Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nano Lett ; 21(9): 4129-4135, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33939439

RESUMO

Aqueous rechargeable zinc-iodine batteries (ZIBs) are promising candidates for grid energy storage because they are safe and low-cost and have high energy density. However, the shuttling of highly soluble triiodide ions severely limits the device's Coulombic efficiency. Herein, we demonstrate for the first time a double-layered cathode configuration with a conductive layer (CL) coupled with an adsorptive layer (AL) for ZIBs. This unique cathode structure enables the formation and reduction of adsorbed I3- ions at the CL/AL interface, successfully suppressing triiodide ion shuttling. A prototypical ZIB using a carbon cloth as the CL and a polypyrrole layer as the AL simultaneously achieves outstanding Coulombic efficiency (up to 95.6%) and voltage efficiency (up to 91.3%) in the aqueous ZnI2 electrolyte even at high-rate intermittent charging/discharging, without the need of ion selective membranes. These findings provide new insights to the design and fabrication of ZIBs and other batteries based on conversion reactions.

2.
Nano Lett ; 21(9): 3731-3737, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33719451

RESUMO

Maintaining fast charging capability at low temperatures represents a significant challenge for supercapacitors. The performance of conventional porous carbon electrodes often deteriorates quickly with the decrease of temperature due to sluggish ion and charge transport. Here we fabricate a 3D-printed multiscale porous carbon aerogel (3D-MCA) via a unique combination of chemical methods and the direct ink writing technique. 3D-MCA has an open porous structure with a large surface area of ∼1750 m2 g-1. At -70 °C, the symmetric device achieves outstanding capacitance of 148.6 F g-1 at 5 mV s-1. Significantly, it retains a capacitance of 71.4 F g-1 at a high scan rate of 200 mV s-1, which is 6.5 times higher than the non-3D printed MCA. These values rank among the best results reported for low temperature supercapacitors. These impressive results highlight the essential role of open porous structures for preserving capacitive performance at ultralow temperatures.

3.
Small ; 15(1): e1803746, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30411486

RESUMO

Photo-electrochemical water splitting represents a green and environmentally friendly method for producing solar hydrogen. Semiconductor nanomaterials with a highly accessible surface area, reduced charge migration distance, and tunable optical and electronic property are regarded as promising electrode materials to carry out this solar-to-hydrogen process. Since most of the photo-electrochemical reactions take place on the electrode surface or near-surface region, rational engineering of the surface structures, physical properties, and chemical nature of photoelectrode materials could fundamentally change their performance. Here, the recent advances in surface engineering methods, including the modification of the nanomaterial surface morphology, crystal facet, defect and doping concentrations, as well as the deposition of a functional overlayer of sensitizers, plasmonic metallic structures, and protective and catalytic materials are highlighted. Each surface engineering method and how it affects the structural features and photo-electrochemical performance of nanomaterials are reviewed and compared. Finally, the current challenges and the opportunities in the field are discussed.

4.
Environ Sci Technol ; 53(13): 7714-7723, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31198021

RESUMO

The increasing demand for rare earth elements (REEs) in the modern economy motivates the development of novel strategies for cost-effective REE recovery from nontraditional feedstocks. We previously engineered E. coli to express lanthanide binding tags on the cell surface, which increased the REE biosorption capacity and selectivity. Here we examined how REE adsorption by the engineered E. coli is affected by various geochemical factors relevant to geothermal fluids, including total dissolved solids (TDS), temperature, pH, and the presence of specific competing metals. REE biosorption is robust to TDS, with high REE recovery efficiency and selectivity observed with TDS as high as 165,000 ppm. Among several metals tested, U, Al, and Pb were found to be the most competitive, causing >25% reduction in REE biosorption when present at concentrations ∼3- to 11-fold higher than the REEs. Optimal REE biosorption occurred between pH 5-6, and sorption capacity was reduced by ∼65% at pH 2. REE recovery efficiency and selectivity increased as a function of temperature up to ∼70 °C due to the thermodynamic properties of metal complexation on the bacterial surface. Together, these data define the optimal and boundary conditions for biosorption and demonstrate its potential utility for selective REE recovery from geofluids.


Assuntos
Elementos da Série dos Lantanídeos , Metais Terras Raras , Adsorção , Bactérias , Escherichia coli
5.
Nano Lett ; 17(5): 3097-3104, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394622

RESUMO

Increasing charge storage capability during fast charging (at ultrahigh current densities) has been a long-standing challenge for supercapacitors. In this work, a novel porous carbon foam electrode with multiscale pore network is reported that achieves a remarkable gravimetric capacitance of 374.7 ± 7.7 F g-1 at a current density of 1 A g-1. More importantly, it retains 235.9 ± 7.5 F g-1 (60% of its capacitance at 1 A g-1) at an ultrahigh current density of 500 A g-1. Electron microscopy studies reveal that this carbon structure contains multiscale pores assembled in a hierarchical pattern. The outstanding capacitive performance benefits from its extremely large surface area of 2905 m2 g-1, as around 88% of the electric charges are stored via electrical double layer. Significantly, electrochemical analyses show that the hierarchical porous structure containing macro-, meso-, and micropores allows efficient ion diffusion and charge transfer, resulting in the excellent rate capability. The findings pave the way for improving rate capability of supercapacitors and enhancing their capacitances at ultrahigh current densities.

6.
Nano Lett ; 17(4): 2490-2495, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28334530

RESUMO

High-temperature activation has been commonly used to boost the photoelectrochemical (PEC) performance of hematite nanowires for water oxidation, by inducing Sn diffusion from fluorine-doped tin oxide (FTO) substrate into hematite. Yet, hematite nanowires thermally annealed at high temperature suffer from two major drawbacks that negatively affect their performance. First, the structural deformation reduces light absorption capability of nanowire. Second, this "passive" doping method leads to nonuniform distribution of Sn dopant in nanowire and limits the Sn doping concentration. Both factors impair the electrochemical properties of hematite nanowire. Here we demonstrate a silica encapsulation method that is able to simultaneously retain the hematite nanowire morphology even after high-temperature calcination at 800 °C and improve the concentration and uniformity of dopant distribution along the nanowire growth axis. The capability of retaining nanowire morphology allows tuning the nanowire length for optimal light absorption. Uniform distribution of Sn doping enhances the donor density and charge transport of hematite nanowire. The morphology and doping engineered hematite nanowire photoanode decorated with a cobalt oxide-based oxygen evolution reaction (OER) catalyst achieves an outstanding photocurrent density of 2.2 mA cm-2 at 0.23 V vs Ag/AgCl. This work provides important insights on how the morphology and doping uniformity of hematite photoanodes affect their PEC performance.

7.
Small ; 13(16)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160416

RESUMO

Previous studies show that vanadium oxides suffer from severe capacity loss during cycling in the liquid electrolyte, which has hindered their applications in electrochemical energy storage. The electrochemical instability is mainly due to chemical dissolution and structural pulverization of vanadium oxides during charge/discharge cyclings. In this study the authors demonstrate that amorphous mixed-valence vanadium oxide deposited on exfoliated carbon cloth (CC) can address these two limitations simultaneously. The results suggest that tuning the V4+ /V5+ ratio of vanadium oxide can efficiently suppress the dissolution of the active materials. The oxygen-functionalized carbon shell on exfoliated CC can bind strongly with VO x via the formation of COV bonding, which retains the electrode integrity and suppresses the structural degradation of the oxide during charging/discharging. The uptake of structural water during charging and discharging processes also plays an important role in activating the electrode material. The amorphous mixed-valence vanadium oxide without any protective coating exhibits record-high cycling stability in the aqueous electrolyte with no capacitive decay in 100 000 cycles. This work provides new insights on stabilizing vanadium oxide, which is critical for the development of vanadium oxide based energy storage devices.

8.
Nano Lett ; 16(6): 3448-56, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-26789202

RESUMO

Graphene is an atomically thin, two-dimensional (2D) carbon material that offers a unique combination of low density, exceptional mechanical properties, thermal stability, large surface area, and excellent electrical conductivity. Recent progress has resulted in macro-assemblies of graphene, such as bulk graphene aerogels for a variety of applications. However, these three-dimensional (3D) graphenes exhibit physicochemical property attenuation compared to their 2D building blocks because of one-fold composition and tortuous, stochastic porous networks. These limitations can be offset by developing a graphene composite material with an engineered porous architecture. Here, we report the fabrication of 3D periodic graphene composite aerogel microlattices for supercapacitor applications, via a 3D printing technique known as direct-ink writing. The key factor in developing these novel aerogels is creating an extrudable graphene oxide-based composite ink and modifying the 3D printing method to accommodate aerogel processing. The 3D-printed graphene composite aerogel (3D-GCA) electrodes are lightweight, highly conductive, and exhibit excellent electrochemical properties. In particular, the supercapacitors using these 3D-GCA electrodes with thicknesses on the order of millimeters display exceptional capacitive retention (ca. 90% from 0.5 to 10 A·g(-1)) and power densities (>4 kW·kg(-1)) that equal or exceed those of reported devices made with electrodes 10-100 times thinner. This work provides an example of how 3D-printed materials, such as graphene aerogels, can significantly expand the design space for fabricating high-performance and fully integrable energy storage devices optimized for a broad range of applications.

10.
Nano Lett ; 15(10): 7051-7, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26426759

RESUMO

Titanium dioxide (TiO2) has been extensively investigated as photoanode for water oxidation, as it is believed to be one of the most stable photoanode materials. Yet, we surprisingly found that TiO2 photoanodes (rutile nanowire, anatase nanotube, and P25 nanoparticle film) suffered from substantial photocurrent decay in neutral (Na2SO4) as well as basic (KOH) electrolyte solution. Photoelectrochemical measurements togehter with electron microscopy studies performed on rutile TiO2 nanowire photoanode show that the photocurrent decay is due to photohole induced corrosion, which competes with water oxidation reaction. Further studies reveal that photocurrent decay profile in neutral and basic solutions are fundamentally different. Notably, the structural reconstruction of nanowire surface occurs simultaneously with the corrosion of TiO2 in KOH solution resulting in the formation of an amorphous layer of titanium hydroxide, which slows down the photocorrosion. Based on this discovery, we demonstrate that the photoelectrochemical stability of TiO2 photoanode can be significantly improved by intentionally coating an amorphous layer of titanium hydroxide on the nanowire surface. The pretreated TiO2 photaonode exhibits an excellent photocurrent retention rate of 97% after testing in KOH solution for 72 h, while in comparison the untreated sample lost 10-20% of photocurrent in 12 h under the same measurement conditions. This work provides new insights in understanding of the photoelectrochemical stability of bare TiO2 photoanodes.


Assuntos
Corrosão , Titânio/química , Microscopia Eletrônica de Varredura
11.
Nano Lett ; 15(5): 3189-94, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25830495

RESUMO

Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.

12.
Angew Chem Int Ed Engl ; 55(10): 3403-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26847172

RESUMO

We report a strategy for efficient suppression of electron-hole recombination in hematite photoanodes. Acid-treated hematite showed a substantially enhanced photocurrent density compared to untreated samples. Electrochemical impedance spectroscopy studies revealed that the enhanced photocurrent is partly due to improved efficiency of charge separation. Transient absorption spectroscopic studies coupled to electrochemical measurements indicate that, in addition to improved bulk electrochemical properties, acid-treated hematite has significantly decreased surface electron-hole recombination losses owing to a greater yield of the trapped photoelectrons being extracted to the external circuit.

13.
Angew Chem Int Ed Engl ; 55(31): 8864-8, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27294890

RESUMO

CH3 NH3 PbBr3 perovskite nanocrystals (PNCs) of different sizes (ca. 2.5-100 nm) with high photoluminescence (PL) quantum yield (QY; ca. 15-55 %) and product yield have been synthesized using the branched molecules, APTES and NH2 -POSS, as capping ligands. These ligands are sterically hindered, resulting in a uniform size of PNCs. The different capping effects resulting from branched versus straight-chain capping ligands were compared and a possible mechanism proposed to explain the dissolution-precipitation process, which affects the growth and aggregation of PNCs, and thereby their overall stability. Unlike conventional PNCs capped with straight-chain ligands, APTES-capped PNCs show high stability in protic solvents as a result of the strong steric hindrance and propensity for hydrolysis of APTES, which prevent such molecules from reaching and reacting with the core of PNCs.

14.
Nano Lett ; 14(6): 3688-93, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24875432

RESUMO

Here we report the investigation of interplay between light, a hematite nanowire-arrayed photoelectrode, and Shewanella oneidensis MR-1 in a solar-assisted microbial photoelectrochemical system (solar MPS). Whole cell electrochemistry and microbial fuel cell (MFC) characterization of Shewanella oneidensis strain MR-1 showed that these cells cultured under (semi)anaerobic conditions expressed substantial c-type cytochrome outer membrane proteins, exhibited well-defined redox peaks, and generated bioelectricity in a MFC device. Cyclic voltammogram studies of hematite nanowire electrodes revealed active electron transfer at the hematite/cell interface. Notably, under a positive bias and light illumination, the hematite electrode immersed in a live cell culture was able to produce 150% more photocurrent than that in the abiotic control of medium or dead culture, suggesting a photoenhanced electrochemical interaction between hematite and Shewanella. The enhanced photocurrent was attributed to the additional redox species associated with MR-1 cells that are more thermodynamically favorable to be oxidized than water. Long-term operation of the hematite solar MPS with light on/off cycles showed stable current generation up to 2 weeks. Fluorescent optical microscope and scanning electron microscope imaging revealed that the top of the hematite nanowire arrays were covered by a biofilm, and iron determination colorimetric assay revealed 11% iron loss after a 10-day operation. To our knowledge, this is the first report on interfacing a photoanode directly with electricigens in a MFC system. Such a system could open up new possibilities in solar-microbial device that can harvest solar energy and recycle biomass simultaneously to treat wastewater, produce electricity, and chemical fuels in a self-sustained manner.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Compostos Férricos/química , Luz , Nanofios/química , Shewanella/fisiologia , Eletrodos
15.
Nano Lett ; 14(5): 2522-7, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24678990

RESUMO

Conducting polymers such as polyaniline and polypyrrole have been widely used as pseudocapacitive electrode materials for supercapacitors. However, their structural instability resulting from repeated volumetric swelling and shrinking during charge/discharge process has been a major hurdle for their practical applications. This work demonstrates a simple and general strategy to substantially enhance the cycling stability of conductive polymer electrodes by deposition of a thin carbonaceous shell onto their surface. Significantly, carbonaceous shell-coated polyaniline and polypyrrole electrodes achieved remarkable capacitance retentions of ∼95 and ∼85% after 10,000 cycles. Electron microscopy studies revealed that the presence of ∼5 nm thick carbonaceous shell can effective prevent the structural breakdown of polymer electrodes during charge/discharge process. Importantly, the polymer electrodes with a ∼5 nm thick carbonaceous shell exhibited comparable specific capacitance and pseudocapacitive behavior as the bare polymer electrodes. We anticipate that the same strategy can be applied for stabilizing other polymer electrode materials. The capability of fabricating stable polymer electrodes could open up new opportunities for pseudocapacitive devices.

16.
Nano Lett ; 13(6): 2628-33, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23634667

RESUMO

To push the energy density limit of asymmetric supercapacitors (ASCs), a new class of anode materials is needed. Vanadium nitride (VN) holds great promise as anode material for ASCs due to its large specific capacitance, high electrical conductivity, and wide operation windows in negative potential. However, its poor electrochemical stability severely limits its application in SCs. In this work, we demonstrated high energy density, stable, quasi-solid-state ASC device based on porous VN nanowire anode and VOx nanowire cathode for the first time. The VOx//VN-ASC device exhibited a stable electrochemical window of 1.8 V and excellent cycling stability with only 12.5% decrease of capacitance after 10,000 cycles. More importantly, the VOx//VN-ASC device achieved a high energy density of 0.61 mWh cm(-3) at current density of 0.5 mA cm(-2) and a high power density of 0.85 W cm(-3) at current density of 5 mA cm(-2). These values are substantially enhanced compared to most of the reported quasi/all-solid-state SC devices. This work constitutes the first demonstration of using VN nanowires as high energy anode, which could potentially improve the performance of energy storage devices.

17.
Nano Lett ; 13(8): 3817-23, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23899318

RESUMO

Here we demonstrate that the photoactivity of Au-decorated TiO2 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the entire UV-visible region from 300 to 800 nm by manipulating the shape of the decorated Au nanostructures. The samples were prepared by carefully depositing Au nanoparticles (NPs), Au nanorods (NRs), and a mixture of Au NPs and NRs on the surface of TiO2 nanowire arrays. As compared with bare TiO2, Au NP-decorated TiO2 nanowire electrodes exhibited significantly enhanced photoactivity in both the UV and visible regions. For Au NR-decorated TiO2 electrodes, the photoactivity enhancement was, however, observed in the visible region only, with the largest photocurrent generation achieved at 710 nm. Significantly, TiO2 nanowires deposited with a mixture of Au NPs and NRs showed enhanced photoactivity in the entire UV-visible region. Monochromatic incident photon-to-electron conversion efficiency measurements indicated that excitation of surface plasmon resonance of Au is responsible for the enhanced photoactivity of Au nanostructure-decorated TiO2 nanowires. Photovoltage experiment showed that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was attributable to the effective surface passivation of Au NPs. Furthermore, 3D finite-difference time domain simulation was performed to investigate the electrical field amplification at the interface between Au nanostructures and TiO2 upon SPR excitation. The results suggested that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was partially due to the increased optical absorption of TiO2 associated with SPR electrical field amplification. The current study could provide a new paradigm for designing plasmonic metal/semiconductor composite systems to effectively harvest the entire UV-visible light for solar fuel production.

18.
Am J Ther ; 20(2): 213-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-21317619

RESUMO

Cardiogenic shock remains the leading cause of in-hospital death for patients admitted with acute myocardial infarction. For patients with refractory cardiogenic shock, early revascularization and intra-aortic balloon pump support are often inadequate to reverse the persistent circulatory collapse. We report 5 cases in which an extracorporeal oxygenator in series with the TandemHeart system was instituted emergently in patients with refractory cardiogenic shock from acute myocardial infarction. From our experience, we showed that the device can be safely and easily inserted and that it is able to reverse circulatory collapse and provide hemodynamic stability in patients who otherwise have a high mortality rate.


Assuntos
Oxigenação por Membrana Extracorpórea/métodos , Coração Auxiliar , Infarto do Miocárdio/terapia , Choque Cardiogênico/terapia , Adulto , Idoso , Terapia Combinada , Feminino , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Revascularização Miocárdica/métodos , Choque Cardiogênico/etiologia
19.
Nano Lett ; 12(3): 1690-6, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22364294

RESUMO

We report a new and general strategy for improving the capacitive properties of TiO(2) materials for supercapacitors, involving the synthesis of hydrogenated TiO(2) nanotube arrays (NTAs). The hydrogenated TiO(2) (denoted as H-TiO(2)) were obtained by calcination of anodized TiO(2) NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H-TiO(2) NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm(-2) at a scan rate of 100 mV s(-1), which is 40 times higher than the capacitance obtained from air-annealed TiO(2) NTAs at the same conditions. Importantly, H-TiO(2) NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s(-1), as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10,000 cycles. The prominent electrochemical capacitive properties of H-TiO(2) are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO(2) surface, as a result of hydrogenation. Furthermore, we demonstrate that H-TiO(2) NTAs is a good scaffold to support MnO(2) nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO(2) nanoparticles on H-TiO(2) NTAs achieve a remarkable specific capacitance of 912 F g(-1) at a scan rate of 10 mV s(-1) (based on the mass of MnO(2)). The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors.


Assuntos
Capacitância Elétrica , Eletrônica/instrumentação , Hidrogênio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Titânio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
20.
Nano Lett ; 12(10): 5376-81, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22947093

RESUMO

Metal nitrides have received increasing attention as electrode materials for high-performance supercapacitors (SCs). However, most of them are suffered from poor cycling stability. Here we use TiN as an example to elucidate the mechanism causing the capacitance loss. X-ray photoelectron spectroscopy analyses revealed that the instability is due to the irreversible electrochemical oxidation of TiN during the charging/discharging process. Significantly, we demonstrate for the first time that TiN can be stabilized without sacrificing its electrochemical performance by using poly(vinyl alcohol) (PVA)/KOH gel as the electrolyte. The polymer electrolyte suppresses the oxidation reaction on electrode surface. Electrochemical studies showed that the TiN solid-state SCs exhibit extraordinary stability up to 15,000 cycles and achieved a high volumetric energy density of 0.05 mWh/cm(3). The capability of effectively stabilizing nitride materials could open up new opportunities in developing high-performance and flexible SCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA