PSC without Ag/SnO2 NWs embedding, indicating its great application potential in PSCs.

10.
Immunopharmacol Immunotoxicol ; 44(5): 757-765, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35616237

RESUMO

BACKGROUND: Fentanyl is an analgesic used against pancreatitis-related pain, while whether it ameliorates severe acute pancreatitis (SAP) has yet to be checked. This study aims to determine fentanyl-delivered effect on SAP and the mechanism underlying this effect. METHODS: Rat SAP models were established, following fentanyl treatment. The serum activity of amylase (AMY), lipase (LIP), and diamine oxidase (DAO) was detected by enzyme-linked immunosorbent assay (ELISA). Histological examination was performed in the pancreatic and intestinal tissues with hematoxylin-eosin staining. After transfection with matrix metalloproteinase (MMP) 9 overexpression plasmids, Caco-2 monolayers were treated with fentanyl and subsequently exposed to lipopolysaccharide (LPS). The transepithelial electrical resistance (TEER) value was determined in rat intestinal mucosa through an Ussing chamber assisted by Analyze & Acquire, and in Caco-2 cell monolayers through a voltohmmeter. Intestinal mucosa and paracellular permeabilities were determined by fluorescein isothiocyanate (FITC)-labeled dextran assay. The expressions of ZO-1, Occludin, MMP9, Fas and Fas ligand (FasL) in rat intestinal mucosa and/or Caco-2 monolayers were analyzed by qRT-PCR or/and western blot. RESULTS: Fentanyl alleviated SAP-related histological alterations in the pancreas and intestines, reduced the elevated levels of SAP-related AMY, LIP, and DAO, but promoted the levels of ZO-1 and Occludin. In SAP rats and Caco-2 monolayers, SAP-related or LPS-induced TEER value decreases, permeability increases, and increases in the expressions of MMP9, Fas, and FasL were reversed partly by fentanyl. Notably, MMP9 overexpression could reverse the above fentanyl-delivered in vitro effects. CONCLUSIONS: Fentanyl alleviates intestinal mucosal barrier damage in rats with SAP by inhibiting the MMP9/FasL/Fas pathway.


Assuntos
Amina Oxidase (contendo Cobre) , Pancreatite , Doença Aguda , Amina Oxidase (contendo Cobre)/metabolismo , Amina Oxidase (contendo Cobre)/farmacologia , Amilases/metabolismo , Animais , Células CACO-2 , Dextranos/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Proteína Ligante Fas/metabolismo , Fentanila/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Humanos , Mucosa Intestinal , Lipase/metabolismo , Lipopolissacarídeos/farmacologia , Metaloproteinase 9 da Matriz , Ocludina/metabolismo , Ocludina/farmacologia , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Ratos
11.
J Insect Sci ; 22(3)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35640247

RESUMO

A number of long noncoding RNAs (lncRNAs) have been identified in silkworm, but little is known about their functions. Recent study showed that the let-7 miRNA cluster (contains let-7, miR-2795, and miR-100) was transcribed from the last exon of lncRNA lncR17454 in silkworm. To investigate the functional role of lncR17454, dsRNAs of lncR17454 were injected into the hemolymph of 1-d-old third-instar larvae of Bombyx mori, repression of lncR17454 led to molting arrestment during the larval-larval and larval-pupal transition of silkworm, which was consistent to the result as let-7 knockdown in other studies. The expression level of mature let-7, miR-100, and miR-2795 decreased 40%, 36%, and 40%, respectively, while the mRNA level of two predicted target genes of let-7, the Broad Complex isoform 2 (BR-C-Z2) and the BTB-Zinc finger transcription repression factor gene Abrupt (Ab), increased significantly after lncR17454 knockdown. In contrast, when adding the 20-Hydroxyecdysone (20E) to silkworm BmN4 cell lines, the expression level of lncR17454 and let-7 cluster all increased significantly, but the expression of Abrupt, the predicted target gene of let-7, was repressed. Dual-luciferase reporter assays confirmed Abrupt was the real target of let-7. Here we found that the lncRNA lncR17454 can play regulator roles in the metamorphosis of silkworm through let-7 miRNA cluster and the ecdysone signaling pathway, which will provide new clues for lepidopteran pest control.


Assuntos
Bombyx , MicroRNAs , RNA Longo não Codificante , Animais , Bombyx/genética , Bombyx/metabolismo , Ecdisterona/metabolismo , Ecdisterona/farmacologia , Larva/genética , Larva/metabolismo , Metamorfose Biológica/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética
12.
Sensors (Basel) ; 22(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36365836

RESUMO

Optical transport networks (OTNs) are widely used in backbone- and metro-area transmission networks to increase network transmission capacity. In the OTN, it is particularly crucial to rationally allocate routes and maximize network capacities. By employing deep reinforcement learning (DRL)- and software-defined networking (SDN)-based solutions, the capacity of optical networks can be effectively increased. However, because most DRL-based routing optimization methods have low sample usage and difficulty in coping with sudden network connectivity changes, converging in software-defined OTN scenarios is challenging. Additionally, the generalization ability of these methods is weak. This paper proposes an ensembles- and message-passing neural-network-based Deep Q-Network (EMDQN) method for optical network routing optimization to address this problem. To effectively explore the environment and improve agent performance, the multiple EMDQN agents select actions based on the highest upper-confidence bounds. Furthermore, the EMDQN agent captures the network's spatial feature information using a message passing neural network (MPNN)-based DRL policy network, which enables the DRL agent to have generalization capability. The experimental results show that the EMDQN algorithm proposed in this paper performs better in terms of convergence. EMDQN effectively improves the throughput rate and link utilization of optical networks and has better generalization capabilities.


Assuntos
Redes Neurais de Computação , Software , Algoritmos , Aprendizagem
13.
BMC Plant Biol ; 21(1): 117, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637037

RESUMO

BACKGROUND: Plant height is an important plant characteristic closely related to yield performance of many crops. Reasonable reduction of plant height of crops is beneficial for improving yield and enhancing lodging resistance. RESULTS: In the present study, we described the Brassica napus dwarf mutant bnd2 that was isolated using ethyl methanesulfonate (EMS) mutagenesis. Compared to wild type (WT), bnd2 exhibited reduced height and shorter hypocotyl and petiole leaves. By crossing the bnd2 mutant with the WT strain, we found that the ratio of the mutant to the WT in the F2 population was close to 1:3, indicating that bnd2 is a recessive mutation of a single locus. Following bulked segregant analysis (BSA) by resequencing, BND2 was found to be located in the 13.77-18.08 Mb interval of chromosome A08, with a length of 4.31 Mb. After fine mapping with single nucleotide polymorphism (SNP) and insertion/deletion (InDel) markers, the gene was narrowed to a 140-Kb interval ranging from 15.62 Mb to 15.76 Mb. According to reference genome annotation, there were 27 genes in the interval, of which BnaA08g20960D had an SNP type variation in the intron between the mutant and its parent, which may be the candidate gene corresponding to BND2. The hybrid line derived from a cross between the mutant bnd2 and the commercial cultivar L329 had similar plant height but higher grain yield compared to the commercial cultivar, suggesting that the allele bnd2 is beneficial for hybrid breeding of lodging resistant and high yield rapeseed. CONCLUSION: In this study, we identified a novel dwarf mutant of rapeseed with a new locus, which may be useful for functional analyses of genetic mechanisms of plant architecture and grain yield in rapeseed.


Assuntos
Brassica napus/genética , Cromossomos de Plantas , Brassica napus/crescimento & desenvolvimento , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Fenótipo , Melhoramento Vegetal , Caules de Planta/citologia
14.
Small ; 17(30): e2101770, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34190409

RESUMO

COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, has resulted in global social and economic disruption, putting the world economy to the largest global recession since the Great Depression. To control the spread of COVID-19, cutting off the transmission route is a critical step. In this work, the efficient inactivation of human coronavirus with photodynamic therapy (PDT) by employing photosensitizers with aggregation-induced emission characteristics (DTTPB) is reported. DTTPB is designed to bear a hydrophilic head and two hydrophobic tails, mimicking the structure of phospholipids on biological membranes. DTTPB demonstrates a broad absorption band covering the whole visible light range and high molar absorptivity, as well as excellent reactive oxygen species sensitizing ability, making it an excellent candidate for PDT. Besides, DTTPB can target membrane structure, and bind to the envelope of human coronaviruses. Upon light irradiation, DTTPB demonstrates highly effective antiviral behavior: human coronavirus treated with DTTPB and white-light irradiation can be efficiently inactivated with complete loss of infectivity, as revealed by the significant decrease of virus RNA and proteins in host cells. Thus, DTTPB sensitized PDT can efficiently prevent the infection and the spread of human coronavirus, which provides a new avenue for photodynamic combating of COVID-19.


Assuntos
COVID-19 , Fotoquimioterapia , Humanos , Pandemias , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , SARS-CoV-2
15.
Mol Pharmacol ; 98(2): 120-129, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32499331

RESUMO

Alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs) are vital enzymes involved in the metabolism of a variety of alcohols. Differences in the expression and enzymatic activity of human ADHs and ALDHs correlate with individual variability in metabolizing alcohols and drugs and in the susceptibility to alcoholic liver disease. MicroRNAs (miRNAs) function as epigenetic modulators to regulate the expression of drug-metabolizing enzymes. To characterize miRNAs that target ADHs and ALDHs in human liver cells, we carried out a systematic bioinformatics analysis to analyze free energies of the interaction between miRNAs and their cognate sequences in ADH and ALDH transcripts and then calculated expression correlations between miRNAs and their targeting ADH and ALDH genes using a public data base. Candidate miRNAs were selected to evaluate bioinformatic predictions using a series of biochemical assays. Our results showed that 11 miRNAs have the potential to modulate the expression of two ADH and seven ALDH genes in the human liver. We found that hsa-miR-1301-3p suppressed the expression of ADH6, ALDH5A1, and ALDH8A1 in liver cells and blocked their induction by ethanol. In summary, our results revealed that hsa-miR-1301-3p plays an important role in ethanol metabolism by regulating ADH and ALDH gene expression. SIGNIFICANCE STATEMENT: Systematic bioinformatics analysis showed that 11 microRNAs might play regulatory roles in the expression of two alcohol dehydrogenase (ADH) and seven aldehyde dehydrogenase (ALDH) genes in the human liver. Experimental evidences proved that hsa-miR-1301-3p suppressed the expression of ADH6, ALDH5A1, and ALDH8A1 in liver cells and decreased their inducibility by ethanol.


Assuntos
Álcool Desidrogenase/genética , Aldeído Desidrogenase/genética , Fígado/metabolismo , MicroRNAs/genética , Succinato-Semialdeído Desidrogenase/genética , Acetaldeído/metabolismo , Acetatos/metabolismo , Linhagem Celular , Etanol/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Redes e Vias Metabólicas
16.
Biosci Biotechnol Biochem ; 84(7): 1384-1393, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32186471

RESUMO

Seed germination is regulated by light. Phytochromes (Phys) act as red and far-red light photoreceptors to mediate seed germination. However, the mechanism of this process is not well understood. In this study, we found that the Arabidopsis thaliana mutants vascular plant one-zinc finger 1 (voz1) and voz2 showed higher seed germination percentage than wild type when PhyB was inactivated by far-red light. In wild type, VOZ1 and VOZ2 expression were downregulated after seed imbibition, repressed by PhyB, and upregulated by Phytochrome-interacting factor 1 (PIF1), a key negative regulator of seed germination. Red light irradiation and the voz1voz2 mutation caused increased expression of Gibberellin 3-oxidase 1 (GA3ox1), a gibberellin (GA) biosynthetic gene. We also found that VOZ2 is bound directly to the promoter of GA3ox1 in vitro and in vivo. Our findings suggest that VOZs play a negative role in PhyB-mediated seed germination, possibly by directly regulating GA3ox1 expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Germinação/genética , Germinação/efeitos da radiação , Fitocromo B/metabolismo , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Luz , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/genética
17.
J Integr Plant Biol ; 62(11): 1717-1740, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32427421

RESUMO

FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1) encodes an F-box protein that regulates photoperiod flowering in Arabidopsis under long-day conditions (LDs). Gibberellin (GA) is also important for regulating flowering under LDs. However, how FKF1 and the GA pathway work in concert in regulating flowering is not fully understood. Here, we showed that the mutation of FKF1 could cause accumulation of DELLA proteins, which are crucial repressors in GA signaling pathway, thereby reducing plant sensitivity to GA in flowering. Both in vitro and in vivo biochemical analyses demonstrated that FKF1 directly interacted with DELLA proteins. Furthermore, we showed that FKF1 promoted ubiquitination and degradation of DELLA proteins. Analysis of genetic data revealed that FKF1 acted partially through DELLAs to regulate flowering under LDs. In addition, DELLAs exerted a negative feedback on FKF1 expression. Collectively, these findings demonstrate that FKF1 promotes flowering partially by negatively regulating DELLA protein stability under LDs, and suggesting a potential mechanism linking the FKF1 to the GA signaling DELLA proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Fotoperíodo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Giberelinas/metabolismo , Fatores de Transcrição/genética
18.
BMC Mol Biol ; 20(1): 12, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30971200

RESUMO

BACKGROUND: Small nucleolar RNAs (snoRNAs) function in guiding 2'-O-methylation and pseudouridylation of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). In recent years, more and more snoRNAs have been found to play novel roles in mRNA regulation, such as pre-mRNA splicing or RNA editing. In our previous study, we found a silkworm C/D box snoRNA Bm-15 can interact with Notch receptor gene in vitro. To further study the function of Bm-15, we cloned its homolog Sf-15 from Spodoptera frugiperda and investigate the function of Sf-15 in Sf9 cells. RESULTS: We showed that knocking down of Sf-15 can inhibit the proliferation, then induce apoptosis of insect S. frugiperda Sf9 cells, but the results were reversed when Sf-15 was overexpressed. De novo sequencing of transcriptome of Sf9 cells showed that the expression of 21 apoptosis-related genes were increased upon Sf-15 repression. Further analysis showed that a Ca2+-induced cell death pathway gene Cn (PPP3C, the serine/threonine-protein phosphatase 2B catalytic subunit), was significantly increased upon Sf-15 depression but decreased when Sf-15 was overexpressed, which indicated that Cn might be a potential target of Sf-15. CONCLUSIONS: We conclude that C/D box snoRNA Sf-15 can participate in apoptosis through regulating the expression of Ca2+-induced cell death pathway gene Cn in Sf9 cells. This is the first time that we found snoRNAs exhibiting dual functions in insect, which reveals a novel layer of ncRNA modulation in cell growth and death.


Assuntos
Apoptose/genética , Proliferação de Células/genética , RNA Nucleolar Pequeno/genética , Spodoptera/genética , Animais , Perfilação da Expressão Gênica , Células Sf9
19.
Plant J ; 91(5): 788-801, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28608936

RESUMO

Floral initiation is regulated by various genetic pathways in response to light, temperature, hormones and developmental status; however, the molecular mechanisms underlying the interactions between different genetic pathways are not fully understood. Here, we show that the photoresponsive gene FOF2 (F-box of flowering 2) negatively regulates flowering. FOF2 encodes a putative F-box protein that interacts specifically with ASK14, and its overexpression results in later flowering under both long-day and short-day photoperiods. Conversely, transgenic plants expressing the F-box domain deletion mutant of FOF2 (FOF2ΔF), or double loss of function mutant of FOF2 and FOL1 (FOF2-LIKE 1) present early flowering phenotypes. The late flowering phenotype of the FOF2 overexpression lines is suppressed by the flc-3 loss-of-function mutation. Furthermore, FOF2 mRNA expression is regulated by autonomous pathway gene FCA, and the repressive effect of FOF2 in flowering can be overcome by vernalization. Interestingly, FOF2 expression is regulated by light. The protein level of FOF2 accumulates in response to light, whereas it is degraded under dark conditions via the 26S proteasome pathway. Our findings suggest a possible mechanistic link between light conditions and the autonomous floral promotion pathway in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Domínio MADS/metabolismo , Arabidopsis/citologia , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Flores/citologia , Flores/genética , Flores/fisiologia , Flores/efeitos da radiação , Luz , Proteínas de Domínio MADS/genética , Mutação , Fenótipo , Plantas Geneticamente Modificadas
20.
Xenobiotica ; 48(3): 285-299, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28287022

RESUMO

1. Osthole, a coumarin compound from plants, is a promising agent for the treatment of metabolic diseases, including hyperglycemia, fatty liver, and cancers. Studies indicate that the peroxisome proliferator-activated receptors (PPAR) α and γ are involved in the pharmacological effects of osthole. The in vitro and in vivo metabolism of osthole and its biological activity are not completely understood. 2. In this study, ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based metabolomics was used to determine the metabolic pathway of osthole and its influence on the levels of endogenous metabolites. Forty-one osthole metabolites, including 23 novel metabolites, were identified and structurally elucidated from its metabolism in vitro and in vivo. Recombinant cytochrome P450s (CYPs) screening showed that CYP3A4 and CYP3A5 were the primary enzymes contributing to osthole metabolism. 3. More importantly, osthole was able to decrease the levels of lysophosphatidylethanolamine (LPE) and lysophosphatidylcholine (LPC) in the plasma, which explains in part its modulatory effects on metabolic diseases. 4. This study gives the insights about the metabolic pathways of osthole in vivo, including hydroxylation, glucuronidation, and sulfation. Furthermore, the levels of the lipids regulated by osthole indicated its potential effects on adipogenesis. These data contribute to the understanding of the disposition and pharmacological activity of osthole in vivo.


Assuntos
Cumarínicos/metabolismo , Cumarínicos/farmacocinética , Lipídeos/sangue , Administração Oral , Animais , Cromatografia Líquida/métodos , Cumarínicos/administração & dosagem , Hidrogenação , Hidroxilação , Inativação Metabólica , Lisofosfatidilcolinas/sangue , Lisofosfolipídeos/sangue , Masculino , Metabolômica/métodos , Metilação , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Absorção Peritoneal , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA