RESUMO
Mpox is a zoonotic illness caused by the Mpox virus (MPXV), a member of the Orthopoxvirus family. Although a few cases have been reported outside Africa, it was originally regarded as an endemic disease limited to African countries. However, the Mpox outbreak of 2022 was remarkable in that the infection spread to more than 123 countries worldwide, causing thousands of infections and deaths. The ongoing Mpox outbreak has been declared as a public health emergency of international concern by the World Health Organization. For a better management and control of the epidemic, this review summarizes the research advances and important scientific findings on MPXV by reviewing the current literature on epidemiology, clinical characteristics, diagnostic methods, prevention and treatment measures, and animal models of MPXV. This review provides useful information to raise awareness about the transmission, symptoms, and protective measures of MPXV, serving as a theoretical guide for relevant institutions to control MPXV.
RESUMO
IMPORTANCE: Intra-arterial therapies(IATs) are promising options for unresectable hepatocellular carcinoma(HCC). Stratifying the prognostic risk before administering IAT is important for clinical decision-making and for designing future clinical trials. OBJECTIVE: To develop and validate a machine learning(ML)-based decision support model(MLDSM) for recommending IAT modalities for unresectable HCC. DESIGN, SETTING, AND PARTICIPANTS: Between October 2014 and October 2022, a total of 2,959 patients with HCC who underwent initial IATs were enroled retrospectively from 13 tertiary hospitals. These patients were divided into the training cohort (n = 1700), validation cohort (n = 428), and test cohort (n = 200). MAIN OUTCOMES AND MEASURES: Thirty-two clinical variables were input, and five supervised ML algorithms, including eXtreme Gradient Boosting (XGBoost), Categorical Gradient Boosting (CatBoost), Gradient Boosting Decision Tree (GBDT), Light Gradient Boosting Machine (LGBM) and Random Forest (RF), were compared using the areas under the receiver operating characteristic curve (AUC) with the DeLong test. RESULTS: A total of 1856 patients were assigned to the IAT alone Group(I-A), and 1103 patients were assigned to the IAT combination Group(I-C). The 12-month death rates were 31.9% (352/1103) in the I-A group and 50.4% (936/1856) in the I-C group. For the test cohort, in the I-C group, the CatBoost model achieved the best discrimination when 30 variables were input, with an AUC of 0.776 (95% confidence intervals [CI], 0.833-0.868). In the I-A group, the LGBM model achieved the best discrimination when 24 variables were input, with an AUC of 0.776 (95% CI, 0.833-0.868). According to the decision trees, BCLC grade, local therapy, and diameter as top three variables were used to guide clinical decisions between IAT modalities. CONCLUSIONS AND RELEVANCE: The MLDSM can accurately stratify prognostic risk for HCC patients who received IATs, thus helping physicians to make decisions about IAT and providing guidance for surveillance strategies in clinical practice.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Aprendizado de Máquina , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Técnicas de Apoio para a Decisão , Tomada de Decisão Clínica , Prognóstico , Quimioembolização Terapêutica/métodosRESUMO
The Z-scheme MIL-88B/BiOBr (referred to as MxBy, whereas x and y are the mass of MIL-88B(Fe) and BiOBr) heterojunction photocatalysts are successfully prepared by a facile ball milling method. By adding low concentration H2O2 under visible light irradiation, the Z-scheme heterojunction and photocatalytic-Fenton-like reaction synergistically enhance the degradation and mineralization of ciprofloxacin (CIP). Among them, M50B150 showed efficient photodegradation efficiency and excellent cycling stability, with 94.6% removal of CIP (10 mg L-1) by M50B150 (0.2 g L-1) under 90 min of visible light. In the MxBy heterojunctions, the rapid transfer of photo-generated electrons not only directly decomposed H2O2 to generate ·OH, but also improved the cycle of Fe3+/Fe2+ pairs, which facilitated the reaction with H2O2 to generate ·OH and ·O2 - radicals. In addition, the effects of photocatalyst dosages, pH of CIP solution, and coexisting substances on CIP removal are systematically investigated. It is found that the photocatalytic- Fenton-like reaction can be carried out at a pH close to neutral conditions. Finally, the charge transfer mechanism of the Z-scheme is verified by electron spin resonance (ESR) signals. The ecotoxicity of CIP degradation products is estimated by the T.E.S.T tool, indicating that the constructed photocatalysis-Fenton-like system is a green wastewater treatment technology.
Assuntos
Bismuto , Ciprofloxacina , Peróxido de Hidrogênio , Ferro , Ciprofloxacina/química , Catálise , Bismuto/química , Peróxido de Hidrogênio/química , Ferro/química , Luz , Fotólise , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/química , Compostos Férricos/químicaRESUMO
INTRODUCTION: The correlation between radiation exposure before pregnancy and abnormal birth weight has been previously proven. However, for large-for-gestational-age (LGA) babies in women exposed to radiation before becoming pregnant, there is no prediction model yet. MATERIAL AND METHODS: The data were collected from the National Free Preconception Health Examination Project in China. A sum of 455 neonates (42 SGA births and 423 non-LGA births) were included. A training set (n = 319) and a test set (n = 136) were created from the dataset at random. To develop prediction models for LGA neonates, conventional logistic regression (LR) method and six machine learning methods were used in this study. Recursive feature elimination approach was performed by choosing 10 features which made a big contribution to the prediction models. And the Shapley Additive Explanation model was applied to interpret the most important characteristics that affected forecast outputs. RESULTS: The random forest (RF) model had the highest average area under the receiver-operating-characteristic curve (AUC) for predicting LGA in the test set (0.843, 95% confidence interval [CI]: 0.714-0.974). Except for the logistic regression model (AUC: 0.603, 95%CI: 0.440-0.767), other models' AUCs displayed well. Thereinto, the RF algorithm's final prediction model using 10 characteristics achieved an average AUC of 0.821 (95% CI: 0.693-0.949). CONCLUSION: The prediction model based on machine learning might be a promising tool for the prenatal prediction of LGA births in women with radiation exposure before pregnancy.
Assuntos
Aprendizado de Máquina , Humanos , Feminino , Gravidez , Recém-Nascido , Adulto , China , Exposição à Radiação/efeitos adversos , Peso ao Nascer , Macrossomia FetalRESUMO
Nanostructures composed of liposomes and polydopamine (PDA) have demonstrated efficacy as carriers for delivering plasmids, effectively alleviating renal cell carcinoma. However, their role in acute kidney injury (AKI) remains unclear. This study aimed to investigate the effects of the plasmid-encoded lncRNA-OIP5-AS1@PDA nanoparticles (POP-NPs) on renal ischemia/reperfusion (RI/R) injury and explore the underlying mechanisms. RI/R or OGD/R models were established in mice and HK-2 cells, respectively. In vivo, vector or POP-NPs were administered (10 nmol, IV) 48 h after RI/R treatment. In the RI/R mouse model, the OIP5-AS1 and Nrf2/HO-1 expressions were down-regulated, while miR-410-3p expression was upregulated. POP-NPs treatment effectively reversed RI/R-induced renal tissue injury, restoring altered levels of blood urea nitrogen, creatinine, malondialdehyde, inflammatory factors (IL-8, IL-6, TNF-α), ROS, apoptosis, miR-410-3p, as well as the suppressed expression of SOD and Nrf2/HO-1 in the model mice. Similar results were obtained in cell models treated with POP-NPs. Additionally, miR-410-3p mimics could reverse the effects of POP-NPs on cellular models, partially counteracted by Nrf2 agonists. The binding relationship between OIP5-AS1 and miR-410-3p, alongside miR-410-3p and Nrf2, has been substantiated by dual-luciferase reporter and RNA pull-down assays. The study revealed that POP-NPs can attenuate RI/R-induced injury through miR-410-3p/Nrf2 axis. These findings lay the groundwork for future targeted therapeutic approaches utilizing nanoparticles for RI/R-induced AKI.
Assuntos
Injúria Renal Aguda , MicroRNAs , Nanopartículas , RNA Longo não Codificante , Traumatismo por Reperfusão , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator 2 Relacionado a NF-E2/genética , Traumatismo por Reperfusão/genética , Injúria Renal Aguda/genética , Injúria Renal Aguda/terapiaRESUMO
Optical and synthetic aperture radar (SAR) images exhibit non-negligible intensity differences due to their unique imaging mechanisms, which makes it difficult for classical SIFT-based algorithms to obtain sufficiently correct correspondences when processing the registration of these two types of images. To tackle this problem, an accurate optical and SAR image registration algorithm based on the SIFT algorithm (OS-PSO) is proposed. First, a modified ratio of exponentially weighted averages (MROEWA) operator is introduced to resolve the sudden dark patches in SAR images, thus generating more consistent gradients between optical and SAR images. Next, we innovatively construct the Harris scale space to replace the traditional difference in the Gaussian (DoG) scale space, identify repeatable key-points by searching for local maxima, and perform localization refinement on the identified key-points to improve their accuracy. Immediately after that, the gradient location orientation histogram (GLOH) method is adopted to construct the feature descriptors. Finally, we propose an enhanced matching method. The transformed relation is obtained in the initial matching stage using the nearest neighbor distance ratio (NNDR) and fast sample consensus (FSC) methods. And the re-matching takes into account the location, scale, and main direction of key-points to increase the number of correctly corresponding points. The proposed OS-PSO algorithm has been implemented on the Gaofen and Sentinel series with excellent results. The superior performance of the designed registration system can also be applied in complex scenarios, including urban, suburban, river, farmland, and lake areas, with more efficiency and accuracy than the state-of-the-art methods based on the WHU-OPT-SAR dataset and the BISTU-OPT-SAR dataset.
RESUMO
This study aims to investigate the induction effect of LncRNA-CIR6 on MSC differentiation into cardiogenic cells in vitro and in vivo. In addition to pretreatment with Ro-3306 (a CDK1 inhibitor), LncRNA-CIR6 was transfected into BMSCs and hUCMSCs using jetPRIME. LncRNA-CIR6 was further transfected into the hearts of C57BL/6 mice via 100 µL of AAV9-cTnT-LncRNA-CIR6-ZsGreen intravenous injection. After three weeks of transfection followed by AMI surgery, hUCMSCs (5 × 105/100 µL) were injected intravenously one week later. Cardiac function was evaluated using VEVO 2100 and electric mapping nine days after cell injection. Immunofluorescence, Evans blue-TTC, Masson staining, FACS, and Western blotting were employed to determine relevant indicators. LncRNA-CIR6 induced a significant percentage of differentiation in BMSCs (83.00 ± 0.58)% and hUCMSCs (95.43 ± 2.13)% into cardiogenic cells, as determined by the expression of cTnT using immunofluorescence and FACS. High cTNT expression was observed in MSCs after transfection with LncRNA-CIR6 by Western blotting. Compared with the MI group, cardiac contraction and conduction function in MI hearts treated with LncRNA-CIR6 or combined with MSCs injection groups were significantly increased, and the areas of MI and fibrosis were significantly lower. The transcriptional expression region of LncRNA-CIR6 was on Chr17 from 80209290 to 80209536. The functional region of LncRNA-CIR6 was located at nucleotides 0-50/190-255 in the sequence. CDK1, a protein found to be related to the proliferation and differentiation of cardiomyocytes, was located in the functional region of the LncRNA-CIR6 secondary structure (from 0 to 17). Ro-3306 impeded the differentiation of MSCs into cardiogenic cells, while MSCs transfected with LncRNA-CIR6 showed a high expression of CDK1. LncRNA-CIR6 mediates the repair of infarcted hearts by inducing MSC differentiation into cardiogenic cells through CDK1.
Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Quinolinas , RNA Longo não Codificante , Tiazóis , Animais , Camundongos , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
BACKGROUND: In acute ischemic stroke, there is uncertainty regarding the benefit and risk of administering intravenous alteplase before endovascular thrombectomy. METHODS: We conducted a trial at 41 academic tertiary care centers in China to evaluate endovascular thrombectomy with or without intravenous alteplase in patients with acute ischemic stroke. Patients with acute ischemic stroke from large-vessel occlusion in the anterior circulation were randomly assigned in a 1:1 ratio to undergo endovascular thrombectomy alone (thrombectomy-alone group) or endovascular thrombectomy preceded by intravenous alteplase, at a dose of 0.9 mg per kilogram of body weight, administered within 4.5 hours after symptom onset (combination-therapy group). The primary analysis for noninferiority assessed the between-group difference in the distribution of the modified Rankin scale scores (range, 0 [no symptoms] to 6 [death]) at 90 days on the basis of a lower boundary of the 95% confidence interval of the adjusted common odds ratio equal to or larger than 0.8. We assessed various secondary outcomes, including death and reperfusion of the ischemic area. RESULTS: Of 1586 patients screened, 656 were enrolled, with 327 patients assigned to the thrombectomy-alone group and 329 assigned to the combination-therapy group. Endovascular thrombectomy alone was noninferior to combined intravenous alteplase and endovascular thrombectomy with regard to the primary outcome (adjusted common odds ratio, 1.07; 95% confidence interval, 0.81 to 1.40; P = 0.04 for noninferiority) but was associated with lower percentages of patients with successful reperfusion before thrombectomy (2.4% vs. 7.0%) and overall successful reperfusion (79.4% vs. 84.5%). Mortality at 90 days was 17.7% in the thrombectomy-alone group and 18.8% in the combination-therapy group. CONCLUSIONS: In Chinese patients with acute ischemic stroke from large-vessel occlusion, endovascular thrombectomy alone was noninferior with regard to functional outcome, within a 20% margin of confidence, to endovascular thrombectomy preceded by intravenous alteplase administered within 4.5 hours after symptom onset. (Funded by the Stroke Prevention Project of the National Health Commission of the People's Republic of China and the Wu Jieping Medical Foundation; DIRECT-MT ClinicalTrials.gov number, NCT03469206.).
Assuntos
Fibrinolíticos/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/cirurgia , Trombectomia/métodos , Ativador de Plasminogênio Tecidual/uso terapêutico , Idoso , Hemorragia Cerebral/etiologia , China , Terapia Combinada , Intervalos de Confiança , Procedimentos Endovasculares , Feminino , Fibrinolíticos/efeitos adversos , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Reperfusão/métodos , Trombectomia/efeitos adversos , Tempo para o Tratamento , Ativador de Plasminogênio Tecidual/efeitos adversos , Resultado do TratamentoRESUMO
PURPOSE: Prostate-specific membrane antigen (PSMA)-positron emission tomography (PET) is a superior method to predict patients' risk of cancer progression and response to specific therapies. However, its performance is limited for neuroendocrine prostate cancer (NEPC) and PSMA-low prostate cancer cells, resulting in diagnostic blind spots. Hence, identifying novel specific targets is our aim for diagnosing those prostate cancers with low PSMA expression. METHODS: The Cancer Genome Atlas (TCGA) database and our cohorts from men with biopsy-proven high-risk metastatic prostate cancer were used to identify CDK19 and PSMA expression. PDX lines neP-09 and P-16 primary cells were used for cellular uptake and imaging mass cytometry in vitro. To evaluate in vivo CDK19-specific uptake of gallium(Ga)-68-IRM-015-DOTA, xenograft mice models and blocking assays were used. PET/CT imaging data were obtained to estimate the absorbed dose in organs. RESULTS: Our study group had reported the overexpression of a novel tissue-specific gene CDK19 in high-risk metastatic prostate cancer and CDK19 expression correlated with metastatic status and tumor staging, independently with PSMA and PSA levels. Following up on this new candidate for use in diagnostics, small molecules targeting CDK19 labeled with Ga-68 (68Ga-IRM-015-DOTA) were used for PET in this study. We found that the 68Ga-IRM-015-DOTA was specificity for prostate cancer cells, but the other cancer cells also took up little 68Ga-IRM-015-DOTA. Importantly, mouse imaging data showed that the NEPC and CRPC xenografts exhibited similar signal strength with 68Ga-IRM-015-DOTA, but 68Ga-PSMA-11 only stained the CRPC xenografts. Furthermore, target specificity was elucidated by a blocking experiment on a CDK19-bearing tumor xenograft. These data concluded that 68Ga-CDK19 PET/CT was an effective technology to detect lesions with or without PSMA in vitro, in vivo, and in the PDX model. CONCLUSION: Thus, we have generated a novel PET small molecule with predictive value for prostate cancer. The findings indicate that 68Ga-CDK19 may merit further evaluation as a predictive biomarker for PET scans in prospective cohorts and may facilitate the identification of molecular types of prostate cancer independent of PSMA.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Prospectivos , Neoplasias da Próstata/patologia , Tomografia por Emissão de Pósitrons , Quinases Ciclina-DependentesRESUMO
A Gram-stain-positive, aerobic, rod-shaped, non-motile, yellowish and glossy strain, C31T, was isolated from a wetland plant Polygonum lapathifolium L. located south of Poyang Lake, Jiangxi Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain C31T showed similarity values of lower than 97.0â% to other type species belonging to the genus Paenibacillus. The genomic average nucleotide identity values between strain C31T and its reference type species ranged from 68.9-70.9â% and the digital DNA-DNA hybridization values were lower than 27.8â%. The genomic DNA G+C content of strain C31T was 41.9âmol%. The optimal growth temperature, pH and NaCl concentration were 37â°C, pH 7 and 0.5â%, respectively. The major cellular fatty acids (>5.0â%) of strain C31T were anteiso-C15â:â0 (73.7â%), anteiso-C17â:â0 (8.4â%) and iso-C15â:â0 (5.2â%). The polar lipids of strain C31T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unidentified phospholipids. The respiratory quinone was MK-7. Based on these phylogenetic and phenotypic characterizations, strain C31T represents a novel species within the genus Paenibacillus. Therefore, the proposed name for this newly identified species is Paenibacillus polygoni sp. nov. and the type strain is C31T (=CCTCC AB 2022349T=KCTC 43565T).
Assuntos
Paenibacillus , Polygonum , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Áreas Alagadas , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Paenibacillus/genéticaRESUMO
Microplastics (MPs) are ubiquitous in the environment. However, it is unclear whether MPs are present in mammalian lungs through inhalation, and if so, could be possibly found in fetal tissues. In this study, we aim to determine the presence and characteristics of particles in domestic and fetal pig lung tissue in the natural environment. Specimens from the lungs of domestic pigs (n = 10) and fetal pigs that already died in matrix during vaginal birth from the non-contaminated area (n = 10) were obtained from farmers' nearby sludge treatment plant. These specimens were compressed between two glass microscope slides, which were examined under polarized light microscopy. In addition, Agilent 8700 LDIR Chemical imaging system (LDIR) was used to determine the quantitative and qualitative characteristics of MPs. According to the polarized light microscope survey of domestic pig lungs, we observed an average of 12 particles/g, which was more than the 6 particles/g observed in fetal pig lungs, which ranged in size from 115.14 µm to 1370.43 µm. All the observed MP particles were fiber in shape. LDIR indicated an average of 180 particles/g of domestic pig lungs, ranging in size from 20.34 µm to 916.36 µm, which was twice as many MPs observed in fetal pig lungs. Furthermore, the compositions of MPs were different between them. LDIR indicated that polyamide (PA) was the most common polymer identified in domestic pig lungs (46.11%), while polycarbonate (PC) was the most common polymer in fetal pig lungs (32.99%). These findings confirmed the presence of MPs in the lung tissue of both domestic and fetal pigs in the natural environment, but the main characteristics differed. This fact indicated the increasing risk of MPs to human respiratory tract is increasing. Further research should be conducted to entirely estimate the specific exposure level on humans and offspring.
Assuntos
Microplásticos , Poluentes Químicos da Água , Suínos , Animais , Humanos , Plásticos , Pulmão , Feto , Sus scrofa , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
Three-dimensional (3D) porous graphene-based materials have displayed attractive electrochemical catalysis and sensing performances, benefiting from their high porosity, large surface area, and excellent electrical conductivity. In this work, a novel electrochemical sensor based on 3D porous reduced graphene (3DPrGO) and ion-imprinted polymer (IIP) was developed for trace cadmium ion (Cd(II)) detection in water. The 3DPrGO was synthesized in situ at a glassy carbon electrode (GCE) surface using a polystyrene (PS) colloidal crystal template and the electrodeposition method. Then, IIP film was further modified on the 3DPrGO by electropolymerization to make it suitable for detecting Cd(II). Attributable to the abundant nanopores and good electron transport of the 3DPrGO, as well as the specific recognition for Cd(II) of IIP, a sensitive determination of trace Cd(II) at PoPD-IIP/3DPrGO/GCE was achieved. The proposed sensor exhibited comprehensive linear Cd(II) responses ranging from 1 to 100 µg/L (R2 = 99.7%). The limit of detection (LOD) was 0.11 µg/L, about 30 times lower than the drinking water standard set by the World Health Organization (WHO). Moreover, PoPD-IIP/3DPrGO/GCE was applied for the detection of Cd(II) in actual water samples. The satisfying recoveries (97-99.6%) and relative standard deviations (RSD, 3.5-5.7%) make the proposed sensor a promising candidate for rapid and on-site water monitoring.
RESUMO
BACKGROUND: Mandibular defects can greatly affect patients' appearance and functionality. The preferred method to address this issue is reconstructive surgery using a fibular flap. The current personalized guide plate can improve the accuracy of osteotomy and reconstruction, but there are still some problems such as complex design process and time-consuming. Therefore, we modified the conventional template to serve the dual purpose of guiding the mandible and fibula osteotomy and facilitating the placement of the pre-bent titanium. METHODS: The surgery was simulated preoperatively using Computer-Aided Design (CAD) technology. The template and truncatable reconstruction model were produced in the laboratory using 3D printing. After pre-bending the titanium plate according to the contour, the reconstruction model was truncated and the screw trajectory was transferred to form a modified osteotomy and positioning integrative template system (MOPITS). Next, the patient underwent a composite template-guided vascularized fibula flap reconstruction of the mandible. All cases were reviewed for the total operative time and accuracy of surgery. RESULTS: The procedures involved 2-4 fibular segments in 15 patients, averaging 3 fibular segments per procedure. The osteotomy error is 1.01 ± 1.02 mm, while the reconstruction angular error is 1.85 ± 1.69°. The preoperative and postoperative data were compared, and both p > 0.05. During the same operation, implant placement was performed on four patients, with an average operative time of 487.25 ± 60.84 min. The remaining malignant tumor patients had an average operative time of 397.18 ± 73.09 min. The average postoperative hospital stay was 12.95 ± 3.29 days. CONCLUSIONS: This study demonstrates the effectiveness of MOPITS in facilitating precise preoperative planning and intraoperative execution of fibula flap reconstruction. MOPITS represents a promising and reliable tool for reconstructive surgery, particularly for inexperienced surgeons navigating the challenges of mandible defect reconstruction.
Assuntos
Retalhos de Tecido Biológico , Reconstrução Mandibular , Cirurgia Assistida por Computador , Humanos , Retalhos de Tecido Biológico/cirurgia , Fíbula/cirurgia , Reconstrução Mandibular/métodos , Titânio , Cirurgia Assistida por Computador/métodos , Mandíbula/cirurgia , Osteotomia/métodosRESUMO
CD8+ T cells can switch between fatty acid catabolism and mitochondrial energy metabolism to sustain expansion and their cytotoxic functions. ST-4 is a TCR-enhanced mutant derived from superantigen staphylococcal enterotoxin C2 (SEC2), which can hyperactivate CD4+ T cells without MHC class II molecules. However, whether ST-4/SEC2 can enhance metabolic reprogramming in CD8+ T cells remains poorly understood. In this study, we found that ST-4, but not SEC2, could induce proliferation of purified CD8+ T cell from BALB/c mice in Vß8.2- and -8.3-specific manners. Results of gas chromatography-mass spectroscopy analysis showed that fatty acid contents in CD8+ T cells were increased after ST-4 stimulation. Flow cytometry and Seahorse analyses showed that ST-4 significantly promoted mitochondrial energy metabolism in CD8+ T cells. We also observed significantly upregulated levels of gene transcripts for fatty acid uptake and synthesis, and significantly increased protein expression levels of fatty acid and mitochondrial metabolic markers of mTOR/PPARγ/SREBP1 and p38-MAPK signaling pathways in ST-4-activated CD8+ T cells. However, blocking mTOR, PPARγ, SREBP1, or p38-MAPK signals with specific inhibitors could significantly relieve the enhanced fatty acid catabolism and mitochondrial capacity induced by ST-4. In addition, blocking these signals inhibited ST-4-stimulated CD8+ T cell proliferation and effector functions. Taken together, our findings demonstrate that ST-4 enhanced fatty acid and mitochondria metabolic reprogramming through mTOR/PPARγ/SREBP and p38-MAPK signaling pathways, which may be important regulatory mechanisms of CD8+ T cell activation. Understanding the effects of ST-4-induced regulatory metabolic networks on CD8+ T cells provide important mechanistic insights to superantigen-based tumor therapy.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Metabolismo Energético , Enterotoxinas , Ácidos Graxos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Mitocôndrias/imunologia , Mutação , Animais , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/imunologia , Enterotoxinas/genética , Enterotoxinas/imunologia , Enterotoxinas/toxicidade , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Combining the abundance and inexpensiveness of their constituent elements with their atomic dispersion, atomically dispersed Fe-N-C catalysts represent the most promising alternative to precious-metal-based materials in proton exchange membrane (PEM) fuel cells. Due to the high temperatures involved in their synthesis and the sensitivity of Fe ions toward carbothermal reduction, current synthetic methods are intrinsically limited in type and amount of the desired, catalytically active Fe-N4 sites, and high active site densities have been out of reach (dilemma of Fe-N-C catalysts). We herein identify a paradigm change in the synthesis of Fe-N-C catalysts arising from the developments of other M-N-C single-atom catalysts. Supported by DFT calculations we propose fundamental principles for the synthesis of M-N-C materials. We further exploit the proposed principles in a novel synthetic strategy to surpass the dilemma of Fe-N-C catalysts. The selective formation of tetrapyrrolic Zn-N4 sites in a tailor-made Zn-N-C material is utilized as an active-site imprint for the preparation of a corresponding Fe-N-C catalyst. By successive low- and high-temperature ion exchange reactions, we obtain a phase-pure Fe-N-C catalyst, with a high loading of atomically dispersed Fe (>3 wt %). Moreover, the catalyst is entirely composed of tetrapyrrolic Fe-N4 sites. The density of tetrapyrrolic Fe-N4 sites is more than six times as high as for previously reported tetrapyrrolic single-site Fe-N-C fuel cell catalysts.
RESUMO
The degradation of black soil is a serious problem with the decrease in soil organic matter (SOM) content in northeast China, and animal manure as a reservoir of antibiotic resistance genes (ARGs) is commonly amended into soil to sustain or increase the SOM content. However, the potential effect of SOM content on soil resistome remains unclear. Here, a soil microcosm experiment was established to explore the temporal succession of antibiotic resistance genes (ARGs) and bacterial communities in three black soils with distinct difference in SOM contents following application of poultry manure using high-throughput qPCR (HT-qPCR) and MiSeq sequencing. A total of 151 ARGs and 8 mobile genetic elements (MGEs) were detected across all samples. Relative abundance of ARGs negatively correlated with SOM content. Manure-derived ARGs had much higher diversity and absolute abundance in the low SOM soils. The ARG composition and bacterial community structure were significantly different in three soils. A random forest model showed that SOM content was a better predictor of ARG pattern than bacterial diversity and abundance. Structural equation modeling indicated that the negative effects of SOM content on ARG patterns was accomplished by the shift of bacterial communities such as the bacterial diversity and abundance. Our study demonstrated that SOM content could play an important role in the dissemination of ARGs originated from animal manures, these findings provide a possible strategy for the suppression of the spread of ARGs in black soils by increasing SOM content.
Assuntos
Antibacterianos , Solo , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Genes Bacterianos , Esterco , Microbiologia do SoloRESUMO
BACKGROUND: Studies have shown that long non-coding RNAs (lncRNAs) play essential roles in tumor progression and can affect the response to radiotherapy, including in clear cell renal cell carcinoma (ccRCC). LINC02532 has been found to be upregulated in ccRCC. However, not much is known about this lncRNA. Hence, this study aimed to investigate the role of LINC02532 in ccRCC, especially in terms of radioresistance. METHODS: Quantitative real-time PCR was used to detect the expression of LINC02532, miR-654-5p, and YY1 in ccRCC cells. Protein levels of YY1, cleaved PARP, and cleaved-Caspase-3 were detected by Western blotting. Cell survival fractions, viability, and apoptosis were determined by clonogenic survival assays, CCK-8 assays, and flow cytometry, respectively. The interplay among LINC02532, miR-654-5p, and YY1 was detected by chromatin immunoprecipitation and dual-luciferase reporter assays. In addition, in vivo xenograft models were established to investigate the effect of LINC02532 on ccRCC radioresistance in 10 nude mice. RESULTS: LINC02532 was highly expressed in ccRCC cells and was upregulated in the cells after irradiation. Moreover, LINC02532 knockdown enhanced cell radiosensitivity both in vitro and in vivo. Furthermore, YY1 activated LINC02532 in ccRCC cells, and LINC02532 acted as a competing endogenous RNA that sponged miR-654-5p to regulate YY1 expression. Rescue experiments indicated that miR-654-5p overexpression or YY1 inhibition recovered ccRCC cell functions that had been previously impaired by LINC02532 overexpression. CONCLUSIONS: Our results revealed a positive feedback loop of LINC02532/miR-654-5p/YY1 in regulating the radiosensitivity of ccRCC, suggesting that LINC02532 might be a potential target for ccRCC radiotherapy. This study could serve as a foundation for further research on the role of LINC02532 in ccRCC and other cancers.
Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Tolerância a Radiação , Fator de Transcrição YY1/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/radioterapia , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/genética , Neoplasias Renais/radioterapia , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Fator de Transcrição YY1/genéticaRESUMO
INTRODUCTION: This study aimed to investigate the safety and efficacy of mini-laparoscopy for renal cyst unroofing. MATERIAL AND METHODS: Eighty-six patients for treatment of renal cysts that met the selection criteria were included in this study. They were divided into two groups. Forty-five patients underwent cyst unroofing via mini-laparoscopy (Group M), and 43 patients underwent cyst unroofing via standard laparoscopy (Group S). There were no differences between the two groups in terms of sex, age, body mass index or clinical data. Data from the groups were recorded and analyzed. RESULTS: The average hospital stays were shorter (p = .039) and postoperative painkiller demand was lower (p = .031) in Group M than in Group S. Forty-one out of 45 procedures in Group M were successful, and all 43 cases in Group S were successfully. With a follow-up period of 0.5 to 5.5 years, there was no significant difference in recovery rate (p = .213). Questionnaires showed that patients in Group M were significantly more satisfied with their cosmetic results than were patients in Group S (p = .041). CONCLUSION: Our findings suggest that renal cyst decortications with mini-laparoscopic instruments are as safe and effective as procedures using standard laparoscopic instruments. Cosmetically, the results are better with mini-laparoscopy than with standard laparoscopic unroofing.
Assuntos
Cistos , Doenças Renais Císticas , Laparoscopia , Cistos/cirurgia , Humanos , Doenças Renais Císticas/cirurgia , Tempo de InternaçãoRESUMO
BACKGROUND: Patients with COVID-19 in the intensive care unit (ICU) have a high mortality rate, and methods to assess patients' prognosis early and administer precise treatment are of great significance. OBJECTIVE: The aim of this study was to use machine learning to construct a model for the analysis of risk factors and prediction of mortality among ICU patients with COVID-19. METHODS: In this study, 123 patients with COVID-19 in the ICU of Vulcan Hill Hospital were retrospectively selected from the database, and the data were randomly divided into a training data set (n=98) and test data set (n=25) with a 4:1 ratio. Significance tests, correlation analysis, and factor analysis were used to screen 100 potential risk factors individually. Conventional logistic regression methods and four machine learning algorithms were used to construct the risk prediction model for the prognosis of patients with COVID-19 in the ICU. The performance of these machine learning models was measured by the area under the receiver operating characteristic curve (AUC). Interpretation and evaluation of the risk prediction model were performed using calibration curves, SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), etc, to ensure its stability and reliability. The outcome was based on the ICU deaths recorded from the database. RESULTS: Layer-by-layer screening of 100 potential risk factors finally revealed 8 important risk factors that were included in the risk prediction model: lymphocyte percentage, prothrombin time, lactate dehydrogenase, total bilirubin, eosinophil percentage, creatinine, neutrophil percentage, and albumin level. Finally, an eXtreme Gradient Boosting (XGBoost) model established with the 8 important risk factors showed the best recognition ability in the training set of 5-fold cross validation (AUC=0.86) and the verification queue (AUC=0.92). The calibration curve showed that the risk predicted by the model was in good agreement with the actual risk. In addition, using the SHAP and LIME algorithms, feature interpretation and sample prediction interpretation algorithms of the XGBoost black box model were implemented. Additionally, the model was translated into a web-based risk calculator that is freely available for public usage. CONCLUSIONS: The 8-factor XGBoost model predicts risk of death in ICU patients with COVID-19 well; it initially demonstrates stability and can be used effectively to predict COVID-19 prognosis in ICU patients.
Assuntos
COVID-19/epidemiologia , Aprendizado de Máquina/normas , Algoritmos , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Prognóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de RiscoRESUMO
Alzheimer's disease (AD) is a progressive and irreversible brain disorder. Recent studies revealed the pivotal role of ß-amyloid (Aß) in AD. However, there is no conclusive indication that the existing therapeutic strategies exerted any effect on the mitigation of Aß-induced neurotoxicity and the elimination of Aß aggregates simultaneously in vivo. Herein, we developed a novel nanocomposite that can eliminate toxic Aß aggregates and mitigate Aß-induced neurotoxicity in AD mice. This nanocomposite was designed to be a small-sized particle (14 ± 4 nm) with Aß-binding peptides (KLVFF) integrated on the surface. The nanocomposite was prepared by wrapping a protein molecule with a cross-linked KLVFF-containing polymer layer synthesized by in situ polymerization. The presence of the nanocomposite remarkably changed the morphology of Aß aggregates, which led to the formation of Aß/nanocomposite coassembled nanoclusters instead of Aß oligomers. With the reduction of the pathological Aß oligomers, the nanocomposites attenuated the Aß-induced neuron damages, regained endocranial microglia's capability to phagocytose Aß, and eventually protected hippocampal neurons against apoptosis. Thus, we anticipate that the small-sized nanocomposite will potentially offer a feasible strategy in the development of novel AD treatments.